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FURTHER GENERALIZATIONS OF ALZER–FONSECA–KOVAČEC

TYPE INEQUALITIES AND APPLICATIONS

TRAN DINH PHUNG AND DUONG QUOC HUY ∗

(Communicated by S. Varošanec)

Abstract. In this paper, we develop a new method which allows us to establish interesting gen-
eralizations of the well-known Young-type inequalities, or inequalities between arithmetic and
harmonic mean. Several attractive applications of these inequalities to matrix inequalities, deter-
minant inequalities and unitarily invariant norm inequalities are also presented.

1. Introduction

The well-known Young inequality for two positive real numbers a and b says that,
for all  ∈ [0,1] ,

ab := (1−)a+b � a1−b =: a�b

with the equality sign if and only if a = b or  ∈ {0,1} .
One of the most important two weight generalizations of this inequality is the

Alzer-Fonseca-Kovačec inequality discovered in 2015 of the form

(


)
� (ab) − (a�b)

(ab) − (a�b)
�

( 1−
1− 

)
, (1.1)

where 0 <  �  < 1 and  � 1, see [1] for the details. When  = 1, the dou-
ble inequality provides sharper inequalities in comparison with the original results by
Kittaneh and Manasrah in [6, 7]. The idea for the proof of the left-hand side of the
inequality (1.1) is to show that for each 0 < x �= 1, the function

f () =
(1x) − (1�x)



is decreasing on (0,1) , which yields the claimed inequality. The right-hand side of the
inequality (1.1) is proved similarly.

In 2006, Dragomir [3] established the famous double inequality in the following
theorem.
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THEOREM 1.1. ([3]) Let f be a convex function defined an interval J ⊂ R . If
0 <  �  < 1 are two weights and x,y ∈ J, we then have




� (1−) f (x)+ f (y)− f ((1−)x+y)
(1− ) f (x)+ f (y)− f ((1− )x+y)

� 1−
1−

. (1.2)

It is remarkable that by choosing x = 0, y = 1, and f () = a1−b with a,b > 0,
 ∈ [0,1] in (1.2), we easily obtain the inequalities in (1.1) for  = 1. Moreover, based
on the techniques as in [5] and the result in the case  = 1, we get a new proof of it
without employing the tools of single variable calculus.

In 2020, by using the same idea and the techniques of single variable calculus as
in [1] for the following functions

g() =
1x−1�x
(1−)

and h() =
(1x)2 − (1�x)2

(1−)

with  ∈ (0,1), Y. Ren showed in [9] that, for b > a > 0 and 0 <  �  < 1,

ab−a�b
ab−a�b

� (1−)
(1− )

and
(ab)2− (a�b)2

(ab)2− (a�b)2 � (1−)
(1− )

. (1.3)

More generally, in 2023 by utilizing the expansion

(1x)m − (1�x)m = [(1x)− (1�x)]() (1.4)

and showing the function  is increasing on (0,1) when x ∈ [1,) and the function 
is decreasing on (0,1) when x ∈ (0,1] , C. Yang and Z. Wang [11] generalized (1.3) to

(ab)m− (a�b)m

(ab)m− (a�b)m � (1−)
(1− )

(1.5)

under the same conditions b > a > 0 and 0 <  �  < 1, where m are positive integers.
Recently, thanks to the same idea as of C. Yang and Z. Wang [11], Y. Ren showed in
[10, Theorem 3] that, for 0 <  �  < 1

2 , m ∈ N+ and a > b > 0,

(ab)m− (K(h,2)a�b)m

(ab)m − (K(h,2)a�b)m � (1−)
(1− )

, (1.6)

where h = b
a > 0 and K(h,2) = (h+1)2

4h is the Kantorovich constant.
A natural question arises from the above mentioned results: whether the inequali-

ties (1.5) and (1.6) hold for real numbers p ∈ (m,m+1) with m ∈ N+ ?
Unfortunately, the method used in [10, 11] to get the inequalities (1.5) and (1.6)

does not work for such real numbers p . Even an effective approach as in [5] leads only
to weaker results than desired. Very recently, X. Yang, C. Yang and H. Li [12] gave an
affirmative answer to the above question by showing the following three inequalities,
where a!b = ((1−)a−1 +b−1)−1 is meant to be the harmonic mean of reals a,b >
0.
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1. If 0 < a < b, � 1 and 0 <  �  < 1, then

