
Mathematical
Inequalities

& Applications

Volume 28, Number 1 (2025), 73–93 doi:10.7153/mia-2025-28-05

EXTENSIONS OF CLASSICAL ANKENY–RIVLIN
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Abstract. In this paper, we present for a polynomial p(z) of degree n , the sth derivative
(0 � s < n) concept on a result due to Govil et al. [Illinois J. Math., 23 (1979), 319–329].
As an application of this result, we obtain improved generalizations of the well-known theorem
due to Ankeny and Rivlin which states that if p(z) is a polynomial of degree n such that p(z)
has no zero in |z| < 1 , then

max
|z|=R�1

|p(z)| �
(

Rn +1
2

)
max
|z|=1

|p(z)|.

Moreover, these achievements lead to enhancements of a previous result attributed to Jain [Turk.
J. Math., 31 (2007), 89–94] which we have compared by considering a concrete numerical ex-
ample and analyzed graphically to illustrate their sharpness.

1. Introduction

Polynomial approximation is an essential concept in mathematics and applied sci-
ences. It offers a robust method for simplifying complex functions by representing
them with polynomial expressions. This technique involves constructing polynomial
functions that closely mimic the behavior of more intricate functions, thereby facilitat-
ing easier analysis, computation, and problem-solving in various fields.

Various methods have been developed to tackle this challenge, each designed for
specific contexts and requirements. One notable approach involves the use of Bern-
stein’s inequality, particularly its trigonometric form, which holds significant impor-
tance in the literature for proving an inverse theorem in approximation theory (refer to
Borwein and Erdélyi [6, p. 241]). The theorem estimates how accurately a polynomial
of a given degree approximates a continuous function, based on its derivatives and Lip-
schitz constants. This effort resulted in the widely recognized Bernstein’s inequality
[4], which states that if t is a real trigonometric polynomial of degree n , then

max
0�<2

|t(m)( )| � nm max
0�<2

|t( )|.

The above inequality remains true for all complex trigonometric polynomials t
of degree n , which implies, as a particular case, the following algebraic polynomial
version of Bernstein’s inequality on the unit disk.
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THEOREM 1. If p(z) is a polynomial of degree n, then

max
|z|=1

|p′(z)| � nmax
|z|=1

|p(z)|. (1)

Equality holds in (1) if and only if p(z) has all its zeros at the origin.

Inequality (1) can be sharpened if the zeros of p(z) are restricted. In this direction,
Erdös conjectured and later Lax [20] proved that if p(z) has no zero in |z| < 1, then

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|. (2)

Inequality (2) is best possible for p(z) =  + zn , || = | | .
As a generalization of (2), Malik [21] proved that if p(z) has no zero in |z| < k ,

k � 1, then

max
|z|=1

|p′(z)| � n
1+ k

max
|z|=1

|p(z)|. (3)

Inequality (3) is sharp and extremal polynomial is p(z) = (z+ k)n .
Govil et al. [13] obtained a refinement of (3) and proved that if p(z) is a polyno-

mial of degree n having no zero in |z| < k , k � 1, then

max
|z|=1

|p′(z)| � n
1+ k

{
(1−| |)(1+ k2| |)+ k(n−1)|− 2|

(1−| |)(1− k+ k2+ k| |)+ k(n−1)|− 2|
}

max
|z|=1

|p(z)|,
(4)

where

 =
k
n

a1

a0
and  =

2k2

n(n−1)
a2

a0
.

Inequality (3) was further generalized by Govil and Rahman [12] to the sth deriva-
tive of p(z) by proving that if p(z) is a polynomial of degree n having no zero in
|z| < k , k � 1, then for 1 � s < n ,

max
|z|=1

|p(s)(z)| � n(n−1) . . .(n− s+1)
1+ ks max

|z|=1
|p(z)|. (5)

The result is sharp and equality retains for the polynomial p(z) = (z+ k)n with s = 1.
The notion that inequality (5) holds true for 0 � s < n was proposed by Jain in [14,
Lemma 5].

The improvement and generalization of inequalities concerning complex polyno-
mials have been extensively explored. For further insights into this area, we direct
readers to a selection of recent publications, including [25], [37], [24], [23], [40], [34],
[19], [33], [36], [9], [35], [41], and others. For a deeper understanding of these kinds
of inequalities and their applications, we refer to the monographs of Milovanović et al.
[26], Marden [22], Rahman and Schmeisser [32], and the most recent one of Gardner
et al. [10, Chap. 6], where some approaches to obtaining polynomial inequalities are
developed by applying the methods and results of the geometric function theory.
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Inequality (1) shows how fast a polynomial of degree at most n can change, and
is of interest both in mathematics, especially in approximation theory, and in the ap-
plication areas such as physical systems. Various analogs of this inequality are known
in which the underlying intervals, the sup-norms, and the families of polynomials are
replaced by more general sets, norms, and families of functions, respectively. One such
generalization is the relative growth of the polynomial p(z) concerning two circles
|z| = 1 and |z| = R � 1, and obtain inequalities about the dependence of sup-norms of
|p(z)| on |p(Rz)| , where |z| = 1.

