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CONVEX FUNCTIONS AND GENERALIZED BERNOULLI INEQUALITY

OLENA ANDRUSENKO, LIUDMYLA SHEVCHUK AND PAWEŁ WÓJCIK ∗

(Communicated by C. P. Niculescu)

Abstract. In this article we give an other proof (and stronger theorem) of the conditional inequal-
ities for convex functions. As a result, we present new inequalities in the spirit the well-known
Bernoulli inequality.

1. Introduction

Throughout this article, I ⊆ R stands for an interval of the form [0,) or [0, ] ,
with  > 0, or I = [0,+) . The below result was proved in [1].

THEOREM 1. [1, Theorem 2.1, Remark 2.4] Let f ,g : I → [0,+) be convex
functions such that f (0) = 1 and g(0) = 0 . Then, for any number  ∈ (1,+) the
following conditions are equivalent:

(a) 1 � f (t)+g(t), t ∈ I ;
(b) 1 � f (t) +g(t), t ∈ I .

The applications of Theorem 1 were presented in the paper [1]. In particular,
the aforementioned result allowed to investigate the well-known notion of approximate
Birkhoff-James orthogonality (see [1, Theorem 3.1]), and it gave new results in geom-
etry of operator spaces – see also [1, Theorem 4.2]. In order to prove Theorem 1, those
authors of [1] applied the Bernoulli inequality 1+b � (1+b) with b ∈ (−1,0] .

The statement of Theorem 1 is so simple, and its existing proof so extremely long,
that one is easily seduced into an effort to find another, similar but stronger theorem.
The present paper is the result of our attempt. In particular, our proof of Theorem 2 uses
relatively simple tool: a right derivative of convex function. It is worth mentioning that
we obtain stronger result than Theorem 1, but we do not apply the Bernoulli inequality.
What’s more, as an immediate consequence of our result we will prove new inequalities,
which are similar to the classical Bernoulli inequality.
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2. Main result: the conditional inequalities for convex functions

It is known (see [2]) that if f : I → R is a convex function, then f is continuous
on the interior int I and f has a right derivative f ′+ at each point of intI . Moreover,
f ′+ : int I → R is nondecreasing. And so, we show that there is another way to obtain
Theorem 1. In fact, we are in position to extend Theorem 1 as follows.

THEOREM 2. Let f ,b,g : I → [0,+) be convex functions such that f (0) = 1
and b(0) = 1 and g(0) = 0 . Then, for any number  ∈ (1,+) the following condi-
tions are equivalent:

(a) 2 � f (t)+b(t)+g(t), t ∈ I ;
(b) 2 � f (t) +b(t) +g(t), t ∈ I .

Proof. Clearly lim
t→0+

g(t) = g(0) . Moreover, assuming the condition (a) or (b) we

have lim
t→0+

f (t) = f (0) and lim
t→0+

b(t) = b(0) . Thus f , b and g are continuous on

{0}∪ intI and g is nondecreasing. Hence g′+ � 0. Now, let us define two functions
, : [0,+) → [0,+) by the following formulas:

(t) := f (t)+b(t)+g(t) and (t) := f (t) +b(t) +g(t) .

First we prove (a)⇒(b). Assume (a). Since f and b are convex, f ′+ and b′+ are
nondecreasing. Therefore, we have three possibilities.

Possibility 1: the inequalities 0 � f ′+(t) and 0 � b′+(t) hold for t ∈ I . Then we
get 1 � f (t) and 1 � b(t) . So, in this case the conditions (b) holds.

Possibility 2: there is t1 > 0 such that the inequalities f ′+(t) < 0 and 0 � b′+(t)
hold for t ∈ (0, t1) ; or conversely, the inequalities 0 � f ′+(t) and b′+(t) < 0 hold for
t ∈ (0, t1) . Without loss of generality we assume that

f ′+(t) < 0 and 0 � b′+(t) for all t ∈ (0,t1). (1)

These inequalities and convexity imply

f (t) < 1 and 1 � b(t) for all t ∈ (0,t1). (2)

Then for all t ∈ (0, t1) we have

 ′
+(t) = 

(
f (t)−1 f ′+(t)+b(t)−1b′+(t)+g′+(t)

)
(1),(2)

� 
(

f (t)−1 f ′+(t)+ f (t)−1b′+(t)+g′+(t)
)

= 
(

f (t)−1 ′+(t)+g′+(t)
(
1− f (t)−1)) (2)

� 0.