(ab) − (a�b)

(ab) − (a�b)
� (1−)

(1− )
. (1.7)

2. If 0 < a < b, � 1 and 0 <  �  < 1, then

(ab) − (a!b)

(ab) − (a!b)
� ab−a!b

ab−a!b
� (1−)

(1− )
. (1.8)

3. If 0 < b < a, � 1 and 0 <  �  < 1
2 , then

(ab) − (K(h,2)a�b)

(ab) − (K(h,2)a�b)
� (1−)

(1− )
. (1.9)

The method used to prove these three inequalities is not different from that of [9, 10,
11], which is difficult to apply to more general cases. In the present paper, we develop
a new way to generalize the above-mentioned results for increasing convex functions.

Besides the current section the paper consists of two sections. In Section 2, we es-
tablish two series of inequalities involving increasing convex functions, the immediate
consequences of which are generalizations of Alzer-Fonseca-Kovačec-type inequalities
related to the Arithmetic mean, the Geometric mean and the Harmonic mean (see The-
orems 2.2, 2.4, and 2.6 below). In Section 3, we propose various applications of the
newly introduced results to inequalities involving matrices, unitarily invariant norms,
traces and determinants.

2. Further generalizations of Alzer-Fonseca-Kovačec type inequalities

The goal of this section is to generalize the Alzer-Fonseca-Kovačec type inequali-
ties (1.5) and (1.6) by replacing the power function by any increasing convex function.

We start this section with an important result in the following.

THEOREM 2.1. Let a1,a2,b1,b2 with a1 �= a2, b1 �= b2 be real numbers selected
from an interval J on which  is a strictly increasing convex function. Let  be a
strictly increasing convex function on the interval (J) . If a2,b1 ∈ [a1,b2], the double
inequality (2.1) below holds:

a2−a1

b2−b1
� (a2)−(a1)

(b2)−(b1)
�  ◦(a2)− ◦(a1)

 ◦(b2)− ◦(b1)
. (2.1)

If a1,b2 ∈ [b1,a2], then the above inequalities work in the reversed direction, that is

a2−a1

b2−b1
� (a2)−(a1)

(b2)−(b1)
�  ◦(a2)− ◦(a1)

 ◦(b2)− ◦(b1)
. (2.2)



62 T. D. PHUNG AND D. Q. HUY

Proof. Since a2,b1 ∈ [a1,b2]⊂ J , we deduce that a1 � b1, a2 � b2, a1 < a2, and
b1 < b2 . This, together with the hypothesis on the strictly increasing convex property of
 on J and the inequality (3.6) in [8, p. 2], implies that (a1)<(a2), (b1) <(b2),
and

(a2)−(a1)
a2−a1

� (b2)−(b1)
b2−b1

,

which is equivalent to
a2−a1

b2−b1
� (a2)−(a1)

(b2)−(b1)
. (2.3)

On the other hand, we also have because of the strictly increasing property of  on J
that (a2),(b1)∈ [(a1),(b2)]⊂ (J) , which leads to (a1) � (b1) < (b2) and
(a1) < (a2) � (b2). This, combined with the strictly increasing convex property
of  on (J) and the inequality (3.6) in [8, p. 2], follows that

 ◦(a2)− ◦(a1)
(a2)−(a1)

�  ◦(b2)− ◦(b1)
(b2)−(b1)

,

or equivalently,
 ◦(a2)− ◦(a1)
 ◦(b2)− ◦(b1)

� (a2)−(a1)
(b2)−(b1)

.

This, together with (2.3), gives us the inequality (2.1).
The inequality (2.2) is similarly proved by utilizing the inequality (3.6) in [8, p.

2], and so we omit the details. �
Now let us mention some remarkable special cases of Theorem 2.1, which offer

various generalizations of the Alzer-Fonseca-Kovačec type inequalities (1.5) and (1.6).
The first significant consequence is as follows.

