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COVERING THE UNIT BALL OF ¢, WITH
SMALLER BALLS AND RELATED INEQUALITIES

FEIFEI CHEN, SHENGHUA GAO, XIA L1 AND SENLIN WU *

(Communicated by H. Martini)

Abstract. Let B (p > 1) be the unit ball of ¢}, and I',;(B},) be the smallest positive number
v such that Bj, can be covered by m translates of yBY),. By using different configurations of
translates of yB),, we obtain a universal upper bound of ['»n (B},) for fixed p € [1,c0], a nontrivial
upper bound for T'zn (BY,) forall p € [1,e0] when n is small, and a useful upper bound of T>n (B},)
when n and p are both large. It is still not clear whether there exists a constant ¢ € (0,1) such
that I'on (B’;,) < ¢ holds whenever p > 1 and n>2.

1. Introduction

Let n > 2 be an integer and p € [1,0). We denote by ¢}, the space (R",||-[|,),
where, for each point (¢, ...,0,) € R,

n 1/p
(e, om)ll, = | X leal”
i=1
We denote by ¢2, the space (R”,||||..), where
Il(ou, ... 00)|.. = max |og].

1<i<n

For each p € [1,o], let B}, and S, be the unit ball and the unit sphere of £}, respec-
tively, and let T, (B},) be the smallest positive number y such that B), can be covered
by m translates of yB),. In general, for a convex body (a compact convex set having
interior points) K in R”, we denote by I',,(K) the smallest positive number y such that
K can be covered by m translates of yK. Estimating I',,(K) plays an important role
in Chuanming Zong’s program to attack Hadwiger’s covering conjecture, cf. [16]. For
more information on Hadwiger’s covering conjecture we refer to [3], [4], [2], and [5].
In the terminology of [14], ' (B?,) is the n-th entropy number of Bj, in ().
By [7, Theorem 2], I'2n(B)) ~ 1/2, and the constants of equivalence may depend on p
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and independent on n. In fact, for each integer n > 2, I'y (Bf,) >1/2,Vpe|l,e] and
the equality holds only when p = e (cf. [6, Theorem 1]).
Recently, Xue et al. [15] proved that

1 P
li Tn(B) < —— ),
P 2 (By) (l—i—cz)

where ¢; is a constant in the interval [0.2056,0.2271]. This estimate is not optimal
when p is too large. We shall determine ¢, in Corollary 2.8.
Remark 6 in [9] shows that

1
n pn)

(B < | ————— , =1,

=(8p) <n+Lb(2)nJ) vp

where b(2) ~ 0.205597 is the solution to the equation 2*(1 +x)!™ /x* =2, and p(n)
is the unique solution to

Moreover
Inn < pln) < Inn
3 S pin)x —1 ! .
In (2) In (j + m)

It is not clear whether there exists a constant ¢ € (0,1) such that I'»(B}) < ¢
holds for all p € [1,%0] and all n > 2, since it is difficult to dominate I'»:(B},) when p
and n are both large.

For each p € [1,e0], we present a universal upper bound of I'y«(B},), which can be
used to dominate ['>n(BY,) when p is relatively small.

THEOREM 1.1. For each n > 2, we have

1 r
Ton(B) < [ ——— ) .
> (Bp) (b(z) +0.98)
The following result generalizes [16, Theorem 2] and provides an acceptable upper
bound of I'yx(B},) when 7 is not too large.
THEOREM 1.2. Let n > 2. Foreach p € [1,°°], we have
1

T (BY) < (1—1)2.

n

When n and p are both large, we can use the following result to dominate I'» (B?,) .
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THEOREM 1.3. Suppose that n > 10, p > 2, and pi(n) is determined by (3.3)

below. Then .
n p1(n)
(B} < | ——— .
2 < (5o

Inn 1

Moreover,
lim ——— —— =
n—eIn(lnn) pi(n)
Throughout this paper, the dimension n of the underlying space is at least 2. For
each positive integer m, we use the shorthand notation

[m] :={i€Z+|1<i<m}.

