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Abstract. In this paper, we introduce a new class of quantum divergences generated by mono-
tonicity inequality. We also consider some related inverse problems for matrix means. As a
consequence, we obtain some new characterizations of the trace property via monotonicity in-
equality.

1. Introduction

A continuous function f is said to be operator monotone on I ⊂ R if for any
Hermitian matrices A and B with spectra in I ,

A � B =⇒ f (A) � f (B).

Operator monotone functions were introduced by Loewner in 1930 [14]. In 1980, Kubo
and Ando [13] introduced the theory of operator means on the set of B(H)+×B(H)+ ,
where B(H)+ is the set of positive invertible operators in a Hilbert space H . The main
result in their paper is the one-to-one correspondence between operator means  and
operator monotone functions f on (0,) defined by

AB = A1/2 f (A−1/2BA−1/2)A1/2. (1)

For f (x) = (1+ x)/2,g(x) =
√

x,h(x) = 2x/(1+ x) , we have well-known arithmetic,
geometric and harmonic means, respectively. Notice that the geometric mean A#B =
A1/2(A−1/2BA−1/2)1/2A1/2 was firstly defined by Puzs and Woronowicz [17] in 1975
as a unique solution of the algebraic Riccati equation XA−1X = B.

Let f and g be operator monotone functions on (0,) such that f (x) � g(x) for
x > 0. According to (1) there are corresponding operator means  f and g such that
for any positive definite matrices A and B , A f B � AgB . Then we have

(A,B) = Tr(AgB−A f B) � 0. (2)
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The quantity (A,B) in (2) could be considered as a distance-like function that ex-
presses the gap between two data points A and B which are positive definite matrices.
In general, (A,B) does not necessarily satisfy the symmetry condition nor triangle
inequality.

In the past few years, quantum divergences have been actively studied [16]. Mostly,
people studied different types of matrix generalizations of the difference between the
arithmetic and the geometric means of positive numbers

a+b
2

−
√

ab, a,b � 0.

For example, the quantum Hellinger distance [2] defined as

(A,B) = Tr(AB−A#B).

Recently, Pitrik and Virosztek [16] considered a more general version of quantum
Hellinger divergence by replacing the geometric mean with a Kubo-Ando mean  :

 (A,B) = Tr(AB−AB).

They showed that  (A,B) belongs to the family of f -maximal quantum divergence
[16], and hence it is jointly convex, and satisfies the Data Processing Inequality.
Recall that the class of f -maximal divergence consists of elements of the form
Tr(A f (A−1/2BA−1/2)), where A,B > 0, and f is operator convex function from (0,)
to (0,) (see, for example, in [10]).

Recently, the first author and co-authors [6] introduced some new quantum diver-
gences one of which was of the form

(A,B) = Tr (P(p,A,B)−A#B) ,

where P(p,A,B) = A
1
2 ((1−)I +(A− 1

2 BA− 1
2 )p)

1
p A

1
2 ( ∈ [0,1]) is the Kubo-Ando

matrix power mean, and A#B = A1/2(A−1/2BA−1/2)A1/2 is the weighted geometric
mean of A and B . In our knowledge, this is the first non-trivial quantum divergence of
the form (2), where g is not the arithmetic mean.

Now let f : [0,)→ [0,) be monotone increasing. Then, for any positive A,B ∈
Pn with A � B ,

Tr( f (A)) � Tr( f (B)). (3)

This fact is well-known in the literature, but we give a short proof here for the readers’
convenience. According to the Weyl’s monotonicity principle, from the assumption we
have k(A) � k(B) for 1 � k � n, where (1(A), . . .n(A)) is the list of eigenvalues
of A in the decreasing order. Since f : [0,)→ [0,) is monotone increasing, we have
f (k(A)) � f (k(B)) for 1 � k � n . Hence,

Tr( f (A)) =
n


i=1

f (k(A)) �
n


k=1

f (k(B)) = Tr( f (B)).
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It is natural to ask when the quantity

 f (A,B) = Tr( f (A))−Tr( f (B)) (4)

is a quantum divergence.
Notice that for A � B > 0, according to a result in [9] the following inverse prob-

lem {
A = X+Y

2

B = X#Y
(5)

has a positive solution (X ,Y ). For 0 � B � A , the system (5) was solved by Uchiyama
[18]. He also showed that, actually, (5) has a unique positive solution. Therefore, for
0 � B � A , the trace distance between A and B is nothing but the quantum Hellinger
distance between the corresponding X and Y . Namely,

||A−B||1 = Tr(A−B) = Tr(XY −X#Y) = (X ,Y ).