THEOREM 2.2. Let 0 <  �  < 1 ,  be a strictly increasing convex function
defined on some interval J containing positive real numbers a,b, and  be a strictly
increasing convex function defined on (J) .

(1) If b > a > 0, then

 ◦(ab)− ◦(a�b)
 ◦(ab)− ◦(a�b)

� (ab)−(a�b)
(ab)−(a�b)

� (1−)
(1− )

. (2.4)

(2) If a > b > 0, then

 ◦(ab)− ◦(a�b)
 ◦(ab)− ◦(a�b)

� (ab)−(a�b)
(ab)−(a�b)

� (1−)
(1− )

. (2.5)

Proof. To prove the first claim, we put a1 = a�b , a2 = ab , b1 = a�b , b2 =
ab . These numbers satisfy the conditions a2,b1 ∈ [a1,b2] , a1 < a2 and b1 < b2 in
Theorem 2.1 and by Ren’s first inequality (1.3) we know that the left-hand side of (2.1)
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is smaller or equal to (1−)
(1−) . The inequality (2.1) immediately yields the inequality

(2.4).
The other inequality is proved similarly. However, we can obtain it directly from

(2.4) as follows. Since 0 <  �  < 1, we have 0 < 1− � 1− < 1. Thus, replacing
a,b, and  in the inequality (2.4) with b,a,1−  and 1− , respectively, we get the
inequality (2.5). �

REMARK 2.3. If we let (t) = t p and (t) = tq/p with 1 � p � q <  and
t ∈ [0,) in (2.4), then for 0 < a < b and 0 <  �  < 1,

(ab)q− (a�b)q

(ab)q− (a�b)q � (ab)p− (a�b)p

(ab)p− (a�b)p � ab−a�b
ab−a�b

� (1−)
(1− )

.

These inequalities are reverse in the case a > b > 0 and 0 <  �  < 1. These results
generalize the main inequalities in [12, Theorem 2.2 and Corollary 2.3].

Next, in view of Theorem 2.1 and Ren’s inequality (1.6), we obtain the second
significant consequence as follows.

THEOREM 2.4. Let  be an increasing convex function defined on some interval
J containing positive real numbers a,b, and  be a strictly increasing convex function

defined on (J) . Let K(h,2) = (h+1)2
4h with h = b

a > 0 be the Kantorovich constant.

(1) If 0 <  �  < 1
2 and a > b > 0, then

 ◦(ab)− ◦(K(h,2)a�b)
 ◦(ab)− ◦(K(h,2)a�b)

� (ab)−(K(h,2)a�b)
(ab)−(K(h,2)a�b)

� (1−)
(1− )

.

(2.6)

(2) If 1
2 <  �  < 1 and b > a > 0, then

 ◦(ab)− ◦(K(h,2)1−a�b)
 ◦(ab)− ◦(K(h,2)1−a�b)

� (ab)−(K(h,2)1−a�b)
(ab)−(K(h,2)1−a�b)

� (1−)
(1− )

.

(2.7)

Proof. To show the second statement of Theorem 2.4, for 1
2 <  �  < 1, we have

0< 1− � 1− < 1
2 . Hence, by swapping the parameters ,,a,b for 1−,1−,b,a

in Ren’s inequality (1.6), we get for 1
2 <  �  < 1 and b > a > 0,

ab−K(h,2)1−a�b
ab−K(h,2)1−a�b

� (1−)
(1− )

. (2.8)

Now, we put a1 = K(h,2)1−a�b , a2 = ab , b1 = K(h,2)1−a�b , b2 = ab .
These numbers satisfy the conditions a2,b1 ∈ [a1,b2] , a1 < a2 and b1 < b2 in Theorem
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2.1 and by (2.8) we know that the left-hand side of (2.1) is smaller or equal to (1−)
(1−) .