The cardinality of a set A will be denoted by #A.

2. A lattice point based covering of B),

For n,k € Z* satisfying k < n, set

—1
2’ 1.
‘We shall use the convention that

(8) - (g) =1 and m(n,0)=1.

LEMMA 2.1. Suppose that n,k € Z", n >3, and p > 1. Ifkén/Z, then
1 1
(n+k)? B, CnrBy+ L,

where

Ly = {(xh o) | Y el =k, |eg|’ €N, Vien }}U{o}.

i€(n]
Moreover, #L’I‘, =m(n,k).
Proof. Let (0y,---,0,) be an arbitrary point in (n+ k)Tl’B;. Then

Y |oi|? < (n+k).

i€n]

If Yic |0;|P < n, then

1 1
1 1 k
(o, 0) ean; gan;H-Lp.
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Otherwise, there exists m € [k] such that

n+m—1< 2 |ow]” < n+m.
i€[n]

On the one hand, since ¥, (|4” — [[04]”|) < n, we have

Y lowl?] = m.
i€(n]

Then there exist fBi,---, B, € N such that

Bi<|oi|?, Vi€ [n] and Y Bi=m.

i€n]
By Lemma 2.4 below, we have
1|P
Y |oi—sgn(ai)-B"| < Y (Joul” —Bi) <n.
i€[n] i€(n]

Therefore,
1 1
(o, 00) = (Ocl —sgn(oq) B, 0 —sgn(an) -Bn”)
1 1

# (sen(n) Bl - sen ()51 )
l n m

Gnl’Bp—l-Lp.

On the other hand, set

{uam if Joul” — o417

i =

<3
Vi € [n]. 2.1
oal? |+ 1, if Joul? — [Jesl?] = 1, [n] (2.1)

‘We have
1 1
(01, ) = (061—Sgn(al)-mf,---,an—sgn(an)'mé’)
1 1
+(Sgn(al)-m{’,---,sgn(an)-m£’>.

By the triangle inequality, we have

n
n— 2 m; < 2 |OCi‘p— Zml< 2 HOCi‘p—mi| < E
i€[n] i€[n] i€ln

] i€[n]

Thus,
n

i€(n]
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By (2.1), we have
Bi < [laul”] <mi < [log|"], Vi€ [n].

Then there exist m),---,m), € N such that

Bi <mi<mj, Vi€ n] and Y mj=k.
i€[n]

Set

0:(A) = )\a,-|—/1% " viepn).

Then, ¢; is decreasing on [3;, | |o4]?|]. We claim that
9i(B;) = ¢i(mi), Vi € [n].

The case when m; € [B;, ||| ]] is clear. If m] > ||cy|” ], then

mi=mi={le?|+1 and 1/2< el Jesl”| < 1.

Lo .
Since w(x) =x7 is strictly increasing and concave on (0,o0), we have

2lait>2 (1lal’ ) +3) " = (el ¥ + (U + 17

Then,

(1ol = Loat”17)" = ((Lienl? ) + 17 — Jeut)”.
Thus,

%:(B) = 9i([lal”]) = ¢i((Lleu|”] + 1) = gi(m;).
Hence (2.2) holds as claimed. It follows that

Y [l = )| = ¥ o < 3 0i(B) <.

i€n] i€n] i€n]

Therefore,

==

(0, 0) = (01 —sgn(en) - ()7, 04 = sgn (04,) - (m
1 L
+ (sen(oa)- (mi) 7 -+ sen () - (m) 7 )
y— k
enrB,+L,.
Clearly, the map
T: LML,

1 1
(0, 0m) > (sen(en) - oa]? - sen (o) - [on|7)

/
n

")

103

(2.2)
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is a bijection, where

L":{(al,~~ ,0y) €Z" | Z loy| = }U{o}

Clearly, #L* equals the number of integer points in (kB})\ (( k— 1)B}). By [12, Prob-
lem 29 and its solution] or [1], we have #L = #L* = m(n, k).