For a polynomial p(z) of degree n , in accordance with the maximum modulus
principle, the ensuing result [31] holds for R � 1 as

max
|z|=R

|p(z)| � Rn max
|z|=1

|p(z)|, (6)

with equality only for p(z) = zn .
Ankeny and Rivlin [1] examined a polynomial p(z) of degree n without zero in

|z| < 1 and obtained a refinement of (6) by establishing that for R � 1,

max
|z|=R

|p(z)| � Rn +1
2

max
|z|=1

|p(z)|. (7)

The result is best possible with equality only for polynomials p(z) =  +  zn ,
|| = | | .

As a refinement of inequality (7) by involving the leading coefficient and the con-
stant term of the polynomial, Kumar [18] proved that if p(z) is a polynomial of degree
n � 1 with no zero in |z| < 1, then for R � 1,

max
|z|=R

|p(z)| � (Rn +1)(|a0|+R|an|)
(R+1)(|a0|+ |an|) max

|z|=1
|p(z)|. (8)

Equality holds in (8) for p(z) =  + zn , || = | | .
Exploring the generalization of (7) to the derivative of the polynomial is intriguing.

In this, Jain [14] derived the following extension of inequality (7) for the sth derivative.

THEOREM 2. If p(z) is a polynomial of degree n having no zero in |z|< k , k � 1 ,
then for 0 � s < n,

max
|z|=R

|p(s)(z)| � 1
2

{
ds

dRs (R
n + kn)

}(
2

1+ k

)n

max
|z|=1

|p(z)|, R � k (9)

and

max
|z|=R

|p(s)(z)| � 1
Rs + ks

[{
ds

dxs (1+ xn)
}

x=1

](
R+ k
1+ k

)n

max
|z|=1

|p(z)|, 1 � R � k. (10)

Equality holds in (9) with k = 1 and s = 0 for p(z) = zn +1 , and equality holds in (10)
with s = 1 for p(z) = (z+ k)n .
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REMARK 1. Some interesting implications of the inequalities for the higher-order
derivatives such as (9) and (10) of Theorem 2 can be observed as discussed below:

1. When s = 0 and k = 1, inequality (9) reduces to inequality (7) due to Ankeny
and Rivlin [1].

2. For s = 1, and R = 1 (which forces k = 1) in inequality (9), we are led to the
well-known inequality (2) of Erdös-Lax [20].

3. For s = 1 and R = 1, inequality (10) provides inequality (3) of Malik [21].

4. Again, if we put R = 1, inequality (10) gives inequality (5) due to Govil and
Rahman [12].

5. Moreover, both inequalities (9) and (10) give a generalization of inequality (5).

Various authors have contributed numerous extensions, improvements, and gen-
eralizations concerning the maximum modulus of polynomials, being a widely studied
topic, and for more information in this direction, we refer to the published papers [5],
[27], [7], [17], [38], [28], [29], [15], [16], [39], [8] etc. However, there have been far
fewer advancements for higher-order derivatives. Motivated by this gap, we establish
new and improved bounds of inequalities (9) and (10) of Theorem 2 that incorporate
specific coefficients of the polynomial in question.

The paper is organized as follows. In Section 2, we present the main results along
with a remark and corollaries. In Section 3, we bring and construct some auxiliary
results necessary to prove the main results. The proofs of our main results are given
in Section 4. Then in Section 5, a numerical example is presented in order to graphi-
cally illustrate and compare the obtained inequalities with the ones previously known.
Finally, Section 6 contains the conclusion.

2. Main results

In this paper, we introduce refinements of inequalities (9) and (10). Firstly, we
prove

THEOREM 3. If p(z) is a polynomial of degree n � 1 having no zero in |z| < k ,
k � 1 , then for 0 � s < n,

max
|z|=R

|p(s)(z)| �
{ |a0|k+ |an|Rkn

(R+ k)(|a0|+ |an|kn)

}{
ds

dRs (R
n + kn)

}(
2

1+ k

)n

×max
|z|=1

|p(z)|, R � k (11)
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and

max
|z|=R

|p(s)(z)|

�
{

(1−|s|)(R2 + k2|s|)+Rk(n− s)|s−s|
(1−|s|)(Rs+2 + ks+2 +R2ks|s|+Rsk2|s|)+Rk(Rs + ks)(n− s)|s−s|

}

×
[{

ds

dxs (1+ xn)
}

x=1

](
R+ k
1+ k

)n

max
|z|=1

|p(z)|, 1 � R � k, (12)

where

s =
ks

C(n,s)
as

a0
, s =

ks+1

C(n,s+1)
as+1

a0
and s =

ks+1

C(n,s)n
asa1

a2
0

.

Equality holds in (11) with k = 1 and s = 0 for p(z) = zn + 1 , and equality holds in
(12) with R = 1 and s = n−2 for p(z) = kn + zn , || = | | .