And the quantity (4) has the following form in term of matrix means:

 f (A,B) = Tr( f (A))−Tr( f (B)) = Tr( f (XY )− f (X#Y)) :=  f (X ,Y ). (6)

Since for each pair (A,B) such that A � B > 0 there exists a pair of positive definite
matrices (X ,Y ) satisfying (5). Reversely, each pair of positive definite matrices (A,B)
defines a pair of (A,B) by the relation in (5). Therefore, instead of considering the
quantity  f (A,B) we investigate when  f (X ,Y ) is a quantum divergence.

In this paper, for a continuously differentiable and monotone increasing function
f , we show that  f (X ,Y ) is a quantum divergence. We also generalize the result to any
operator mean  instead of the geometric mean #. Namely, for a Kubo-Ando mean 
the quantity

 f , (X ,Y ) = Tr [ f (XY )− f (XY )] (7)

is a quantum divergence, where X ,Y ∈ Pn , and f : [0,) → [0,) is continuously
differentiable and monotone increasing.

In the relation with (5), notice that some inverse problems and the characterization
problems was considered in [5]. In [7] the first authors and co-authors obtained new
characterizations of operator monotone functions by inequalities of the form

f (A#B) � f (AB)

for some symmetric Kubo-Ando operator mean  . In fact, they solved a similar inverse
problem for # and  . In this paper, we also consider some related inverse problems
for matrix means, and obtain some new characterizations of the trace property in the
relation with quantum divergence (7).
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2. Generalized Hellinger divergences generated by monotone functions

DEFINITION 1. (Fréchet derivative) Let V,W be Banach spaces and let f :V →
W be a function. The Fréchet derivative of f at a point x0 (if it exists) is a bounded
linear operator Df (x0) : V →W such that

lim
‖h‖→0

‖ f (x0 +h)− f (x0)−Df (x0)(h)‖W

‖h‖V
= 0.

DEFINITION 2. [2] A smooth function  from Pn×Pn to the set of nonnega-
tive real numbers is call a quantum divergence if

(i) (A,B) = 0 if and only if A = B ;

(ii) The derivative with respect to the second variable vanishes on the diagonal,

D(A,X)|X=A = 0;

(iii) The second derivative is positive on the diagonal,

D2(A,X)|X=A(Y,Y ) � 0 for all Hermitian matrix Y.

Before moving to the main result, we need some preparations.

LEMMA 1. [15, Proposition 4.5] Let  be an operator mean such that ! �  �
 . Then, the correspondent representing function f ′ (1) = 1

2 .

LEMMA 2. Let A be positive definite matrix, and  be an operator mean in the
sense of Kubo-Ando such that ! �  �  . Then, the first derivative of the function
g(X) = AX is given by the following formula

Dg(X)(Y ) = bY +
∫ 

0
( +XA−1)−1Y ( +A−1X)−1d( ), (8)

where f (x) = a+ bx+
∫ 
0

(


 2+1
− 1

+x

)
d( ) is the integral representation of the

representing function of the mean  . Furthermore,

Dg(X)(Y )|X=A =
Y
2

. (9)

Proof. For any Hermitian matrix Y , the derivative of the function X 
→ f (X) is
given by

Df (X)(Y ) = bY +
∫ 

0
( +X)−1Y ( +X)−1d( ).
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Since g(X) = A1/2 f (A−1/2XA−1/2)A1/2 , we have

Dg(X)(Y )

= A1/2
(
bA−1/2YA−1/2 +

∫ 

0
( +A−1/2XA−1/2)−1(A−1/2YA−1/2)

× ( +A−1/2XA−1/2)−1d( )
)
A1/2

= bY +
∫ 

0
( +XA−1)−1Y ( +A−1X)−1d( ).

As a consequence, we get

Dg(X)(Y )|X=A =
(

b+
∫ 

0
( +1)−2d( )

)
Y = f ′ (1)Y =

Y
2

. �

LEMMA 3. For a natural number n, the derivative of the map X 
→ (AX)n is
calculated by the following formula

D(g(X)n)(B)|X=A =
1
2

n−1


i=0

AiBAn−1−i. (10)

Therefore,

D(Tr((AX)n)|X=A(B) = nTr

(
An−1 B

2

)
.