Let ki (n) be the nonnegative integer satisfying

m(n,ki(n)) <2" <m(n,ky(n)+1).

COROLLARY 2.2. Let p > 1. We have

Ty (B) < (#1(11))%

In Section 2.1 we collect some technical lemmas showing that &y (n) is well de-
fined (cf. Lemma 2.3), and providing estimates of n /(n+k;(n)) .
2.1. Auxiliary Lemmas
We shall use the following Stirling’s approximation (cf. [13]):
n!= \/ﬂn’ﬂr%e_"er",
where
m <r< E

LEMMA 2.3. Let n and k be nonnegative integers with n > 3 and k < n. We
have

(a) m(n,k) is strictly increasing with respect to k when k € [O, Ln /ZH N
(b) m(n,1)=1+2n<2",¥n >3 and m(3,2) = 19;

(c) m (n, Ln/ZJ) >2" Vn>3;

(d) m(n,6) <2" holds for sufficiently large n;

(e) m(n, Ln /4J) > 2" holds for sufficiently large n.

Proof. (a) and (b) is obvious.
(c). If n is even, then n =2/ for some integer / > 2. By

B 6 (1) ()60
(1))
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m<n [gJ) > ({é) 23] > o, 2.3)

If n is odd, then there exists an integer [ > 2 such that n =2/ + 1. By
21+1 l [+1 l [+1 l [+1
(=0 ()= GL) () () (7))
l [ [ /
>2 =il
() (L)) =

we obtain (2.3) again.

(d). It is a consequence of the fact that m(n,6) is a polynomial of degree 6 with
respect to n.

(e). By Stirling’s approximation, we have

we have

(13) = i HENCNED

1 n
4 7
—u 1
7 n Lﬂj n n_L71J7
(L) (- 41)
where
a, = 27'[}’[ ) ern
\/Zn. [4] '\/2”' (n—1%]) €'l - gfn=lnid]
By
n
tim 13 _ L
n—oo n
we have
1
1 217 4 2
Tant 2 Vo™
4

Therefore, when 7 is sufficiently large, we have
n n n
m(nH)>< )-2L4J>2". 0
4 7]

Clearly, k1 (3) =1 < |3/2], which, together with (a), (b), and (c¢) in Lemma 2.3,
shows that k;(n) < [n/2], Vn > 3.

LEMMA 2.4.([9]) If either x >a >0 or x < a <0, then

|x_a‘17 < ‘x‘p_ |a|p, Vp € [lvoo)'
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For each x € (0,1/2], set

h(x)=V1+x2—x, glx)=V1+x2—1,

and

X) = ! . X nl—h(x)
T = h) ™ (1= h)p gy

LEMMA 2.5. The function f defined above is strictly increasing on (0,1 /2]

Proof. Since h(x) is strictly decreasing on (0,1 /2], we have h(x) <1, Vx €
(0,1 /2]. Moreover,

X 1
—>1 —.
h(x)+x—1 >1,Vxe (O’Z}

Clearly, g(x) is strictly increasing on (0,1 /2]. It can be verified that
In(f(x)) ==2(1 = h(x))In(1 = h(x)) — h(x)In(h(x)) — g(x)In(g(x))
+xInx+1In2- (1 —h(x)).

Since
gx)=h(x)+x—1 and (1—h(x))*>=2-h(x)(h(x)+x—1),
we have

d(In(f(x)))

S =2 (x) (14 In(1 = h(x))) = K (2)(1+ In(h(x)))

— (W (x)+ D)(1 +1In(h(x) +x—1)) 4+ (1 +1nx) — In2 - ¥ (x)
=h'(x)[2In(1 — h(x)) — Inh(x) — In(h(x) +x— 1) — In2]
+Inx—In(h(x)+x—1)

=0 aien) ()

—In (ﬁ) > 0.