REMARK 2. Since the polynomial p(z) =
n

j=0

a jz j has no zero in |z| < k , k � 1,

we have ∣∣∣∣a0

an

∣∣∣∣ � kn,

which implies

(|a0|k+ |an|Rkn)
(R+ k)(|a0|+ |an|kn)

� 1
2

for R � k.

In view of this fact, it follows that inequality (11) sharpens inequality (9).
Also, by Lemma 8 and for 1 � R � k , we have

(1−|s|)(R2 + k2|s|)+Rk(n− s)|s−s|
(1−|s|)(Rs+2 + ks+2 +R2ks|s|+Rsk2|s|)+Rk(Rs + ks)(n− s)|s−s| � 1

Rs + ks ,

which infers that inequality (12) improves over inequality (10).

Putting s = 0 in Theorem 3, we get the following generalization of inequality (8)
due to Kumar [18].

COROLLARY 1. If p(z) is a polynomial of degree n � 1 having no zero in |z|< k ,
k � 1 , then

max
|z|=R

|p(z)| � (Rn + kn)(|a0|k+ |an|Rkn)
(R+ k)(|a0|+ |an|kn)

(
2

1+ k

)n

max
|z|=1

|p(z)|, R � k

and

max
|z|=R

|p(z)| �
(

R+ k
1+ k

)n

max
|z|=1

|p(z)|, 1 � R � k.
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Putting k = 1 in Theorem 3, we get the following result which is the sth derivative
generalization of inequality (8) due to Kumar [18].

COROLLARY 2. If p(z) is a polynomial of degree n � 1 having no zero in |z|< 1 ,
then for R � 1 and 0 � s < n,

max
|z|=R

|p(s)(z)| � (|a0|+ |an|R)
(R+1)(|a0|+ |an|)

{
ds

dRs (R
n +1)

}
max
|z|=1

|p(z)|.

Moreover, we enhance the results of Theorem 3 by incorporating the minimum
modulus of the polynomial on |z| = k . More precisely, we prove

THEOREM 4. If p(z) is a polynomial of degree n � 1 having no zero in |z| < k ,
k � 1 , then for some fixed complex number  with || < 1 , and 0 � s < n,

max
|z|=R

|p(s)(z)| �
{ |a0− m|k+ |an|Rkn

(R+ k)(|a0− m|+ |an|kn)

}{
ds

dRs (R
n + kn)

}

×
(

2
1+ k

)n {
max
|z|=1

|p(z)|− ||m
}

, R � k (13)

and

max
|z|=R

|p(s)(z)|

�
{

(1−| ′
s|)(R2 + k2| ′

s |)+Rk(n− s)| ′
s−′

s|
(1−| ′

s|)(Rs+2 + ks+2 +R2ks| ′
s|+Rsk2| ′

s |)+Rk(Rs + ks)(n− s)| ′
s−′

s|
}

×
[{

ds

dxs (1+ xn)
}

x=1

](
R+ k
1+ k

)n {
max
|z|=1

|p(z)|− ||m
}

, 1 � R � k, (14)

where

 ′
s =

ks

C(n,s)
as

(a0− m)
,  ′

s =
ks+1

C(n,s+1)
as+1

(a0− m)
, ′

s =
ks+1

C(n,s)n
asa1

(a0− m)2

and m = min
|z|=k

|p(z)| .
Equality holds in (13) with k = 1 and s = 0 for p(z) = zn +1 , and equality holds

in (14) with R = 1 and s = n−2 for p(z) = kn + zn , || = | | .
Putting s = 0 in Theorem 4, we get the following result that gives improvement of

Corollary 1.

COROLLARY 3. If p(z) is a polynomial of degree n � 1 having no zero in |z|< k ,
k � 1 , then for some fixed complex number  with || < 1 ,

max
|z|=R

|p(z)| � (Rn + kn)(|a0 − m|k+ |an|Rkn)
(R+ k)(|a0− m|+ |an|kn)

(
2

1+ k

)n

×
{

max
|z|=1

|p(z)|− ||m
}

, R � k
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and

max
|z|=R

|p(z)| � 2

{
(1−| ′

0|)(R2 + k2| ′
0|)+Rkn| ′

0−′
0|

(1−| ′
0|)(R2 + k2 +R2| ′

0|+ k2| ′
0|)+2Rkn| ′

0−′
0|

}

×
(

R+ k
1+ k

)n {
max
|z|=1

|p(z)|− ||m
}

, 1 � R � k,

where

 ′
0 =

a0

(a0− m)
,  ′

0 =
k
n

a1

(a0− m)
, ′

0 =
k
n

a0a1

(a0− m)2

and m = min
|z|=k

|p(z)| .

Putting k = 1 in Theorem 4, we get an improved sth derivative generalization of
inequality (8) due to Kumar [18].

COROLLARY 4. If p(z) is a polynomial of degree n � 1 having no zero in |z|< 1 ,
then for R � 1 , for some fixed complex number  with || < 1 , and 0 � s < n,

max
|z|=R

|p(s)(z)|

� (|a0− m1|+ |an|R)
(R+1)(|a0− m1|+ |an|)

{
ds

dRs (R
n +1)

}{
max
|z|=1

|p(z)|− ||m1

}
,

where m1 = min
|z|=1

|p(z)| .

