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Abstract. Let  be a finite positive Borel measure on the interval [0,1) and f (z) =
n=0 anzn ∈

H(D) . The Cesàro-like operator is defined by

C ( f )(z) =



n=0

(
n

n


k=0

ak

)
zn, z ∈ D,

where, for n � 0 , n denotes the n -th moment of the measure  , that is, n =
∫
[0,1) t

nd(t) .
In this paper we investigate the action of the operators C from one Bloch type spaces

B into another one B .

1. Introduction

Let D = {z ∈ C : |z| < 1} denote the open unit disk of the complex plane C and
H(D) denote the space of all analytic functions in D .

For 0 <  <  , the Bloch-type space, denoted by B , is defined as

B = { f ∈ H(D) : || f ||B = | f (0)|+ sup
z∈D

(1−|z|2) | f ′(z)| < }.

When  = 1, B is just the classic Bloch space B .
For 0 <  < 1 , the analytic Lipschitz space  consists of the functions f ∈

H(D) for which

|| f || = sup

{ | f (z)− f (w)|
|z−w| : z,w ∈ D,z �= w

}
< .

It is known that (see [13]) B ∼= 1− for 0 <  < 1 and  is contained in the disc
algebra.

For f (z) = 
n=0 anzn ∈ H(D) , the Cesàro operator C is defined by

C ( f )(z) =



n=0

(
1

n+1

n


k=0

ak

)
zn, z ∈ D.
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The boundedness of the Cesàro operator has been studied by several authors on
certain spaces of analytic functions. See, e.g., [12, 14, 25, 26, 28, 29, 30, 39] and the
references therein. The Cesàro operator C has also been generalized to various forms
and its generalization has been widely studied on the space of holomorphic functions.
For instance, Stević [32] studied the generalized Cesàro operator on the polydisc. Hu
[20] studied the extended Cesàro operators on the Bloch space in the unit ball of C

n .
Stević also considered the generalized Cesàro operator on weighted-type spaces in [35]
and studied the generalized Cesàro operators acting between Bloch type spaces in [34].
For more information on some generalizations of the Cesàro operator on spaces of
holomorphic functions, the reader is referred to [1, 2, 10, 11, 23, 31, 33].

Recently, Galanopoulos, Girela and Merchán [16] introduced a Cesàro-like oper-
ator C on H(D) , which is a natural generalization of the classical Cesàro operator
C . They systemically studied the operators C acting on distinct spaces of analytic
functions, such as Hardy space, Bergman space, Bloch space.

Let  be a positive finite Borel measure on [0,1) and f (z) = 
n=0 anzn ∈ H(D) .

The Cesàro-like operator C is defined as follows:

C( f )(z) =



n=0

(
n

n


k=0

ak

)
zn =

∫ 1

0

f (tz)
1− tz

d(t), z ∈ D.

where n denote the moment of order n of  , that is, n =
∫ 1
0 tnd(t) . If  is the

Lebesgue measure on [0,1) , the operator C reduces to the classical Cesàro operator
C .

The Cesàro-like operator C can be regarded as an operator induced by the matrix

C =

⎛
⎜⎜⎜⎝
0 0 0 0 · · ·
1 1 0 0 · · ·
2 2 2 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ .

⎛
⎜⎜⎜⎝
0 0 0 0 · · ·
1 1 0 0 · · ·
2 2 2 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

a0

a1

a2
...

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

0a0

11
k=0 ak

22
k=0 ak
...

⎞
⎟⎟⎟⎠ .

