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NEWTON–LIKE INEQUALITIES FOR LINEAR COMBINATIONS

CÉSAR BAUTISTA-RAMOS ∗ , CARLOS GUILLÉN-GALVÁN

AND PAULINO GÓMEZ-SALGADO

(Communicated by I. Perić)

Abstract. We provide conditions under which linear combinations of normalized elementary
symmetric polynomials satisfy some Newton-like inequalities. Namely, the log-concavity of the
coefficients and nonnegativity of the arguments. We prove that such conditions are essential.
That is, dropping any of these conditions leads to counterexamples. This settled a conjecture of
Ren [C. Ren, A generalization of Newton-Maclaurin’s inequalities, Int. Math. Res. Not. IMRN
5, (2024), 3799–3822].

1. Introduction

The so-called Newton’s inequalities were first stated by Newton [7] and later
proved by Maclaurin [4]. These state that
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ek−1(Z)ek+1(Z) (1)

for 1 � k � n−1, where Z is an arbitrary multiset of real numbers with cardinality n ,
and e0, . . . ,en are the elementary symmetric polynomials in n variables. These poly-
nomials are defined by the following equation in the ring of polynomials with complex
coefficients and indeterminate x :
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Using the following identity between binomial coefficients
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we can show that (1) is equivalent to

E2
k (Z) � Ek−1(Z)Ek+1(Z) (2)
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for 1 � k � n− 1, where each Ek(Z) is the k -th normalized elementary symmetric
polynomial, i.e., Ek(Z) = ek(Z)/

(n
k

)
. A proof of Newton’s inequalities in the form of

(2) can be found in [2, §4.3, p. 104].
Over the years, several generalizations of Newton’s inequalities have been found

[1, 6, 8–10, 12, 13]. All of these, along with similar ones, are known as Newton-like
inequalities. Specifically, in [9], Ren found Newton-like inequalities involving linear
combinations of two normalized elementary symmetric polynomials. Ren then con-
jectured about conditions that would allow more general linear combinations to satisfy
similar inequalities. This conjecture was motivated by the following result:

THEOREM 1. (Ren) Let n � 3 , 1 � k � n−2 . For any real number  ∈ R and
any multiset Z of real numbers with cardinality n, we have

(
Ek(Z)+Ek+1(Z)

)2 �
(
Ek−1(Z)+Ek(Z)

)(
Ek+1(Z)+Ek+2(Z)

)
.

A natural generalization of this result would be
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iEi+1(Z)

)
. (3)

Ren proved that (3) cannot hold true for any arbitrary sequence (1, . . . ,n) of real
numbers. He then conjectured that (3) might be valid under certain structural condi-
tions satisfied by the sequence of coefficients (1, . . . ,n) . In this paper we show that
such a structural condition is log-concavity, while the multiset Z must be formed by
nonnegative real numbers. Furthermore, we show that both conditions are essential.

2. Log-concavity

DEFINITION 1. A sequence (k)1�k�n of nonnegative real numbers:

(i) has no internal zeros if the set {k ∈ N : k �= 0} is an interval of integer numbers;

(ii) is log-concave if it has no internal zeros and 2
k �k−1k+1 for all 2 � k � n−1.

Given a polynomial p(x) ∈ R[x] , we call p(x) log-concave if and only if the se-
quence of its coefficients is log-concave.

THEOREM 2. Let (k)1�k�n be a sequence of nonnegative real numbers such that
it has not internal zeros. Then, (k)1�k�n is log-concave if and only if for any q(x) log-
concave polynomial, it holds
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, (4)

where q(x) = k bkxk .
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Proof. Assume that (k)1�k�n is a log-concave sequence. Let

p(x) =
n


k=1

n+1−kx
k.

From the well-known fact that the product of two log-concave polynomials is log-
concave (see [3, p. 394], [5], [11, Proposition 2]), it follows that the product p(x)q(x)
is log-concave, which means that(
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)
, k � 0. (5)

By substituting k = n , n+1 = 0, 0 = 0, and −1 = 0 in (5) we get(
n
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,

which is equivalent to (4). Conversely, if the sequence (k)1�k�n holds (4) for any q(x)
log-concave polynomial, then for any 2 � i � n−1, (4) must hold for the log-concave
polynomial qi(x) = xi , which leads to 2

i � i+1i−1 . �

COROLLARY 1. Let (k)1�k�n be a log-concave sequence and Ek , 0� k � n+1 ,
the normalized elementary symmetric polynomials in n+1 variables. If Z is a multiset
of nonnegative real numbers with cardinality n+1 , then (3) holds.

Proof. Newton’s inequalities in the form (2) imply that the polynomial q(x) , de-
fined by q(x) = n+1

k=0 Ek(Z)xk is log-concave. The result then follows from Theorem
2. �

Corollary 1 allows us to assert that log-concavity and nonnegativity are precisely
the structural conditions sought by Ren, as these conditions are essential for real num-
bers. Indeed, the assumption of nonnegativity for the elements of Z is crucial. For
example, when n = 3, the log-concave sequence (1,3/2,1) and Z = [−1,−1,1,1]
show that:(

E1(Z)+
3
2
E2(Z)+E3(Z)

)2

−
(

E0(Z)+
3
2
E1(Z)+E2(Z)

)(
E2(Z)+

3
2
E3(Z)+E4(Z)

)
= − 7

36
.

That is, the conclusion of Corollary 1 no longer holds. Additionally, the assumption that
the sequence of coefficients (1, . . . ,n) is log-concave is essential. For instance, con-
sider Z = [4,4,1/4,1/4] and the non-log-concave sequence of coefficients (100,1,50) .
In this case we have:(

100E1(Z)+E2(Z)+50E3(Z)
)2

− (100E0(Z)+E1(Z)+50E2(Z)
)(

100E2(Z)+E3(Z)+50E4(Z)
)

= −353175
1024

.
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Once again, the conclusion of Corollary 1 fails.
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Universidad de las Américas
San Andrés Cholula, Pue., 72810 Mexico

e-mail: paulino.gomez@udlap.mx

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