Taking s = 0 in Corollary 4, we get the following result which is an improvement
in inequality (8) due to Kumar [18].

COROLLARY 5. If p(z) is a polynomial of degree n � 1 having no zero in |z|< 1 ,
then for R � 1 , and for some fixed complex number  with || < 1 ,

max
|z|=R

|p(z)| � (Rn +1)(|a0− m1|+ |an|R)
(R+1)(|a0− m1|+ |an|)

{
max
|z|=1

|p(z)|− ||m1

}
,

where m1 = min
|z|=1

|p(z)| .

REMARK 3. It is interesting to observe that implementing similar parameter val-
ues as discussed in Remark 1 on the inequalities of Theorem 3, we have improved
bounds over the inequalities of Theorem 2 due to Jain [14], except for the case when
s = 1 and R = 1 in inequality (9), whereas more improved bounds are given by Theo-
rem 4 in every case.
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3. Lemmas

For the proofs of the theorems, we require the following lemmas. The first lemma
is a generalization of the well-known Schwarz Lemma and is due to Osserman [30].

LEMMA 1. Let f (z) be analytic in |z| < 1 such that | f (z)| < 1 for |z| < 1 , and
f (0) = 0 . Then

| f (z)| � |z| |z|+ | f ′(0)|
1+ | f ′(0)||z| for |z| < 1.

LEMMA 2. If p(z) is a polynomial of degree n � 1 having no zero in |z| < 1 and

q(z) = zn p( 1
z ) , then for R � 1 , 0 � s < n, and for all z on |z| = 1 ,

|p(s)(Rz)| � |a0|+R|an|
|a0|R+ |an| |q

(s)(Rz)|.

Proof. Since p(z) has no zero in |z|< 1, its conjugate reciprocal polynomial q(z)
has all its zeros in |z| � 1. Then zq(z)

p(z) satisfies the hypothesis of Lemma 1, and hence

we have for |z| < 1,

|zq(z)| � |z| |z||a0|+ |an|
|a0|+ |an||z| |p(z)|,

which gives

|q(z)| � |z||a0|+ |an|
|a0|+ |an||z| |p(z)|. (15)

Replacing z by 1/z in inequality (15), we have for |z| > 1,

|p(z)| � |a0|+ |z||an|
|a0||z|+ |an| |q(z)|. (16)

Note that inequality (16) is true for all z on |z| = 1 also, and therefore for R � 1
and 0 �  � 2 , ∣∣∣p(Rei )

∣∣∣ � |a0|+R|an|
|a0|R+ |an|

∣∣∣q(Rei )
∣∣∣ .

Thus for all z on |z| = 1, we have

|p(Rz)| � |a0|+R|an|
|a0|R+ |an| |q(Rz)| . (17)

Now, q(Rz) has all its zeros in |z| � 1
R , 1

R � 1, and we consider the polynomial

p(Rz)−  |a0|+R|an|
|a0|R+|an|q(Rz) , where  is a complex number with || > 1.

Then, on |z| = 1,

|p(Rz)| � |a0|+R|an|
|a0|R+ |an| |q(Rz)| <

∣∣∣∣ |a0|+R|an|
|a0|R+ |an|q(Rz)

∣∣∣∣ .
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By Rouche’s theorem, it follows that

p(Rz)− 
|a0|+R|an|
|a0|R+ |an|q(Rz)

has all its zeros in |z| � 1
R , 1

R � 1.
Gauss-Lucas theorem will then imply that the polynomial

Rsp(s)(Rz)− 
|a0|+R|an|
|a0|R+ |an|R

sq(s)(Rz), 1 � s < n,

has all its zeros in |z| � 1
R , 1

R � 1.
Therefore for all z on |z| = 1,

|p(s)(Rz)| � |a0|+R|an|
|a0|R+ |an| |q

(s)(Rz)|, 1 � s < n,

which, on being combined with (17), completes the proof of Lemma 2. �
The next lemma is due to Jain [14].

LEMMA 3. If p(z) is a polynomial of degree n and q(z) = znp( 1
z ) , then for

0 � s < n,

|p(s)(z)|+ |q(s)(z)| �
{∣∣∣∣ ds

dzs (1)
∣∣∣∣+

∣∣∣∣ ds

dzs (z
n)

∣∣∣∣
}

max
|z|=1

|p(z)| for |z| � 1.

LEMMA 4. If p(z) is a polynomial of degree n having all its zeros on |z| = 1 ,
then

q(z) = up(z),

where q(z) = znp
( 1

z

)
and |u| = 1 .

The proof of this lemma is straightforward and here we omit the details.
The next lemma is another generalization of the well-known Schwarz Lemma due

to Govil et al. [13].