Proof. The derivative of the map U 
→Un is as follows

D(Un)(B) =
n−1


i=0

UiBUn−1−i.

By Lemma 2 and the chain rule, we have

D(g(X)n)(B) =
n−1


i=0

(AX)iD(AX)(B)(AX)n−1−i.

Consequently,

D(g(X)n)(B)|X=A =
n−1


i=0

AiD(AX)(B)|X=AAn−1−i

=
1
2

n−1


i=0

AiBAn−1−i.
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Therefore,

D(Tr((AX)n)|X=A(B) = Tr

(
1
2

n−1


i=0

AiBAn−1−i

)

=
n−1


i=0

Tr

(
1
2
An−1B

)

= nTr

(
An−1 B

2

)
. �

We also need to calculate the second derivative of the matrix function Tr(g(X)n).
By the definition,

D2Tr(F(AX))(Y,Z) =
d
dt
|t=0D(Tr(F(A(X + tZ))))(Y ). (11)

LEMMA 4. The second derivative of the function Tr((AX)n) on the diagonal is
given by

D2(Tr((XY )n)(A,A)(Z,Z) = nTr

(
1
4

n−2


i=0

AiZAn−2−iZ +2 f ′′ (1)ZA−1ZAn−1

)
. (12)

Proof. On account of Lemmas 2 and 3, we have

DTr((AX)n)(Y )

= Tr(
n−1


i=0

(AX)iD(AX)(Y )(AX)n−1−i)

=
n−1


i=0

Tr

(
(AX)i

(
bY +

∫ 

0
( +XA−1)−1Y ( +A−1X)−1d( )

)
(AX)n−1−i

)

=
n−1


i=0

Tr

(
(AX)n−1

(
bY +

∫ 

0
( +XA−1)−1Y ( +A−1X)−1d( )

))

= nTr

(
(AX)n−1

(
bY +

∫ 

0
( +XA−1)−1Y ( +A−1X)−1d( )

))
.

By the definition of the second derivative, we have

D2Tr((AX)n)(Y,Z) =
d
dt
|t=0DTr((A(X + tZ))n)(Y ).

For this, we again use the integral representation of the function f ,

f (A−1/2(X + tZ)A−1/2)

= a+A−1/2(X + tZ)A−1/2 +
∫ 

0


 2 +1

− ( +A−1/2(X + tZ)A−1/2)−1d( ).
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Consequently,

d f
dt

(A−1/2(X + tZ)A−1/2)|t=0

= A−1/2ZA−1/2 +
∫ 

0
( +A−1/2XA−1/2)−1A−1/2ZA−1/2( +A−1/2XA−1/2)−1d( ).

Therefore,

d(A(X + tZ))
dt

|t=0 = A1/2 d f (A−1/2(X + tZ)A−1/2)
dt

|t=0A
1/2

= Z +
∫ 

0
( +XA−1)Z( +A−1X)d( ).

We are almost ready to compute the following derivative

d
dt
|t=0(A(X + tZ))n−1

= D((AX)n−1)(Z)

=
n−2


i=0

(AX))iD(AX)(Z)(AX)n−2−i

=
n−2


i=0

(AX)i
(

bZ +
∫ 

0
( +XA−1)−1Z( +A−1X)−1d( )

)
(AX)n−2−i.

Therefore,
d
dt
|t=0(A(X + tZ)n−1)|A=X =

1
2

n−2


i=0

AiZAn−2−i. (13)

Similarly, we can compute the following derivative which was obtained in [2, Theo-
rem 2]

d
dt
|t=0

(
bY +

∫ 

0
( +XA−1)−1Y ( +A−1X)−1d( )

)
(A,A)(Z,Z) = 2 f ′′ (1)ZA−1Z.

(14)

From (13) and (14), we get

D2(Tr(g(X)n))(A,A)(Z,Z) = nTr

(
1
4

n−2


i=0

AiZAn−2−iZ +2 f ′′ (1)ZA−1ZAn−1

)
. �

REMARK 1. Let p(t) = a0 +a1t + · · ·+antn . Then we have by Lemmas 3 and 4,
we have

D(Tr(p(AX)))|X=A(Z) = (a1 +2a2 + · · ·+nan)Tr

(
An−1 Z

2

)

= p′(1)Tr

(
An−1 Z

2

)
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and

D2(Tr(p(XY ))(A,A)(Z,Z)

= (a1 +2a2 + · · ·+nan)Tr

(
1
4

n−2


i=0

AiZAn−2−iZ +2 f ′′ (1)ZA−1ZAn−1

)

= p′(1)Tr

(
1
4

n−2


i=0

AiZAn−2−iZ +2 f ′′ (1)ZA−1ZAn−1

)
.