Then thanks to the inequality (2.1), we immediately obtain the inequality (2.7).
The inequality (2.6) follows directly from the inequality (2.7). Indeed, because

of 0 <  �  < 1
2 , we get 1

2 < 1−  � 1−  < 1. Thus, replacing a,b, and 
in the inequality (2.7) by b,a,1−  and 1−  , respectively, we obtain the inequality
(2.6). �

REMARK 2.5. In the special case (t) = t p and (t) = tq/p with 1 � p � q <
and t ∈ [0,) , Theorem 2.4 yields that:

1. If 0 <  �  < 1
2 and a > b > 0, then

(ab)q− (K(h,2)a�b)q

(ab)q− (K(h,2)a�b)q � (ab)p− (K(h,2)a�b)p

(ab)p− (K(h,2)a�b)p

� ab−K(h,2)a�b
ab−K(h,2)a�b

� (1−)
(1− )

.

2. If 1
2 <  �  < 1 and b > a > 0, then

(ab)q− (K(h,2)1−a�b)q

(ab)q− (K(h,2)1−a�b)q � (ab)p− (K(h,2)1−a�b)p

(ab)p− (K(h,2)1−a�b)p

� ab−K(h,2)1−a�b
ab−K(h,2)1−a�b

� (1−)
(1− )

.

These results extend and generalize [12, Theorem 2.7].

The last main consequence of this section is as follows.

THEOREM 2.6. Let 0 <  �  < 1 ,  be a strictly increasing convex function
defined on some interval J containing positive real numbers a,b, and  be a strictly
increasing convex function defined on (J) .

1. If b > a > 0, then

 ◦(ab)− ◦(a!b)
 ◦(ab)− ◦(a!b)

� (ab)−(a!b)
(ab)−(a!b)

� (1−)
(1− )

. (2.9)

2. If a > b > 0, then

 ◦(ab)− ◦(a!b)
 ◦(ab)− ◦(a!b)

� (ab)−(a!b)
(ab)−(a!b)

� (1−)
(1− )

. (2.10)

Proof. We first prove the inequality (2.9). Set a1 = a!b , a2 = ab , b1 = a!b ,
b2 = ab . Observe that these numbers satisfy the conditions a2,b1 ∈ [a1,b2] , a1 < a2

and b1 < b2 in Theorem 2.1. Then the inequality (2.1) together with the right-hand side
of (1.8) implies the inequality (2.9).



FURTHER GENERALIZATIONS OF ALZER-FONSECA-KOVAČEC TYPE INEQUALITIES 65

One can obtain the inequality (2.10) directly from (2.9) as follows. Since 0 <  �
 < 1, we have 0 < 1−  � 1− < 1. Thus, replacing a,b, and  in the inequality
(2.9) by b,a,1−  and 1− , respectively, we get the inequality (2.10). �

REMARK 2.7. If we choose (t) = t p and (t) = tq/p with 1 � p � q <  and
t ∈ [0,), Theorem 2.6 implies that:

1. If b > a > 0 and 0 <  �  < 1, then

(ab)q− (a!b)q

(ab)q− (a!b)q � (ab)p− (a!b)p

(ab)p− (a!b)p � ab−a!b
ab−a!b

� (1−)
(1− )

.

2. If a > b > 0 and 0 <  �  < 1, then

(ab)q− (a!b)q

(ab)q− (a!b)q � (ab)p− (a!b)p

(ab)p− (a!b)p � ab−a!b
ab−a!b

� (1−)
(1− )

.

These results extend and generalize [12, Theorem 2.8].

3. Some applications

We begin this section with some preliminaries on the theory of matrices. Let Mn

be a set of all n× n complex matrices. A Hermitian matrix A ∈ Mn is called positive
semidefinite (positive definite), written A � 0 (A > 0), if z∗Az � 0 for all z ∈ Cn (if
z∗Az > 0 for all z ∈ C

n \ {0} , respectively), and let us denote respectively by

M+
n = {A ∈ Mn : A is positive semidefinite}

and
M++

n = {A ∈ Mn : A is positive definite}.
For two Hermitian matrices A,B ∈ Mn, we use the notation A � B to indicate that
A−B � 0. The spectral theorem for Hermitian matrices says that (see [4, Theorem
2.5.6]) if 1, . . . ,n are the not necessarily distinct eigenvalues of a Hermitian matrix
A ∈ Mn , there then exists a unitarily matrix U ∈ Mn such that A = UU∗ , where  =
diag(1, . . . ,n) . Moreover, if f is a continuous function defined on an interval J con-
taining 1, . . . ,n, one defines f (A)=U f ()U∗ , where f ()= diag( f (1), . . . , f (n)) .
The absolute value of A ∈ Mn is defined as |A| = (A∗A)1/2 , and the singular values
s1(A) � · · · � sn(A) of A are the eigenvalues of |A| .