The Cesàro-like operator C defined above has attracted the interest of many
mathematicians. Jin and Tang [21] studied the boundedness and compactness of C
from one Dirichlet-type space D into another one D . Bao, Sun and Wulan [3] stud-
ied the range of C acting on H . Blasco [8, 9] investigated the operators C on
Hardy spaces and on weighted Dirichlet spaces induce by complex Borel measures on
[0,1) . Galanopoulos, Girela et al. [15] studied the behaviour of the operators C on
the Dirichlet space and on the analytic Besov spaces. Recently, Sun, Ye et al. [36]
studied the operator C from Besov spaces to X , where X is a Banach space of ana-
lytic functions in D with s

1
s
⊆ X ⊆ B . Bao, Guo et al. [6] completely characterized
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the measures  such that C is bounded (compact) on Dirichlet space. In [19], the
authors of this paper also considered the boundedness and compactness of C between
Bergman space and Bloch space. Beltrán-Meneu, Bonet and Jordá [7] systematically
investigated the operator C on weighted Banach spaces of analytic function. The op-
erators C associated to arbitrary complex Borel measures on D the reader is referred
to [17, 42].

The Bolch type spaces B are closely connected to many analytic function spaces,
such as Bergman space, Korenblum space, Lipschitz space, F(p,q,s) space, mixed
norm space et al. Therefore, the operator C acting between Bloch type spaces can
serve as a good model when we study the operator C on the spaces. In this paper
we study the action of the operator C between Bloch type spaces. The operator C
on such spaces do not seem to have been studied extensively in the past, so we have
attempted to collect here the consequences of applying to them various standard tech-
niques of analysis.

The Carleson-type measures play a basic role in the studies of C . Let I ⊂ D be
an arc, and |I| denote the length of I . The Carleson square S(I) is defined as

S(I) =
{

rei : ei ∈ I, 1− |I|
2

� r < 1

}
.

Let  be a positive Borel measure on D . For 0 �  <  and 0 < t <  , we
say that  is a  -logarithmic t -Carleson measure (resp. a vanishing  -logarthmic
t -Carleson measure) if

sup
I⊂D

(S(I))(log 2
|I| )



|I|t < ,

(
resp. lim

|I|→0

(S(I))(log 2
|I| )



|I|t = 0

)
.

If  = 0 and t = 1, we say that  is a Carleson measure. See [41] for more about
logarithmic type Carleson measure.

A positive Borel measure  on [0,1) can be seen as a Borel measure on D by
identifying it with the measure  defined by

(E) = (E ∩ [0,1)), for any Borel subset E of D.

In this way, a positive Borel measure  on [0,1) is a  -logarithmic t -Carleson
measure if and only if there exists a constant M > 0 such that

([s,1)) log
e

1− s
� M(1− s)t , 0 � s < 1.

Throughout the paper, the letter C will denote an absolute constant whose value
depends on the parameters indicated in the parenthesis, and may change from one oc-
currence to another. We will use the notation “P �Q” if there exists a constant C =C(·)
such that “P �CQ”, and “P � Q” is understood in an analogous manner. In particular,
if “P � Q” and “P � Q” , then we will write “P � Q”.
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2. Preliminaries

In this section, we present some preliminary results needed for the rest of the paper.
We start with the following lemma which can be found, for example, in [43].

LEMMA 1. Let 0 <  <  and f ∈ B . Then for each z ∈ D , we have the
following inequalities:

| f (z)| �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|| f ||B , if 0 <  < 1;

|| f ||B log 2
1−|z| , if  = 1;

|| f ||B
(1−|z|)−1 , if  > 1.

The following result follows from Corollary 3.2 in [37] or Theorem 2.26 in [38].

LEMMA 2. Let  > 0 and f ∈ H(D) , f (z) = 
n=0 anzn , an � 0 for all n � 0 .

Then f ∈ B if and only if

sup
n�1

n−
n


k=1

kak < .

The following result follows from Theorem 2.1 and Theorem 2.4 in [4].

LEMMA 3. Let 0 < s < and  be a finite positive Borel measure on the interval
[0,1) . Then the following statements hold:

(1)  is an s-Carleson measure if and only if n = O( 1
ns ) .

(2)  is a vanishing s-Carleson measure if and only if n = o( 1
ns ) .

The following integral estimates are practical. Although we only use a partial case
in this article, we present a complete result here for the reader’s reference.