LEMMA 5. If f (z) is analytic and | f (z)| � 1 in |z| < 1 , then

| f (z)| � (1−|a|)|z|2 + |bz|+ |a|(1−|a|)
|a|(1−|a|)|z|2 + |bz|+(1−|a|) for |z| < 1,

where a = f (0) and b = f ′(0) . The example

f (z) =
a+ b

1+az− z2

1− b
1+a z−az2

shows that the estimate is sharp.
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LEMMA 6. If p(z) is a polynomial of degree n having no zero in |z| < k , k � 1 ,
then for 1 � s < n,

max
|z|=1

|p(s)(z)| � n(n−1) . . .(n− s+1)

×
{

(1−|s|)(1+ k2|s|)+ k(n− s)|s−s|
(1−|s|)(1+ ks+2 + ks|s|+ k2|s|)+ k(1+ ks)(n− s)|s−s|

}
max
|z|=1

|p(z)|,

where

s =
ks

C(n,s)
as

a0
, s =

ks+1

C(n,s+1)
as+1

a0
and s =

ks+1

C(n,s)n
asa1

a2
0

.

Proof. Since p(z) has no zero in |z|< k , k � 1, the polynomial M(z) = p(kz) has

no zero in |z| < 1. Let N(z) = znM
(

1
z

)
, then N(z) has all its zeros in |z| � 1, and

|M(z)| = |N(z)| for |z| = 1. (18)

By Rouche’s theorem, it follows that for every complex number  with | | > 1,
the polynomial L(z) = M(z) + N(z) has all its zeros in |z| � 1. If all the zeros of
N(z) lie on |z| = 1, then by Lemma 4, we have M(z) = uN(z) , where |u| = 1, i.e.,
L(z) = (u+ )N(z) has all its zeros on |z|= 1, and hence in |z| � 1. Now, assume that
N(z) has m number of zeros in |z| < 1, where 1 � m � n , and the remaining (n−m)
zeros on |z| = 1. If z1,z2, . . . ,zn−m are the zeros of N(z) which lie on |z| = 1, then we
can write

N(z) = N1(z)(z− z1)(z− z2) . . . (z− zn−m) = N1(z)N2(z) (say), (19)

where all the zeros of N1(z) of degree m � 1 lie in |z| < 1, and all the zeros of N2(z)
of degree (n−m) lie on |z| = 1, so that

M(z) = znN

(
1
z

)
= zmN1

(
1
z

)
zn−mN2

(
1
z

)
= M1(z)M2(z) (say), (20)

where M1(z) has no zero in |z|� 1, and all the zeros of M2(z) lie on |z|= 1. Applying
Lemma 4 to M2(z) , from (20) we get

M(z) = uM1(z)N2(z), where |u| = 1. (21)

Using (19) and (21) in (18), we get

|M1(z)| = |N1(z)| for |z| = 1.

Since M1(z) has no zero in |z| � 1, the function N1(z)
M1(z)

is analytic in |z| � 1, and

|N1(z)|
|M1(z)| = 1 for |z| = 1.
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Also, since N1(z)
M1(z) is not a constant, it follows by the maximum modulus principle

that
|N1(z)| < |M1(z)| for |z| < 1.

Replacing z by 1
z , we get

|M1(z)| < |N1(z)| for |z| > 1.

By Rouche’s theorem, it follows that for every complex number  , u with | |> 1
and |u| = 1, the polynomial uM1(z)+N1(z) of degree m has all its zeros in |z| < 1.
Therefore, the polynomial

L(z) = uM1(z)N2(z)+N1(z)N2(z) = (uM1(z)+N1(z))N2(z)

has all its zeros in |z| � 1 for every  with | | > 1. Gauss-Lucas theorem will then
imply that

L(s)(z) = M(s)(z)+N(s)(z), 1 � s < n,

has all its zeros in |z| � 1 for every  with | | > 1, and therefore

|M(s)(z)| � |N(s)(z)| for |z| � 1 and 1 � s < n. (22)

Also, by the Gauss-Lucas theorem, all the zeros of N(s)(z) lie in |z| � 1. Let

H(z) = zn−sN(s)
(

1
z

)
, then H(z) has no zero in |z|< 1. Moreover, M(s)(z) = ks p(s)(kz) ,

from (22) we get

ks|p(s)(kz)| � |N(s)(z)| =
∣∣∣∣∣zn−sN(s)

(
1
z

)∣∣∣∣∣ = |H(z)| for |z| = 1.

Thus the function

R(z) =
ksp(s)(kz)

H(z)

is analytic in |z| < 1, and |R(z)| � 1 for |z| = 1. Hence, it follows by the maximum
modulus principle that

|R(z)| � 1 for |z| � 1.

Also,

R(0) =
ks

C(n,s)
as

a0
= s

and

R′(0) = (n− s)
{

ks+1

C(n,s+1)
as+1

a0
− ks+1

C(n,s)n
asa1

a2
0

}
= (n− s)(s−s).

Applying Lemma 5 to R(z) , we have

|R(z)| � (1−|s|)|z|2 +(n− s)|s−s||z|+ |s|(1−|s|)
|s|(1−|s|)|z|2 +(n− s)|s−s||z|+(1−|s|) for |z| � 1.
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Equivalently,∣∣∣∣∣k
sp(s)(kz)
H(z)

∣∣∣∣∣ � (1−|s|)|z|2 +(n− s)|s−s||z|+ |s|(1−|s|)
|s|(1−|s|)|z|2 +(n− s)|s−s||z|+(1−|s|) for |z| � 1.