This completes the proof. [l

Let a(2) be the solution to the equation f(x) =2 on (0,1/2]. Numerical calcula-
tion shows that a(2) ~ 0.2140287.
Foreach n>12, k € [[n/2]]\[5], and j € [k], set

n k—1 i
bn,k,jz(,)-(, )~21.
(n,k, j) i)
For each j € [k— 1], we have

bk j+ D) (L) (5D ki)
bnkg) - =2y Sk
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Clearly

1 1
j(n7k):n+k+§—\/n2+k2+n+k+z. (2.4)

is the root of the equation b(n,k, j+ 1)/b(n,k,j) =1 that is strictly less than k (the
other one is strictly greater than k). Therefore,

b(n,k,1) < -+ <b(n,k,|j(n,k)|)

and
b(n,k,|j(n,k)|+1)>--- > b(n,k,k).
Moreover,
1 1
j(n7k):n+k+§—\/n2+k2—(\/n2+k2+n+k+‘_‘_1/n2+k2>
' +k+7
:n+k+§— n2+k2— n 4 )
N s
By
1 1
0< n+k+g - n—l—]f-|-Z ,
\/n2+k2+n+k+i+\/n2+k2 (n+3)+k
we have

3 1
n+k—\/n2+k2—§<Lj(n,k)j<n+k— n2+k2+§. (2.5)
Since k > 6, it can be verified that
. 3k
LK) > ntk=Vn?+ k2 =3 > 5.
By (2.5), there exists 0;(n,k) € (—3,%) such that

Lj(n,k)| =n+k—/n2+k2+6,(n,k).

By Stirling’s approximation, we have

b(n,k, j) = (’;) : (l]c: D 27
_ % (’;) . (’1‘) i 2.6)

n" K-
RO e AT

=0y (n,k,j)-2/-
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where
21 -n en
0, (n,k -
( J) k /—2717 \/T eli.en—j
\/277: k e’k
\/277: 2 (k—j) €V-e*

For each sequence {(1,kn, ju)},_, Of triples satisfying k, € [[n/2]]\ [5] and j, €

[k, — 1], we have
lim /05 (1,kn, ju) = L.
n—soo

LEMMA 2.6. Let n > 12, ky € [|n /2]|]\[5], and j(n,k,) be defined as (2.4), and

O ty)i=blnsks i) )+ (1 (%))

lim {/0(n,ky) = 1

n—oo

Then

Proof. Set k=ky,, j=|j(n,k)]|,

A(n,k) =n+k—/n2+k% B(nk) =/n2+k*—k, C(n,k) = Vn®+k*—n,

and
(A(n,k) + 6 (n, k)00

(A(n. R YA0h

63 (n, k) = (A(n,k) + 6y (n, k)01 K)

‘We have

7 =(A(n,k)+ 6, (n’k))A(n,k)Jr@l(n,k)

_ (k) (A(n, k) + 0y (n, k) )A(10+61 (n.0)
=(A(n, k)0 i

=(A(n, k) )*"H) - 03(n, k).

It can be verified that

91 (n,k) 3 1

< < 3
A(n,k) k+3 ~ 3
Set

e, x=0.

) = {(1+x>z x € (—1,+09)\ {0},

Then f is strictly decreasing on (—1,+o0). Thus there exist positive numbers 6 and
A which are universal lower and upper bound of

(A(n, k) + 01 (n, k) A0 61 (n, )\ \ 10
(A(n,k)Aeo ( ! (A(n,k) )) 7
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respectively. Since k / 2 < j <k, wehave

1

k3 < (A(n, k) + 0y (n, k)0 < k2,

Then it is clear that lim,_.. v/ 63(n,k) = 1. Similarly, there exist 04(n,k) and 05(n,k)
satisfying

(n= )" = (B(n,k))*"™Y - 04(n, k),

(k= )7 = (C(n, k)™M - 05 (n, k),

hm \/ 0s(n,k) = hm \/0s5(n,k) = 1.