LEMMA 4. Let  > −1 , c � 0 and k be a real number. Then the integral

Ir =
∫ 1

0

(1− t)

(1− tr)+c+1
logk e

1− t
dt, (0 � r < 1)

have the following asymptotic properties:
(1) If c = 0 and k < −1 , then Ir � 1 ;

(2) If c = 0 and k = −1 , then Ir � loglog e2

1−r ;

(3) If c = 0 and k > −1 , then Ir � logk+1 e
1−r ;

(4) If c > 0 , then Ir � 1
(1−r)c logk e

1−r .

Proof. The proof of (3)–(4) is stated in [40, Lemma 2.2 ]. We just need to consider
the case c = 0 and k � −1.
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Without loss of generality, we may assume that 1− e
8 < r < 1. Let x = r(1−t)

1−tr ,
then∫ 1

0

(1− t)

(1− tr)+1
logk e

1− t
dt =

∫ r

0

x

r+1(1− x)
logk er(1− x)

(1− r)x
dx

�
∫ 1

2

0
x logk e

(1− r)x
dx+

∫ r

1
2

1
1− x

logk e(1− x)
1− r

dx

=
1

(1− r)+1

∫ 1−r
2

0
y logk e

y
dy+

∫ 1

2(1−r)

1
y

logk e
y
dy.

It is clear that

lim
r→1−

∫ 1−r
2

0 y logk e
ydy

(1− r)+1 logk e
1−r

=
1

( +1)2+1
.

This implies that

1

(1− r)+1

∫ 1−r
2

0
y logk e

y
dy � logk e

1− r
(r → 1−). (2.1)

At the same time,∫ 1

2(1−r)

1
y

log−1 e
y
dy = loglog

e
2(1− r)

� loglog
e2

1− r
(r → 1−). (2.2)

When k < −1, we have∫ 1

2(1−r)

1
y

logk e
y
dy �

∫ 1

0

1
y

logk e
y
dy =

−1
k+1

. (2.3)

By (2.1)–(2.3) we may obtain that (1) and (2) hold. �
The following lemma is a direct consequence of Theorem 3.1 in [24].

LEMMA 5. Let 0 < , <  . Suppose T is a bounded operator from B into
B , then T is a compact operator from B into B if and only if for any bounded
sequence {hn} in B which converges to 0 uniformly on every compact subset of D ,
we have lim

n→
||T (hn)||B = 0 .

3. The boundedness of C acting between Bloch type spaces

We now study the boundedness of C acting between Bloch type spaces.

THEOREM 1. Let  be a finite positive Borel measure on the interval [0,1) . If
0 <  < 1 and 0 <  < 2 , then the following conditions are equivalent.

(1) C : B → B is bounded.
(2) C : B → B is compact.
(3) The measure  is a 2− Carleson measure.
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Proof. The implication of (2) ⇒ (1) is obvious.
(1) ⇒ (3) . Suppose C : B → B is bounded. Let f (z) = 

n=1 n−2zn , then

| f ′(z)| =
∣∣∣∣∣



n=0

(n+1)−1zn

∣∣∣∣∣�



n=0

(n+1)−1|z|n � 1
(1−|z|) .

This means that f ∈ B . Since

C( f )(z) =



n=1

n

(
n


k=1

k−2

)
zn ∈ B

and the sequence
{
n
(
n

k=1 k−2
)}

n=1 is a nonnegative sequence, it follows from
Lemma 2 that

sup
n�1

n−
n


k=1

kk

(
k


j=1

j−2

)
< .

Since  ∈ (0,1) , for each n � 1, it follows that

1 � n−
n


k=1

kk

(
k


j=1

j−2

)

� nn
−

n


k=1

k � nn
2− .

Lemma 2.3 shows that  is a 2− Carleson measure.
(3)⇒ (1) . Assume  is a 2− Carleson measure. Since 0 <  < 1, the integral∫ 1

0
dt

(1−t) <  . Thus, for any given  > 0, there exists 0 < t0 < 1 such that

∫ 1

t0

dt
(1− t)

< . (3.1)

This also yields that

1− t0 < 
1

1− . (3.2)

Let { fn}n=1 be a bounded sequence in B which converges to 0 uniformly on every
compact subset of D . Without loss of generality, we may assume that supn�1 || fn||B �
1. By the integral representation of C we see that

C( fn)(z) =
∫ 1

0

fn(tz)− fn(t)
1− tz

d(t)+
∫ 1

0

fn(t)
1− tz

d(t)

:= J( fn)(z)+H( fn)(z).