We recall some basic properties on operator monotonicity.

LEMMA 5. Let  be an operator mean such that ! �  � , and A be a positive
definite matrix. If IA = IA, then A = I .

Proof. Since ! �  �  we have that f ′ (1) = 1/2, that means, the representing
function (1 + t)/2 of the arithmetic mean is the tangent line to the graph of f at
t = 1. And since the function f is concave, the graph of f is below its tangent line
(1+ t)/2. Indeed, we always can find a small neighborhood (a,b) ⊂ (0,) of 1 such
that f (t) < (1 + t)/2 for any t ∈ (a,b) \ {1} . Now, if there exists t1 �= 1 such that
f (t1) = 1, then from the concavity of the function f , for any  ∈ (0,1) we have

f (1+(1− )t1) �  f (1)+ (1− ) f(t1) = 1.

From here, there exists  ∈ (0,1) such that the point 1 + (1−  )t1 ∈ (a,b) , i.e.,
f (1+(1− )t1) < f (1) = 1 which is a contradiction. Therefore, f (t) = 1 if and
only if t = 1. As a consequence, if IA = IA , then f (A) = (1 + A)/2 for all
eigenvalues A of A . From here, A = 1. That means, A is the identity matrix. �

LEMMA 6. Let g : [0,) → [0,) with g(0) = 0 be a continuous strictly increas-
ing map. Suppose that g−1 is operator monotone. Then, for any positive operators
X ,Y and operator monotone  �  if g(XY ) = g(XY) , then X = Y .

Proof. From [1, Theorem X.1.6] we know that if g(XY ) = g(XY ) then XY =
XY . Since X−1/2(XY )X−1/2 = IX−1/2YX−1/2 , we have IX−1/2YX−1/2 =
IX−1/2YX−1/2 . Set A = X−1/2YX−1/2 . Then from Lemma 5 we have A = I . That
is, X = Y . �

LEMMA 7. Let g : [0,) → [0,) with g(0) = 0 be a strictly increasing function
in C -class. Then, for any finite interval [a,b] ⊂ [0,) containing 1 , and for any  ,
there exists a polynomial p such that maxt∈[a,b] |g(t)− p(t)|<  such that p′(1) � 0 .

Proof. Recall that for the points (ti, f (ti)) (i = 1,2, · · · ,n) , the Lagrange interpo-
lation polynomial Pn(t) is

Pn(t) =
n


i=1

g(ti)Li(t),
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where each Lagrange basis polynomial Li(t) is Li(t) =n
j=1, j �=i

t−t j
ti−t j

. It is well-known

that for such function g , for any  > 0 there exists a Lagrange polynomial Pn(t) such
that maxt∈[a,b] |g(t)−Pn(t)| <  . Also, in this case we have

g(t) = Pn(t)+
g(n+1)((t))

(n+1)!
(t − t1)(t− t2) · · · (t − tn).

Differentiating both sides, we get

g′(t) = P′
n(t)+

(
g(n+1)((t))

(n+1)!
(t− t1)(t − t2) · · · (t− tn)

)′
.

Since the function g(t) is strictly increasing on [a,b] , g′(1) > 0. Therefore, we can

choose n as big as
(

g(n+1)((t))
(n+1)! (t − t1)(t− t2) · · · (t − tn)

)′
|t=1 < g′(1) . From here, we

obtain that P′
n(1) > 0. �

Using the calculations from Remark 1, Lemma 7 ensures that the condition P′
n(1)>

0 holds, which is essential for the validity of the following theorem.

THEOREM 1. Let  be a operator mean such that ! �  �  and f be a C2 -
class representing function of  . Let g : [0,) → [0,) be strictly increasing function
with g′(1) ∈ (0,1) such that g−1 is operator monotone function on (0,) . Then the
quantity g, (X ,Y ) = Tr (g(XY )−g(XY)) is a quantum divergence, where X ,Y ∈
Pn .