Taking z = ei

k , 0 �  < 2 , so that |z| = 1
k � 1, we get∣∣∣∣∣k

s p(s)(ei )

H( ei
k )

∣∣∣∣∣ � (1−|s|)+ (n− s)|s−s|k+ |s|(1−|s|)k2

|s|(1−|s|)+ (n− s)|s−s|k+(1−|s|)k2 .

Since H( z
k ) = zn−sqs

( 1
z

)
, it follows that for all z on |z| = 1,

ks |s|(1−|s|)+ (n− s)|s−s|k+(1−|s|)k2

(1−|s|)+ (n− s)|s−s|k+ |s|(1−|s|)k2 |p(s)(z)| � |q(s)(z)|. (23)

Now by Lemma 3, we have for 1 � s < n , and for all z on |z| = 1,

|p(s)(z)|+ |q(s)(z)| � n(n−1) . . .(n− s+1)max
|z|=1

|p(z)|. (24)

Using (23) in (24), we get{
1+ ks |s|(1−|s|)+ (n− s)|s−s|k+(1−|s|)k2

(1−|s|)+ (n− s)|s−s|k+ |s|(1−|s|)k2

}
|p(s)(z)|

� n(n−1) . . .(n− s+1)max
|z|=1

|p(z)|,

i.e.,

|p(s)(z)| � n(n−1) . . .(n− s+1)

×
{

(1−|s|)(1+ k2|s|)+ k(n− s)|s−s|
(1−|s|)(1+ ks+2 + ks|s|+ k2|s|)+ k(1+ ks)(n− s)|s−s|

}
max
|z|=1

|p(z)|.

This completes the proof of Lemma 6. �
From Lemma 6, we easily get the following result which is the sth derivative

generalization of inequality (4) due to Govil et al. [13].

LEMMA 7. If p(z) is a polynomial of degree n having no zero in |z| < k , k � 1 ,
then for 0 � s < n,

max
|z|=1

|p(s)(z)| �
{

(1−|s|)(1+ k2|s|)+ k(n− s)|s−s|
(1−|s|)(1+ ks+2 + ks|s|+ k2|s|)+ k(1+ ks)(n− s)|s−s|

}

×max
|z|=1

|p(z)|
[{

ds

dxs (1+ xn)
}

x=1

]
.

where s , s and s are as defined in Lemma 6.
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The below result is due to Aziz and Rather [3].

LEMMA 8. If p(z) is a polynomial of degree n having no zero in |z| < k , k � 1 ,
then for 0 � s < n,

1
C(n,s)

∣∣∣∣ as

a0

∣∣∣∣ks � 1.

The next lemma is due to Aziz and Mohammad [2].

LEMMA 9. If p(z) is a polynomial of degree n having no zero in |z| < k , k � 1 ,
then for 1 � R � k2 ,

max
|z|=R

|p(z)| �
(

R+ k
1+ k

)n

max
|z|=1

|p(z)|.

The last lemma is due to Gardner et al. [11].

LEMMA 10. If p(z) is a polynomial of degree n having no zero in |z|< k , k > 0 ,
then

|p(z)| � m for |z| � k,

where m = min
|z|=k

|p(z)| .

4. Proofs of the main results

We first prove Theorem 4.

Proof of Theorem 4. By hypothesis, p(z) has all its zeros in |z|� k , k � 1. In case
m = min

|z|=k
|p(z)| �= 0, consider the polynomial G(z) = p(z)− m , where  is a complex

number with || < 1.
Now, on |z| = k ,

|m| < m � |p(z)|.
Then by Rouche’s theorem, it follows that G(z) has all its zeros in |z| > k , and in

case m = 0, G(z) = p(z) . Thus, in any case, G(z) has all its zeros in |z| � k . And so,
the polynomial P(z) = G(kz) has all its zeros in |z| � 1.

Applying Lemma 2 to P(z) , we get for R
k � 1, 0 � s < n , and for all z on |z|= 1,

|P(s)
(

R
k

z

)
| � |a0− m|k+ |an|Rkn

|a0− m|R+ |an|kn+1 |Q(s)
(

R
k

z

)
|, (25)

where Q(z) = znP( 1
z ) .