It follows that
||C( fn)||B � ||J( fn)||B + ||H( fn)||B .

Note that the second part of the right-hand side is the integral type Hilbert operator
(see e.g. [18, 37] for the definition). Therefore, Corollary 5.4 in [37] shows that the



CESÀRO-LIKE OPERATOR ACTING BETWEEN BLOCH TYPE SPACES 127

integral type Hilbert operator H is compact from B to B whenever 0 <  < 1
and 0 <  < 2. This implies that

lim
n→

||H( fn)||B = 0.

To complete the proof, it is suffices to prove that limn→ ||J( fn)||B = 0 by Lemma
2.5. It is easy to see that

|J( fn)′(z)| �
∫ 1

0
Gz

n(t)d(t)

where

Gz
n(t) =

| f ′n(tz)|
|1− tz| +

| fn(tz)− fn(t)|
|1− tz|2 , z ∈ D.

The Cauchy’s integral theorem implies that { f ′n}n=1 converges to 0 uniformly on every
compact subset of D . Hence

sup
z∈D

(1−|z|2)
∫ t0

0
Gz

n(t)d(t) � sup
|w|�t0

(| f ′n(w)|+ | fn(w)|) → 0, as n → .

Since B ∼= 1− , we have

| fn(tz)− fn(t)| � t|1− z|1−|| fn||1− � |1− z|1− .

For 0 < t < 1 and z ∈ D , the inequalities

|1− z|
|1− tz| � 1− t

|1− tz| +
|t− z|
|1− tz| � 2

imply that

| fn(tz)− fn(t)|
|1− tz|2 � 1

|1− tz|1+ . (3.3)

By the definition of B and (3.3) we have

∫ 1

t0
Gz

n(t)d(t) �
∫ 1

t0

(
1

(1− t|z|) |1− tz| +
1

|1− tz|1+

)
d(t)

�
∫ 1

t0

d(t)
(1− t|z|)+1 .

Bearing in the mind that  is a 2− Carleson measure and that there exists 0 <  < 1
such that (1−|z|2) <  for all  < |z| < 1, by integrating by parts (see [16, Theorem
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5]) and using (3.1)–(3.2) we have

sup
z∈D

(1−|z|2)
∫ 1

t0
Gz

n(t)d(t)

� sup
z∈D

(1−|z|2)
∫ 1

t0

d(t)
(1− t|z|)+1

= sup
z∈D

(1−|z|2)
(

([t0,1))
(1− t0|z|)+1 +(+1)|z|

∫ 1

t0

([t,1))
(1− t|z|)+2dt

)

�
(

sup
|z|�

+ sup
<|z|<1

)
(1−|z|2) ([t0,1))

(1− t0|z|)+1

+ sup
z∈D

∫ 1

t0

(1− t)2−(1−|z|2)
(1− t|z|)+2 dt

� (1− t0)2− + +
∫ 1

t0

dt
(1− t)

� 
2−
1− + .

Consequently,

lim
n→

||J( fn)||B = 0.

This implies that C : B → B is compact. �

THEOREM 2. Let  be a finite positive Borel measure on the interval [0,1) . If
 > 1 and 0 <  <  + 1 , then C : B → B is bounded if and only if  is an
 +1− Carleson measure.

Proof. Suppose C : B → B is bounded. For 0 < a < 1, let

fa(z) =
(1−a)

(1−az)
.

Then it is easy to check that sup0<a<1 || fa||B � 1. By the integral form of C we get

C( fa)′(z) =
∫ 1

0

t f ′a(tz)
1− tz

d(t)+
∫ 1

0

t fa(tz)
(1− tz)2 d(t).