Thus we get  ′
+(t) � 0 and this implies that  is nondecreasing on (0, t1) . But since

 is convex,  is nondecreasing on the whole half-line [0,+) . So, in particular,
(0) � (t) for all t � 0, i.e. 2 � f (t) +b(t) +g(t) .
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Possibility 3: there is t1 > 0 such that the inequalities

f ′+(t) < 0 and b′+(t) < 0 hold for t ∈ (0,t1). (3)

These inequalities and convexity imply

f (t) < 1 and b(t) < 1 for all t ∈ (0,t1). (4)

Put M(t) := max
{

f (t)−1, b(t)−1
}

. Now, it follows that for all t ∈ (0,t1) we have

 ′
+(t) = 

(
f (t)−1 f ′+(t)+b(t)−1b′+(t)+g′+(t)

)
(3),(4)

� 
(
M(t) f ′+(t)+M(t)b′+(t)+g′+(t)

)

= 
(
M(t) ′+(t)+g′+(t)

(
1−M(t)

)) (4)
� 0.

Hence we obtain  ′
+(t) � 0, and again, in a similar way as in Possibility 1 we prove that

 is nondecreasing on the whole half-line [0,+) . The proof of (a)⇒(b) is complete.

In order to prove (b)⇒(a), assume that the condition (b) holds. This implies an
inequality  ′

+(t) � 0 for all t ∈ int I . Hence

0 � 1

 ′

+(t) = f (t)−1 f ′+(t)+b(t)−1b′+(t)+g′+(t)

= f (t)−1 ′+(t)+
(
1− f (t)−1)g′+(t)+

(
b(t)−1− f (t)−1)b′+(t) (5)

for all t ∈ int I . Now, it suffices to prove the inequality  ′+(t) � 0 on the set int I . Sup-
pose, for a contradiction, that there are tz ∈ int I and  < 0 such that  ′+(tz) <  . Next,

we may consider a sequence tn := 1
n tz

n−→ 0+ . Since b,g, are convex, b′+,g′+, ′+ are
nondecreasing. Note that tn < tz . Thus we obtain

 ′+ (tn) �  ′+(tz) <  . (6)

Recall that  ′
+ � 0. This inequalities implies that

0 � 1

 ′

+(tn) = f (tn)−1 f ′+(tn)+b(tn)−1b′+(tn)+g′+(tn). (7)

Note that the sequences f ′+(tn) , b′+(tn) and g′+(tn) are decreasing and therefore

f ′+(tn) � f ′+(tz), b′+(tn) � b′+(tz) and 0 � g′+(tn) � g′+(tz). (8)

Moreover, we have

f (tn)−1 n−→ 1 and b(tn)−1 n−→ 1. (9)

The last part of (8) implies that the sequence
∣∣g′+(tn)

∣∣ is bounded. Now we show
that the sequence b′+(tn) is bounded below. Suppose, for a contradiction, that

b′+(tn) →−. (10)
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Since (9) holds, it follows from (10) that

0
(7)
� 1


 ′

+(tn) = f (tn)−1 f ′+(tn)+b(tn)−1b′+(tn)+g′+(tn) →−,

and this is a contradiction. Thus b′+(tn) is bounded below. Hence by (8), the sequence∣∣b′+(tn)
∣∣ is bounded.

We have already observed that both
∣∣b′+(tn)

∣∣ and
∣∣g′+(tn)

∣∣ are bounded. Therefore,
putting tn in place of t in the inequality (5) we get

0 � f (tn)−1 ′+(tn)+
(
1− f (tn)−1)g′+(tn)+

(
b(tn)−1− f (tn)−1)b′+(tn). (11)

The condition (9) implies that the right side of (11) tends to  , whence 0 �  . But this
is in contradiction to  < 0, and we are done. �

REMARK 1. The anonymous reviewer showed in the report that the implication
(a)⇒(b) in Theorem 2 follows from that the implication (a)⇒(b) in Theorem 1. The
proof given the anonymous reviewer clever and quicker. Note that, the main tool in the
proof of Theorem 1 was the classical Bernoulli inequality. However, the aim of our
paper was to prove Theorem 2 and we did not want to apply the Bernoulli inequality.
In fact, we wanted to give another way to obtian this well known inequality.