Then, by (2.6), we have

b(n,k, j) =6:(n,k, j) - 201 (1K) . A (k)
(A, k) YA®H - 03 (n, k)] - [(B(n,k))B0H) - 04(n, k)]
kk
(A, k) YA®R) - 05(n, k)] - [(C(,k))C@H) - 05 (n, k)]

=65(n,k, j) - 2710 (03(n,k))?- 641(n,k) 05(n,k) (f G))

n

It follows that

1
(05(1,6))2 - 04 (n,k) - O (m, k)

0(n,k) = 6>(n,k, j) - 201020 .

Therefore, limy,_e ¢/ 0(n,k) =1. O
LEMMA 2.7. We have

Jim L)

n—oo n

=a(2) ~0.2140287.

Proof. By (d) and (e) in Lemma 2.3, 6 < k{(n) < |n /4| holds for large n. On
the one hand, by b(n,k;(n), | j(n,ki(n))]) < 2", we have

otk (1) <2

or, equivalently,

Therefore,
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On the other hand, by

we have
2" < n®-b(n,ki(n) + 1, [ j(n,ky(n)+1)])
=n-0(n,ki(n)+1) (f(kl("errl))
Hence
ki(n)+1 . 2
n =i ({’/n3.9(n,k1(n)+1)>.
Therefore,
linltrc}fklr(ln) > a(2)

This completes the proof. [l

COROLLARY 2.8. We have

1 P
li (B < | ——— .
msup o (5) < (o)

Proof of Theorem 1.1. We claim that, for each integer n € [2,49], we have

1
5\ »
an(BZ)<<8> .

If n = 2, then, since each planar convex body K can be covered by 4 translates of

(V2/2)K (cf. [8)),

The case when n € [3,49]\ {6} can be seen from Table 1. Now suppose that n = 6. If
p € [1,2], by Lemma 3.1 below, we have

5\ 7
r2n<Bz><rzn<B;><(g) :
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n  ki(n) m ‘ n ki(n) n++1(n) ‘ n  ki(n) m
3 1 0.75 4 1 0.8 5 1 0.83333
6 1 0.85714 | 7 2 0.77778 | 8 2 0.8

9 2 0.81818 | 10 2 0.83333 | 11 3 0.78571
12 3 0.80000 | 13 3 0.8125 | 14 3 0.82353
15 3 0.83333 | 16 4 0.80000 | 17 4 0.80952
18 4 0.81818 | 19 4 0.82609 | 20 5 0.80000
21 5 0.80769 | 22 5 0.81481 | 23 5 0.82143
24 5 0.82579 | 25 6 0.80645 | 26 6 0.81250
27 6 0.81818 | 28 6 0.82353 | 29 7 0.80556
30 7 0.81081 | 31 7 0.81579 | 32 7 0.82051
33 7 0.825 | 34 8 0.80952 | 35 8 0.81395
36 8 0.81818 | 37 8 0.82222 | 38 9 0.80851
39 9 0.8125 | 40 9 0.81633 | 41 9 0.82

42 9 0.82353 | 43 10 0.81132 | 44 10 0.81482
45 10 0.81818 | 46 10 0.82143 | 47 11 0.81035
48 11 081356 | 49 11  0.81667 | 50 11 0.81967

Table 1: Estimates of n/(n+ ki (n)) in low dimensions.

if p > 2, then, by Lemma 3.4 below, we have

1 1
5\2 S\7
By <|Z) <(Z]) -
This proves the claim.

Set ¢ =b(2) —0.02. For each n > 50, we have cn < b(2)n — 1, which shows that
(I+c)n<n+|b(2)n]. By [9, Proposition 5], we have

1

o)< () < ()

! ’ 0.84357
= _ ~ U. P,
b(2) 1+ 0.98

Thus, for each n > 3, we have

“"<B?><ma"{(§)%’(m>%}:(mf' :
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3. Further covering methods

In this section we present two elementary configurations of smaller balls to cover
B}, They yield good upper bounds for I';:(B),) when n is small.

LEMMA 3.1. If p € [1,00] and n > 2, then
1

7 L\7

D(By) < (1—-=) -

Proof. Let ey,...,e, be the standard basis of R". For each i € [n], set

1 1
1\~ 1\»r
C,-+:<—>pei, C,':—<_)pei7
n n
N
P
H™ = {xER” | (x|er) > (—) },
n

Hi:{xeR”|<x|ei><—<%>%}.