By Lemma 3, we have for R
k � 1, 0 � s < n , and for all z on |z| = 1,

|P(s)
(

R
k

z

)
|+ |Q(s)

(
R
k

z

)
| � ks

{
ds

dRs

((
R
k

)n

+1

)}
max
|z|=1

|P(z)|. (26)
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Using (25) in (26), we get

{
1+

|a0− m|R+ |an|kn+1

|a0− m|k+ |an|Rkn

}
|P(s)

(
R
k
z

)
| � ks−n

{
ds

dRs (R
n + kn)

}
max
|z|=1

|P(z)|,

i.e.,

|p(s)(Rz)| � 1
kn

{ |a0− m|k+ |an|Rkn

(R+ k)(|a0− m|+ |an|kn)

}{
ds

dRs (R
n + kn)

}
max
|z|=k

|p(z)− m|.
(27)

Then applying Lemma 9 to G(z) for R = k , we get

max
|z|=k

|p(z)− m|�
(

2k
1+ k

)n

max
|z|=1

|p(z)− m|. (28)

Combining (27) and (28), we get

|p(s)(Rz)| �
{ |a0− m|k+ |an|Rkn

(R+ k)(|a0− m|+ |an|kn)

}{
ds

dRs (R
n + kn)

}

×
(

2
1+ k

)n

max
|z|=1

|p(z)− m|, R � k. (29)

Now, applying Lemma 7 to the polynomial T (z) = G(Rz) , 1 � R � k , having all
its zeros in |z| � k

R , we have for 0 � s < n ,

max
|z|=1

|T (s)(z)|

�
{

(1−| ′
s|)(1+( k

R)2| ′
s |)+ k

R (n− s)| ′
s−′

s|
(1−| ′

s|)(1+( k
R)s+2 +( k

R)s| ′
s |+( k

R)2| ′
s |)+ k

R (1+( k
R)s)(n− s)| ′

s−′
s|

}

×max
|z|=1

|T (z)|
[{

ds

dxs (1+ xn)
}

x=1

]
, (30)

where

 ′
s =

(
k
R

)s

C(n,s)
asRs

(a0− m)
=

ks

C(n,s)
as

(a0− m)
,

 ′
s =

(
k
R

)s+1

C(n,s+1)
as+1Rs+1

(a0− m)
=

ks+1

C(n,s+1)
as+1

(a0− m)

and

′
s =

(
k
R

)s+1

C(n,s)n
asRsa1R

(a0− m)2 =
ks+1

C(n,s)n
asa1

(a0− m)2 .



EXTENSIONS OF ANKENY-RIVLIN INEQUALITY TO THE sth DERIVATIVE 87

Inequality (30) on simplification becomes,

max
|z|=R

|p(s)(z)|

�
{

(1−| ′
s|)(R2 + k2| ′

s |)+Rk(n− s)| ′
s−′

s|
(1−| ′

s|)(Rs+2 + ks+2 +R2ks| ′
s|+Rsk2| ′

s |)+Rk(Rs + ks)(n− s)| ′
s−′

s|
}

×max
|z|=R

|p(z)− m|
[{

ds

dxs (1+ xn)
}

x=1

]
. (31)

Further, applying Lemma 9 to G(z) , we get

max
|z|=R

|p(z)− m|�
(

R+ k
1+ k

)n

max
|z|=1

|p(z)− m|. (32)

Combining (31) and (32), we get

max
|z|=R

|p(s)(z)|

�
{

(1−| ′
s|)(R2 + k2| ′

s |)+Rk(n− s)| ′
s−′

s|
(1−| ′

s|)(Rs+2 + ks+2 +R2ks| ′
s|+Rsk2| ′

s |)+Rk(Rs + ks)(n− s)| ′
s−′

s|
}

×
[{

ds

dxs (1+ xn)
}

x=1

](
R+ k
1+ k

)n

max
|z|=1

|p(z)− m|, 1 � R � k. (33)

Suppose z0 on |z| = 1 be such that

max
|z|=1

|p(z)− m|= |p(z0)− m|. (34)

Now, we can write

|p(z0)− m| =
∣∣∣|p(z0)|ei0 −||eim

∣∣∣
=

∣∣∣|p(z0)|− ||ei(−0)m
∣∣∣ .

Choosing the argument of  as  = 0 gives

|p(z0)− m|= ||p(z0)|− ||m|. (35)

By Lemma 10, we have for || < 1 and |z| = 1,

|p(z0)|− ||m � 0. (36)

In view of (36), equality (35) becomes

|p(z0)− m|= |p(z0)|− ||m. (37)

From (34) and (37), and using the fact that |p(z0)| � max
|z|=1

|p(z)| , we get

max
|z|=1

|p(z)− m| � max
|z|=1

|p(z)|− ||m. (38)
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On combining (38) with inequalities (29) and (33), we get the required results and
thus the proof of Theorem 4 is completed. �

Proof of Theorem 3. The proof of this theorem follows on the same lines as that
of Theorem 4 but instead of applying Lemmas 2 and 3 to P(z) = p(kz)− m , we apply
the same lemmas to the polynomial p(kz) and then apply Lemma 9 to p(z) for R = k
to obtain inequality (11), while obtaining inequality (12), we simply apply Lemma 7 to
the polynomial p(Rz) instead of T (z) = p(Rz)− m and then Lemma 9 to p(z) . �

5. Numerical example and graphical representations

As an illustration of the obtained results, in this section, we consider the following
example and compare the bounds obtained from our results with previously known
results.