Next, a norm � ·� on Mn is called unitarily invariant if �UAV� = �A� for all
unitary matrices U,V ∈ Mn . Several typical examples of unitarily invariant norms are
as follows: For A ∈ Mn,

1. the trace norm: tr(|A|) = n
j=1 s j(A) ;

2. the spectral norm: ‖A‖ = s1(A) ;

3. the Schatten p -norm: ‖A‖p =
(
n

j=1 sp
j (A)

)1/p
for any p ∈ [1,) ;
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4. the Hilbert-Schmidt (or the Frobenious) norm: ‖A‖2 =
(
n

i, j=1 |ai j|2
) 1

2 .

Finally, we denote the  -weighted arithmetic mean, geometric and harmonicmean
of two positive definite matrices A,B ∈ M++ and  ∈ [0,1] by

AB = (1−)A+B, A�B = A
1
2 (A− 1

2 BA− 1
2 )A

1
2 ,

and

A!B = ((1−)A−1 +B−1)−1 = A1/2[(1−)I +(A−1/2BA−1/2)−1]−1A1/2,

here, I ∈ Mn is the unit matrix. The same notations as above are also employed when
 /∈ [0,1] . In particular, we write AB , A�B and A!B respectively for the case  = 1

2 .

3.1. Matrix inequalities

The matrix version of the Young inequality says that, for any matrices A,B∈M++
n ,

AB � A�B.

The two weight refinement and reverse of this inequality was established by Alzer,
Fonseca and Kovačec in [1] in the form




(AB−A�B) � AB−A�B � 1−
1− 

(AB−A�B),

where A,B ∈ M++
n and 0 <  �  < 1. Its exponential version was proved by Choi in

[2] in the form

A�m(AB) � A�mB+(2r0)m[A�m(AB)−A�m/2B],

A�m(AB) � A�mB+(2R0)m[A�m(AB)−A�m/2B],

where A,B ∈ M++
n , m ∈ N+ , r0 = min{,1− } , and R0 = max{,1− } . The

proving idea of these inequalities is to rely on the following.

LEMMA 3.1. (see [5, Lemma 3.3]) Let X ∈ Mn be any Hermitian matrix with its
spectrum in some interval J ⊂ R . If f and g are continuous real-valued functions
defined on J such that f (t) � g(t) for all t ∈ J , then f (X) � g(X) .

Now, we will provide some generalizations of the above inequalities.

THEOREM 3.2. Let A,B ∈ M++
n ,  � 1 and 0 <  �  < 1 . Then, the following

assertions hold.

(1) If B � A, then

A� (AB)−A�B � (1−)
(1− )

[A� (AB)−A�B],

and

A� (AB)−A� (A!B) � (1−)
(1− )

[A� (AB)−A�(A!B)].
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(2) If A � B, then

A� (AB)−A�B � (1−)
(1− )

[A� (AB)−A�B],

and

A� (AB)−A� (A!B) � (1−)
(1− )

[A� (AB)−A�(A!B)].

Proof. We give a detailed proof of the first inequality and the other one are proved
similarly. In view of (1.7), we have that, for x � 1,

[(1−)+x] − x � (1−)
(1− )

{[(1− )+ x] − x}.

Thus, applying Lemma 3.1 for X ∈ M++
n with X � I, we deduce

[(1−)I +X ] −X � (1−)
(1− )

{[(1− )I + X ] −X }, (3.1)

where I ∈ Mn is the unit matrix. Since B � A > 0, we have A− 1
2 BA− 1

2 � I . By taking
X = A− 1

2 BA− 1
2 in (3.1) and multiplying both-sides of the obtained inequality by A

1
2 ,

we get the claimed inequality. This completes the proof of the theorem. �

THEOREM 3.3. Let A,B ∈ Mn,  � 1, 0 < m �  �  � M <  and K(·,2) be
defined as in Theorem 2.4. Then , the following statements hold.