= [SpnHHU(SENH)].

i€n]

and

Clearly,

Let x be an arbitrary pointin Bj,. If x = o, then

et =ttt = (£) < (1-1)

Otherwise, assume without loss of generality that, y = x/ [|x], € Sy NH;" . Then there
exists z € S satisfying (z|e;) = (1/n)!/? such that

Aer+(1—A)z
y€{||xe1+<1—x>z,, 4e [0’”}'

By [11, Lemma 2.1], we have

1
1\7r
Iy=etll, < le=ctl, = (1-1)"-

By [10, Lemma 5],

tll,}

ann{(-1) ()

r=ct ], < max{[ly=ct]],,

==

(3"
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Thus

1 1

1\7 1\7»
=+ 7 — Vi
(c,. +<1_Z> Bp>u<ci +<1—;) Bp>

LEMMA 3.2. Let p =2, A € (0,(1/n)1/1’), ci=(A,...,h) ER", and

B U

< U

i€(n]

D:{Oq, )Y o < OVZEH}

i€n]
Then

ML) = max{uq —x|Z|xe D} = max {(1—A)P + (n— 1)AP,nAP}.

Proof. Let x be an arbitrary point in D\ {c; }, y be the point of intersection of
the ray [c;,x) and the boundary of D. First suppose that ||y||, < 1. If y is the origin
0, then

llex —x[l, < llex —yll; =nA?.

Otherwise, let z=y/[y[|,. Then, by [10, Lemma 5], we have

lea =l < llex = 1th < max {llex = ol llex — 2015 } < max {lex — o, v}

where
yi= max{uq —wllt | we Dns;}.

Therefore, to complete the proof, we only need to show that y = (1 —A)? + (n— 1)A?.
Clearly,
y=(1=A)P+m—-1)A"

Assume that 7 is attained at wo = ((x?, o)) e DNy Set
J={ien]|o) #0} and k:=#J.

Clearly, k> 0. Without loss of generality, we may assume that J = [k]. Then (o),..., a?
is a solution to the optimization problem

max |og — AP+ 4 |og — AP+ (n—k)AP

s.t. Yol =1,

ic[k]
0; =0, Vi€ [k].

L(ay,...,oq) = oy — AP+ 4o — AP+ (n— kAP + p(af + -+ of = 1).
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By the Lagrange multiplier method, ((x{% ey oc,?) is a solution to the following system
of equations
oL —1 p—1 .
3 =P loj— AP sgn(og—A)+u-p-af =0, Vie k], 3.1
i
al +--+of —1=0. (3.2)

By (3.1), we have

a®— 2|7t )
A el -2y = —wvie K,
Then
ol — A _ o) — A 41,
o) o

Therefore o) = --- = a. By (3.2), we have

Note that

Thus

1 p
1\
y=cl—wO||,,=k<(§) —A) + (= A7

(1= A-kP)P + (n—K)AP
<A=A)P+@m—1AP. O

LEMMA 3.3. If n>3 and p > 2, then

1
l+(n—1)r1T>n

= -

Proof. Let
1 1
glx) =14 (x— 1) T —xP, Vx € [3,00).
Then,

g/(x> = 1 l 1 p—2 - l plfl :

P=% (x—1)r1 P X7
Since { 1 5 1
> -0 and 0P P

p—1 p p—1 p
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we have
p—1 p—1
<(x—=1)r <x7r.

"u
=l

(x—1)7-
Thus g'(x) > 0. Consequently,

1 1 1 1
gn)>g(3)=1+2r1-37 > 1427 —37.