The boundedness of C and Lemma 2.1 imply that

|C( fa)′(z)| � || fa||B

(1−|z|) .
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Therefore, for any 1
2 < a < 1 we have

1

(1−a)
� |C( fa)′(a)| = C( fa)′(a)

�
∫ 1

0

t fa(ta)
(1− ta)2 d(t)

= (1−a)
∫ 1

0

td(t)
(1− ta)2(1−a2t)

� (1−a)
∫ 1

a

d(t)
(1− ta)2(1−a2t)

� ([a,1))
(1−a)+1 .

This gives that

([a,1)) � (1−a)+1− for all
1
2

< a < 1.

Hence  is an  +1− Carleson measure.
Conversely, suppose  is an +1− Carleson measure and f ∈B . Using the

integral form of C( f ) and Lemma 1 we deduce that

|C( f )′(z)| �
∫ 1

0

| f ′(tz)|
|1− tz|d(t)+

∫ 1

0

| f (tz)|
|1− tz|2 d(t)

� || f ||B

∫ 1

0

d(t)
(1− t|z|)+1 . (3.4)

Take z∈D and let |z|= r . Integrating by parts and using the fact that  is an +1−
Carleson measure and Lemma 2.4, we obtain

∫ 1

0

d(t)
(1− tr)+1 = ([0,1))+ (+1)r

∫ 1

0

([t,1))
(1− tr)+2dt

� ([0,1))+
∫ 1

0

(1− t)+1−

(1− tr)+2 dt

� ([0,1))+
1

(1− r)
.

This together with (3.4) imply that C : B → B is bounded. �

THEOREM 3. Let  be a finite positive Borel measure on the interval [0,1) . If
0 <  � 2 , then C : B → B is bounded if and only if

sup
0<t<1

([t,1)) log e
1−t

(1− t)2− < . (3.5)
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Proof. Suppose C : B → B is bounded. Let f (z) = log 1
1−z , it is clear that

f ∈ B and

C( f )(z) =



n=1

n

(
n


k=1

1
k

)
zn, z ∈ D,

Since C( f ) ∈ B , by the definition of B we have that




n=1

nn

(
n


k=1

1
k

)
rn−1 � 1

(1− r)
, 0 < r < 1.

For N � 2 take rN = 1− 1
N . Since the sequence {k} is decreasing, simple estimations

lead us to the following

N �



n=1

nn

(
n


k=1

1
k

)
rn−1
N

�
N


n=1

nn

(
n


k=1

1
k

)
rN−1
N

� N

N


n=1

n log(n+1)

� NN2 log(N +1)

This implies that N = O
(

1
N2− log(N+1)

)
. The desired result follows from the inequal-

ities


([

1− 1
N

,1
))

�
∫ 1

1− 1
N

tNd(t) �
∫ 1

0
tNd(t) � 1

N2− log(N +1)
.

Conversely, suppose (3.5) holds. Integrating by parts we have

∫ 1

0
tnd(t) = n

∫ 1

0
tn−1([t,1))dt

� n
∫ 1

0
tn−1(1− t)2− log−1 e

1− t
dt.

Let (t) = (1− t)2− log−1 e
1−t , then (t) is regular in the sense of Peláez and Rättyä

[27]. Then, using Lemma 1.3 and (1.1) in [27], we have

n
∫ 1

0
tn−1(t)dt � 

(
1− 1

n

)
� 1

n2− log(n+1)
.

This implies that

n � 1

n2− log(n+1)
for all n � 1. (3.6)
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Let f (z) = 
n=0 anzn ∈ B , it follows from Corollary D in [22] that∣∣∣∣∣

n


k=1

ak

∣∣∣∣∣� || f ||B log(n+1).

By (3.6) and above inequality we get

(1−|z|2) |C( f )′(z)| = (1−|z|2)
∣∣∣∣∣



n=1

nn

(
n


k=1

ak

)
zn−1

∣∣∣∣∣
� (1−|z|2)




n=1

nn

∣∣∣∣∣
n


k=1

ak

∣∣∣∣∣ |z|n−1

� || f ||B(1−|z|2)



n=1

nn log(n+1)|z|n−1

� || f ||B(1−|z|2)



n=1

n−1|z|n−1

� || f ||B .