(1) If 0 <  �  < 1
2 and MI � A �  I > I � B � mI > 0, then

A� (AB)−K(/ ,2)A�B

� (1−)
(1− )

[A� (AB)−K(m/M,2)A�B].

(2) If 1
2 <  �  < 1 and MI � B �  I > I � A � mI > 0, then

(1− )
(1−)

[A� (AB)−K(M/m,2)(1−)A�B]

� A� (AB)−K(/,2)(1−)A�B.

Proof. It follows from (1.9) that, for all x ∈ [ m
M ,  ] ⊂ (0,1] , we have

((1−)+x) − (K(x,2)x) � (1−)
(1− )

[((1− )+ x) − (K(x,2)x) ].
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Combining with the fact that the function K(·,2) is decreasing on (0,1] , we infer that,
for all x ∈ [ m

M ,  ] ,

((1−)+x) −K(/ ,2) x

� (1−)
(1− )

[((1− )+ x) − (K(x,2)x) ]

� (1−)
(1− )

[((1− )+ x) −K(m/M,2) x ].

By Lemma 3.1, we find that, for X ∈ M++
n with X � I,

((1−)I+X)−K(/ ,2)X � (1−)
(1− )

[((1−)I+X)−K(m/M,2)X  ].

(3.2)
Since A and B satisfy the condition (1), it is easy to deduce that the spectrum of
A− 1

2 BA− 1
2 is in [ m

M ,  ] . Indeed, it follows from the condition (1) and [4, Theorem
7.7.2(a)] that

MA−1 � I � A−1 > A−1 � A− 1
2 BA− 1

2 � mA−1,

where we have just used the fact that (A− 1
2 )∗ = A− 1

2 . Moreover, these inequalities
imply that

mA−1 =
m
M

(MA−1) � m
M

I and A−1 =



(A−1) � 


I.

Thus, we obtain 
 I � A− 1

2 BA− 1
2 � m

M I . Now, a combination of the inequality (3.2)
and arguments as in the proof of Theorem 3.2 yields the desired inequality.

The other inequality is proved similarly and so, we omit the details. �

3.2. Determinant inequalities

In 2018, Choi [2] showed that, for all A,B ∈ M++
n ,  ∈ [0,1] and m ∈ N+,

[det(AB)]m � [det(A�B)]m +(2r0)m
[(detA1/n +detB1/n

2

)mn− [det(AB)]m/2
]
,

where r0 = min{,1− } . In this subsection, we establish a general refinement and
reverse of this inequality as follows.

THEOREM 3.4. Let A,B ∈ M++
n , 0 <  �  < 1 and  : [0,) → R be an in-

creasing convex function.

(1) If A � B � 0, then

 ◦ det(AB)− ◦ det(A�B)

� (1−)
(1− )

[([(detA
1
n )(detB

1
n )]n)− ◦ det(A�B)],
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and

 ◦ det(AB)−(det(A)! det(B))

� (1−)
(1− )

[([(detA
1
n ) (detB

1
n )]n)−(det(A)! det(B))].

(2) If B � A � 0, then

 ◦ det(AB)− ◦ det(A�B)

� (1− )
(1−)

[([(detA
1
n ) (detB

1
n )]n)− ◦ det(A�B)],

and

 ◦ det(AB)−(det(A)! det(B))

� (1− )
(1−)

[([(detA
1
n ) (detB

1
n )]n)−(det(A)! det(B))].

To prove this theorem, we need the following inequality of Minkowski for deter-
minants.

LEMMA 3.5. (Minkowski’s inequality, [4, Theorem 7.8.21]) Let A,B∈Mn be pos-
itive definite. Then

[det(A+B)]1/n � (detA)1/n +(detB)1/n.