3. The applications of Theorem 2

Unlike [1], the above proof of Theorem 2 does not rely on the aforementioned
version of Bernoulli inequality. But curiously, this well-known inequality can be de-
rived from Theorem 2. Indeed, we present now a new proof of the celebrated Bernoulli
inequality.

THEOREM 3. For b ∈ (−1,0] and  > 1 we have 1+b � (1+b) .

Proof. Define f ,b,g : [0,1] → [0,+) by f (t) := 1+ bt , b(t) := 1 and g(t) :=
−bt . Clearly 2 � f (·)+b(·)+g(·). From Theorem2 we get 2 � f (t) +b(t) +g(t)
for t ∈ [0,1] . Putting t := 1 we obtain the Bernoulli inequality. �

Motivated by the proof of Theorem 3, we present results concerning similar in-
equality. But first, we need some auxiliary result.

THEOREM 4. Suppose that a,b,c ∈ (0,2) and  > 1 . If 2 � a + b + c, then
2 � a +b +c.

Proof. Suppose that 2 � a+ b+ c . Define three functions f ,b,g : [0,1] → R by
f (t) := 1− (1− a)t , b(t) := 1− (1− b)t and g(t) := ct . It is easy to check that 2 �
f (t)+b(t)+g(t) . It follows from Theorem 2 that 2 � f (t) +b(t) +g(t) . Putting
t := 1, we get 2 � a +b +c . �
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Now, we are in position to prove the three results in the spirit the Bernoulli in-
equality.

THEOREM 5. If a,b,c ∈ (0,+) and  > 1 , then

(a+b+ c) � 2−1 (a +b)+c(a+b+ c)−1. (12)

Proof. Put d := a+b+c
2 . Then a

d , b
d , c

d ∈ (0,2) and 2 � a
d + b

d + c
d . Theorem 4

implies that 2 � a
d + b

d + c
d . Now, simple calculation shows that (12) holds. �

THEOREM 6. If u,w ∈ (0,+) and  ∈ (1,2) , then

(2−)(u+w) � (u +w) . (13)

Proof. It is clear that 2 � u
u+w + w

u+w + 1. It follows from Theorem 4 that 2 �(
u

u+w

) +
(

w
u+w

) + . and from this inequality we obtain (13). �

Now, suppose that an equality a = b = x
2 holds. Then, as an immediate conse-

quence of the above inequality (12), we deduce that the below result is true.

COROLLARY 1. If x,c ∈ (0,+) , then (x+ c) � x +c(x+ c)−1 .

To end this article we show that Theorem 2 can be extended in a straightforward
manner to the case of convex functions defined on an arbitrary real vector spaces. More
precisely, if a domain of functions is balanced (i.e. [−1,1] ·U ⊆U ) subset, then Theo-
rem 2 works “on rays”.

THEOREM 7. Let X be a real vector space and let U ⊆ X be a convex balanced
subset. Let f ,b,g : U → [0,+) be convex functions with f (0) = 1 = b(0) and g(0) =
0 . Then, for  ∈ (1,+) the following conditions are equivalent:

(A) 2 � f (t)+b(t)+g(t), t ∈U ;
(B) 2 � f (t) +b(t) +g(t), t ∈U .

Proof. Assume (A). Fix x∈U \{0} and define f̂ , b̂, ĝ : [0,1]→ [0,+) by f̂ (t) :=
f (tx) , b̂(t) := b(tx) and ĝ(t) := g(tx) . It is clear that f̂ , b̂, ĝ satisfy the assump-
tions and condition (a) in Theorem 2. From Theorem 2 we have an inequality 1 �
f̂ (t) + b̂(t) +  ĝ(t) for t ∈ [0,1] . Put t := 1. From this we obtain inequality
1 � f (x) +b(x) +g(x) and we get (B). The proof of (B)⇒(A) runs similarly. �
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