EXAMPLE 1. Let p(z) = z4 + 34 with all zeros 3e
i
4 (1+2m) , m = 0,1,2,3 on

|z| = 3, and s = 3, so that Theorems 2, 3, and 4 hold for 1 � k � 3. Then on the
circle |z| = R , we have

|p(Rei )| =
√

R8 +6561+162R4cos4

and their graphics for 0 �  < 2 and R = 1,2,3 are presented below in Figure 1.

R=1

R=2

R=3

0 1 2 3 4 5 6

0

50

100

150

|p
(R
ei

)|

Figure 1: Graphics of the periodic functions  �→ |p(Rei )| with period 
2 for 0 �  < 2 and

R = 1,2,3 , clearly showing the extremals.

Clearly, we have

MR = max
|z|=R

|p(z)| = max
0�<2

|p(Rei )| = R4 +34

and m = min
|z|=k

|p(z)| = p(k) = 34− k4 , 1 � k � 3.
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We intend to illustrate that the bounds of Theorem 4 improve most for ||= 1 (for
 with || = 1, the result follows by continuity) by considering level graphs for || ,
followed by comparisons of the bounds of Theorem 2, Theorem 3, and Theorem 4 for
|| = 1.

Case 1. For R � k , let R = 3. Then

M′′′
3 = max

|z|=3
|p′′′(z)| = max

0�<2
|p′′′(3ei )| = 72.

We can consider the difference between the right and the left-hand sides in (13) of
Theorem 4 as

1(,k) = 72

{
3k4 −||mk+81k

(k+3)(k4−||m+81)

}(
2

1+ k

)4

(M1 −||m)−M′′′
3 .

Graphics of the function k �→ 1(,k) for || = 1
4 , 1

2 , 3
4 ,1 are presented below in

Figure 2 (left). In the same figure (right), we show the difference k �→ (k) between
the right and the left-hand sides in the inequalities (9) of Theorem 2 due to Jain [14],
(11) of Theorem 3, and (13) of Theorem 4 for || = 1.

| |= 1
4

| |= 1
2

| |= 3
4

| |=1
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400
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1(
,k
)

Theorem 2

Theorem 3

Theorem 4 (| |=1)
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2000

2500
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Figure 2: (Left) The function k �→ 1( ,k) , 1 � k � 3 for | | = 1
4 , 1

2 , 3
4 ,1 ; (right) comparison

of the differences k �→ (k) in the inequalities (9), (11), and (13) for | | = 1 .

Case 2. For 1 � R � k , let R = 1. Since,

M′′′
1 = max

|z|=1
|p′′′(z)| = max

0�<2
|p′′′(ei )| = 24,

we can consider the difference between the right and the left-hand sides in (14) of
Theorem 4 as

2(,k) = 24

{
k5 −||m+81

(k5 +1)(81−||m)+ k5(k3 +1)

}
(M1−||m)−M′′′

1 ,

and graphics of the function k �→ 2(,k) for || = 1
4 , 1

2 , 3
4 ,1 are presented below in

Figure 3 (left). In the same figure (right), we show the difference k �→  (k) between
the right and the left-hand sides in the inequalities (10) of Theorem 2 due to Jain [14],
(12) of Theorem 3, and (14) of Theorem 4 for || = 1.
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Figure 3: (Left) The function k �→ 2( ,k) , 1 � k � 3 for | | = 1
4 , 1

2 , 3
4 ,1 ; (right) comparison

of the differences k �→  (k) in the inequalities (10), (12), and (14) for | | = 1 .

In the tables given below, we have obtained the values of the upper bounds of the
modulus of the third derivative of the considered polynomial and for k = 2 from our
results after calculations and compared the improvements in percentage (%) with the
bound values obtained from the previously known results.

Theorems
Upper bound

values of
M(p′′′,3)

% of improvements
over bound obtained

from Theorem 2
(inequality (9))Theorem 2 (inequality (9)) 583.111

Theorem 3 (inequality (11)) 504.962 13.40
Theorem 4 (|| = 1) (inequality (13)) 120.889 79.27

Table 1: Upper bound values for the case R � k obtained from various results for the considered
polynomial.

Theorems
Upper bound

values of
M(p′′′,1)

% of improvements
over bound obtained

from Theorem 2
(inequality (10))Theorem 2 (inequality (10)) 218.667

Theorem 3 (inequality (12)) 75.104 65.65
Theorem 4 (|| = 1) (inequality (14)) 24 89.02

Table 2: Upper bound values for the case 1 � R � k obtained from various results for the con-
sidered polynomial.
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6. Conclusion

Studying extremal problems in functions of a complex variable and generalizing
classical polynomial inequalities is a current topic in geometric function theory. This
paper considers the well-known Ankeny-Rivlin type inequalities that give the relative
growth of a polynomial concerning two circles |z| = 1 and |z| = R � 1. The authors
establish for a certain class of polynomials some new bounds for the sth derivative of a
polynomial on |z|= R while taking into account the placement of the coefficients of the
underlying polynomial. The results obtained produce inequalities that are sharper than
the previous ones known in very rich literature on this subject which the authors have
also proven by considering a concrete numerical example and then illustrated graphi-
cally.
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