Proof of Theorem 3.4. We give a proof of the case A � B � 0. By using Lemma
3.5, the fact that the function  is increasing and Theorem 2.2(2) with a = det(A)

1
n

and b = det(B)
1
n , we have

 ◦ det(AB) = (det(AB)
1
n )

� (det((1−)A)
1
n +det(B)

1
n )

= ([det(A)
1
n ] [det(B)

1
n ])

� ([det(A)� det(B)]1/n)

+
(1−)
(1− )

[([det(A)
1
n ] [det(B)

1
n ])−([det(A)� det(B)]1/n)]

=  ◦ det(A�B)

+
(1−)
(1− )

[([det(A)
1
n det(B)

1
n ]n)− ◦ det(A�B)],

where (t) = (tn) is an increasing convex function defined on [0,) .
Utilizing the same method, we can obtain the other inequality, hence we omit the

details. �



70 T. D. PHUNG AND D. Q. HUY

3.3. Trace and unitarily invariant norm inequalities

In 2018, Choi [2] gave trace and unitarily invariant norm inequalities for A,B ∈
M++

n and X ∈ Mn of the forms

[tr(AB)]m − (tr |A�B|)m � (2r0)m{[tr(AB)]m − [tr(A)� tr(B)]m}

and

[�AX � �XB�]m−�A1−XB�m

� (2r0)m
{(

�AX ��XB�
)m − (�AX � ��XB�)m

}
,

where m ∈ N+ ,  ∈ [0,1] and r0 = min{,1− } . Two weight generalizations of
the above inequalities are given in [12, Theorems 3.2 and 3.3]. In order to show these
inequalities, the authors used fundamental results in the following.

LEMMA 3.6. ([5, p. 381]) Let A,B,X ∈Mn such that A and B are positive semidef-
inite. If 0 �  � 1, then

�A1−XB� � �AX �1− �XB� .

In particular, we have
tr |A1−B | � tr(A)1− tr(B) .

Now, we provide several generalizations for these results.

THEOREM 3.7. Let A,B∈M+
n , 0 <  �  < 1 and  : [0,)→R be an increas-

ing convex function. Then , the following statements hold.

(1) If B � A � 0, then

 ◦ tr(AB)−(tr(A)� tr(B))

� (1−)
(1− )

[ ◦ tr(AB)− ◦ tr(|A�B|)],

and

 ◦ tr(AB)−(tr(A)! tr(B))

� (1−)
(1− )

[ ◦ tr(AB)−(tr(A)! tr(B))].

(2) If A � B � 0, then

 ◦ tr(AB)−(tr(A)� tr(B))

� (1−)
(1− )

[ ◦ tr(AB)− ◦ tr(|A�B|)],
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and

 ◦ tr(AB)−(tr(A)! tr(B))

� (1−)
(1− )

[ ◦ tr(AB)−(tr(A)! tr(B))].

Proof. Let us consider the case B � A � 0. By using Theorem 2.2(1) with a =
tr(A) and b = tr(B) , we infer that

 ◦ tr(AB)−(tr(A)� tr(B))
= (tr(A) tr(B))−(tr(A)� tr(B))

� (1−)
(1− )

[(tr(A) tr(B))−(tr(A)� tr(B))]

=
(1−)
(1− )

[ ◦ tr(AB)−(tr(A)� tr(B))]

� (1−)
(1− )

[ ◦ tr(AB)− ◦ tr(|A�B|)].

The other inequalities are proved similarly, so we omit the details. �

THEOREM 3.8. Let A,B,X ∈Mn with A,B∈M+
n , 0<  �  < 1 and  : [0,)→

R be an increasing convex function. Then, for every unitarily invariant norm � ·�, the
following statements hold.

(1) If �XB� � �AX�, then

(�AX � �XB�)−(�A1−XB�)

� (1− )
(1−)

[(�AX � �XB�)−(�AX � � �XB�)].

(2) If �AX� � �XB�, then

(�AX � �XB�)−(�A1−XB�)

� (1−)
(1− )

[(�AX � �XB�)−(�AX � � �XB�)].

Proof. We present a proof of the first inequality, namely �XB� � �AX� � 0.
Relying on Lemma 3.6, Theorem 2.2(1) and the fact that the function  is increasing,
we have

(�AX � �XB�)−(�A1−XB�)
� (�AX � �XB�)−(�AX � � �XB�)

� (1− )
(1−)

[(�AX � �XB�)−(�AX � � �XB�].
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The other inequality is proved similarly and we omit the details. �
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