This shows that
sup
z∈D

(1−|z|2) |C( f )′(z)| � || f ||B.

Hence, we have that C : B → B is bounded. �
There are three cases left: (i)  = 1 and  > 2; (ii) 0 <  < 1 and  � 2;

(iii)  > 1 and  �+1. We show that the operator C is always a bounded operator
from B to B in these cases.

THEOREM 4. Let  be a finite positive Borel measure on the interval [0,1) . If 
and  satisfies one of the conditions (i)–(iii), then C : B → B is bounded.

Proof. We only prove the case of (i), since the proofs of other cases are similar.
Let f ∈ B , then

|C( f )′(z)| �
∫ 1

0

| f ′(tz)|
|1− tz|d(t)+

∫ 1

0

| f (tz)|
|1− tz|2 d(t)

� || f ||B
∫ 1

0

d(t)
(1− t|z|)|1− tz| + || f ||B

∫ 1

0

log e
1−t|z|

|1− tz|2 d(t)

� || f ||B
∫ 1

0

log e
1−t|z|

(1− t|z|)2 d(t).

If  > 2, it is clear that

sup
z∈D

(1−|z|)−2 log
e

1−|z| < .
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This implies that
sup
z∈D

(1−|z|2) |C( f )′(z)| � || f ||B.

The proof is complete. �
Let 1 � p < and 0 <  � 1, the mean Lipschitz space p

 consists of the func-
tions f ∈ H(D) having a non-tangential limit almost everywhere for which p(t, f ) =
O(t) as t → 0. Here p(·, f ) is the integral modulus of continuity of order p of the
function f (ei ) . It is known that (see e.g., [13, Chapter 5]) p

 is a subset of Hp and
p
 consists of those functions f ∈ H(D) satisfying

‖ f‖p


= | f (0)|+ sup
0<r<1

(1− r)1−Mp(r, f ′) < .

Theorem 4.2 in [3] and Theorem 1 lead to the following corollary.

COROLLARY 1. Let  be a finite positive Borel measure on the interval [0,1) ,
0 <  < 1 and 1 < p <  . Let X and Y be two Banach subspaces of H(D) with
B ⊂ X ⊂ H and p

1
p
⊂ Y ⊂ B . Then the following conditions are equivalent.

(1) The measure  is a Carleson measure.
(2) The operator C is bounded from X into Y .

Proof. (1) ⇒ (2) . Assume that  is a Carleson measure and take f ∈ X . Since
X ⊂ H , we have that f ∈ H . Theorem 4.2 in [3] shows that C(H) ⊂ Y if and
only if  is a Carleson measure. This implies that C( f ) ∈Y .

(2) ⇒ (1) . Suppose that C is bounded from X into Y . Then C is bounded
from B into B . Now, Theorem 1 shows that  is a Carleson measure. �

4. The compactness of C acting between Bloch type spaces

THEOREM 5. Let  be a finite positive Borel measure on the interval [0,1) . If
 > 1 and 0 <  <  + 1 , then C : B → B is compact if and only if  is a
vanishing  +1− Carleson measure.

Proof. Assume that C : B → B is compact. For 0 < a < 1, set

fa(z) =
1−a

(1−az)
, z ∈ D.

Then it is clear that fa ∈ B for all 0 < a < 1 and sup0<a<1 || fa||B � 1. Moreover,
fa → 0, as a → 1, uniformly on compact subset of D . Lemma 2.5 implies that

||C( fa)||B → 0, as a → 1. (4.1)

Arguing as the proof of Theorem 2 we have

([a,1)) � (1−a)+1− ||C( fa)||B .