Set h(r) =1+2'—3", Vi € (0,1 /2]. Since

ln2 3 !
., t, .,
- ~ 0

we have h(t) > h(1/2) =1++v2—+/3> 0. This completes the proof. []
LEMMA 3.4. If p>2 and n > 3, then
1
(n—1)r

(1+@=-1)71)

I (By) <y(n,p) = —-
P

Moreover, y(n,p) is strictly decreasing on [2,o°) with respect to p.
Proof. Take
1
-
L+ (n—1)rT
in Lemma 3.2. Then A < 1 /2, which implies that (1 —2)” > A It follows that

A:

(1= 2A)7+ (n— 1)AP > nAP.

Thus

Q+m—uﬁﬁp

This means that the portion of B” in the nonnegative orthant can be covered by a ball
(with respect to ||-[|,,) having radius y(n, p). Therefore, T'n(B},) < v(n,p).

Let
In(n—1) p-1

L=L(p)= »

1P+m—u%m
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Then

. (st )
1 = L
Q- In(1+(n—1)7T)—In(n—1) 1+(n- P~

It is not difficult to verify that

1
1 —1)r1
S _P (n—1) 1

: ~ 1
p=1 p=1 14 (-1t

Hence dL / dp < 0. This completes the proof. [

Proof of Theorem 1.2. The case when n =2 follows from the fact that (as we have
mentioned in the proof of Theorem 1.1)

V2

Ta(B) < =, Vp € [1,e2).

The case when n > 3 follows from Lemma 3.1 and Lemma 3.4. 0O

1
7

LEMMA 3.5. If oo > 1, then ¢y (t) = (o — 1)1 is strictly increasing on (0,e0).

Proof. Clearly,

dinga(r) 2Ine . —In(of — 1) o Ina-t—(of —1)-In(a — 1)

dt 12 N 2 (o —1)

Set
v(t)=0o Ina-t—(a —1)-In(a — 1), Vt € (0,+).

Then y(0%) =0 and

y'(r)=Ino o +1-o -Inot] — (1+In(o — 1)) -0 - Inct
=Iald na' —a In(a’ —1)] > 0.

It follows that y(r) > 0, Vt > 0. Therefore ¢(z) is strictly increasing on (0,e0) as
claimed. U

LEMMA 3.6. Let ¢y be defined as in Lemma 3.5. We have

Inn 1
lim ——— ¢, ' (=) =1.
o In(Inn) Oa (n)
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Proof. Let t(n) := ¢, ' (1). Then #(n) >0, Vn € Z* and lim,_...t(n) = 0. Now,

In —L—
im o () = fim —
n—eo n n t—
ln{ln%—([)]
In(al 1)
_t'n(a,

= lim ——L—
=0 | <_1n(atfl)>
—In(co — 1)
— |1im .
t—0+ In[—1In(a — 1)] — In¢

The desired equality follows directly from

In(af — 1 L .o Ina
fim M =D o @ —1,
t—0* Int t—0* %
and
In(—In(a' — 1)) —ln((;’—l) gy o Ina
lim = lim =0. O
t—0* Int t—0* %

Assume that n > 10. Itis clear that (7n+tb(2)nj

to p. It can be verified that

n 2 (}’l— 1)7 n ;
and that
. 1 . n P
111'11 Y(n7p) = E» p1—1>I-Il,-loo (w) =1

p—>+oo

Thus there is a unique number p;(n) € (2, +e0) satisfying

y(n,p1(n)) = (W) e (3.3)

Proof of Theorem 1.3. The first inequality follows directly from Lemma 3.4 and

the definition of py(n).
Set p = p1(n). Then

1+<nil)ﬁ=<w>ﬁ. (3.4)
Since
n+b2)n—1 - n+ |b(2)n| o n+b(2)n
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we have

1+b(2)—% < ”H’;ﬂ <1+4b(2),

or, equivalently,

(0.9+5(2))7T < (M)pl =

. <(1+5(2))r

By (3.4), we have

1

(0.9+5(2))r" =1 ( 1 ) <(1+b(2)rT—1.

A

It follows that

1 1 1
00.9+5(2) <ﬁ) <1 S D146(2) (pTl) :

Therefore,

. 1 Lo 1
Prp) \ 7] <=1 S\ 21 )

By Lemma 3.6, the proof is complete. [
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