CESÀRO-LIKE OPERATOR ACTING BETWEEN BLOCH TYPE SPACES 133

This and (4.1) show that  is a vanishing +1− Carleson measure.
On the other hand, suppose  is a vanishing  +1− Carleson measure. Then

for any  > 0, there exists 0 < t0 < 1 such that

([t,1)) < (1− t)+1− whenever t0 � t < 1. (4.2)

Let { fk}k=1 be a bounded sequence in B which converges to 0 uniformly on every
compact subset of D . It is sufficient to prove that

lim
k→

||C( fk)||B = 0

by Lemma 2.5. By the integral form of C( f ) we have that

sup
z∈D

(1−|z|2) |C( fk)′(z)| � sup
z∈D

(1−|z|2)
∫ 1

0

| f ′k(tz)|
|1− tz|d(t)

+ sup
z∈D

(1−|z|2)
∫ 1

0

| fk(tz)|
|1− tz|2d(t).

The Cauchy’s integral theorem implies that { f ′k}k=1 converges to 0 uniformly on every
compact subset of D . This gives

sup
z∈D

(1−|z|2)
∫ t0

0

| f ′k(tz)|
|1− tz|d(t) � sup

|w|�t0

| f ′k(w)| → 0, as k → .

Note that there exists 0 <  < 1 such that (1− |z|2) <  for all  < |z| < 1, by
integrating by parts and using (4.2) and Lemma 2.4 we have

sup
z∈D

(1−|z|2)
∫ 1

t0

| f ′k(tz)|
|1− tz|d(t)

� sup
z∈D

(1−|z|2)
∫ 1

t0

d(t)
(1− t|z|)+1

= sup
z∈D

(1−|z|2)
(

([t0,1))
(1− t0|z|)+1 +(+1)|z|

∫ 1

t0

([t,1))
(1− t|z|)+2 dt

)

�
(

sup
|z|�

+ sup
<|z|<1

)
(1−|z|2) ([t0,1))

(1− t0|z|)+1 +  sup
z∈D

(1−|z|2)
∫ 1

t0

(1− t)+1−

(1− t|z|)+2 dt

� (1− t0)+1− + +  sup
z∈D

(1−|z|2)
∫ 1

0

(1− t)+1−

(1− t|z|)+2 dt

� .

Since  is arbitrary, it follows that

lim
k→

sup
z∈D

(1−|z|2)
∫ 1

0

| f ′k(tz)|
|1− tz|d(t) = 0.
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Similarly, we can obtain that

lim
k→

sup
z∈D

(1−|z|2)
∫ 1

0

| fk(tz)|
|1− tz|2 d(t) = 0.

It is obvious that

lim
k→

|C( fk)(0)| = ([0,1)) lim
k→

| fk(0)| = 0.

Therefore,

lim
k→

||C( fk)||B = lim
k→

(
|C( fk)(0)|+ sup

z∈D

(1−|z|2) |C( fk)′(z)|
)

= 0.

This means that C : B → B is compact. �

THEOREM 6. Let  be a finite positive Borel measure on the interval [0,1) . If
0 <  � 2 , then C : B → B is compact if and only if

lim
t→1

([t,1)) log e
1−t

(1− t)2− = 0.

Proof. The proof of the sufficiency is similar to that of Theorem 5. Take the test
functions

fa(z) = log−1 2
1−a

(
log

2
1−az

)2

, a ∈ (0,1), z ∈ D.

Then arguing as the proof of Theorem 5 we can obtain the necessity. �
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[23] S. LI AND S. STEVIĆ, Products of integral-type operators and composition operators between Bloch-
type spaces, J. Math. Anal. Appl. 349 (2009), 596–610.
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[32] S. STEVIĆ, Cesàro averaging operators, Math. Nachr. 248–249 (2003), 185–189.
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[39] J. XIAO, Cesàro-type operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68 (1997) 398–406.

https://doi.org/10.1007/s40315-024-00542-7


136 P. TANG AND X. ZHANG

[40] X. ZHANG, Y. GUO, Q. SHANG AND S. LI, The Gleason’s problem on F(p,q,s) type spaces in the
unit ball of Cn , Complex Anal. Oper. Theory 12 (2018), 1251–1265.

[41] R. ZHAO, On logarithmic Carleson measures, Acta Sci. Math. (Szeged) 69 (3–4) (2003), 605–618.
[42] Z. ZHOU, Pseudo-Carleson measures and generalized Cesàro-like operators, preprint.
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