Proof. Firstly, notice that from operator monotonicity of the function g−1 , we
have that g−1 is in the class C(0,) . Therefore, its inverse, which is the function g
is also in the class C(0,) .

It is sufficient to prove the theorem for the case where g(t) = tn for any natural
number n . The general case then follows by applying Lemma 7, which ensures that any
function g satisfying the conditions of the theorem can be approximated by a sequence
of Lagrange polynomial with positive derivatives at 1.

Since XY � XY for all X ,Y ∈ Pn and g is increasing monotonic, we have
Tr (g(XY )) � Tr(g(XY )) . Again, by Lemma 6, g, (X ,Y ) = 0 if and only if
X = Y . Therefore, g, (X ,Y ) satisfies the first condition in Definition 2.

From Lemma 2, one can see that the function g, (X ,Y ) also satisfies the second
condition in Definition 2. Indeed,

Dg, (A,X)|X=A = Tr (Dg(AX) |X=A −Dg(AX)|X=A)
= g′(1)Tr(Y/2−Y/2) = 0.

Finally, we will check the third condition for any Hermitian Z . Indeed, from
Lemma 4 one can see that

D2g, (A,A)(Z,Z) = g′(1)Tr
(−2 f ′′ (1)ZA−1ZAn−1)� 0. �
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Now, let A1,A2, . . . ,Am be positive definite matrices and w = (w1,w2, . . . ,wm) be

a probability vector such that
m

i=1

wi = 1, we consider the least squares problem with

respect to the new quantum divergence

min
X>0

m


i=1

iTr [g(AiX)−g(AiX)] .

Given that we could not find the explicit barycenter of A1,A2, · · · ,An , but if it exists, it
should satisfy some special equation.

THEOREM 2. Suppose that operator mean  and the function g satisfy the con-

ditions in Theorem 1. If the function F(X) =
m

i=1

iTr [g(AiX)−g(AiX)] attains its

minimum at X0 then X0 should be a positive solution of the following matrix equation

m


i=1

i

2
g′(AiX)

=
m


i=1

i

(
g′(AiX)b+

∫ 

0
( +A−1

i X)−1g′(AiX)( +XA−1
i )−1d( )

)
,

where f (x) = a+ bx+
∫ 
0

(


 2+1
− 1

+x

)
d( ) is the integral representation of the

representing function f of the mean  .

Proof. Again, we firstly consider the case when the function g(t) = tn for some
natural number n . In this case, for any Hermitian matrix B , according to Lemma 3 we
have

Tr(Dg(AiX)(B)) =
n
2
Tr((AiX)n−1B), (15)

and

Tr(D(g(X)n)(B))

= nTr((AiX)n−1D(AiX)(B))

= n

(
Tr((AiX)n−1bB)+

∫ 

0
Tr((AiX)n−1( +XA−1

i )−1B( +A−1
i X)−1d( )

)

= nTr

((
(AiX)n−1b+

∫ 

0
( +A−1

i X)−1(AiX)n−1( +XA−1
i )−1d( )

)
B

)
.

Consequently,

DF(X)(B)

= n
m


i=1

wiTr((AiX)n−1B/2)

−n
m


i=1

wiTr

((
(AiX)n−1b+

∫ 

0
( +A−1

i X)−1(AiX)n−1(+XA−1
i )−1d( )

)
B

)
.
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From the condition that DF(X)(B) = 0 for any Hermitian B it implies that

m


i=1

wi

2
(AiX)n−1

=
m


i=1

wi

(
(AiX)n−1b+

∫ 

0
( +A−1

i X)−1(AiX)n−1( +XA−1
i )−1d( )

)
.

In general case, let Pn be the sequence of Lagrange polynomials that uniformly con-
verses to the function g such that P′

n(1) > 0 starting from a big enough n . For each n ,
let us consider the following function

Fn(X) =
m


i=1

iTr (Pn(AiX)−Pn(AiX)) .

From the previous argument, one can see that if Fn(X) attains minimum at X0n , then
X0n should be the solution of the following equation

m


i=1

wi

2
P′

n(AiX)

=
m


i=1

wi

(
P′

n(AiX)b+
∫ 

0
( +A−1

i X)−1P′
n(AiX)( +XA−1

i )−1d( )
)

.

Now we have

F(X) =
m


i=1

iTr (g(AiX)−g(AiX))

=
m


i=1

i lim
n

Tr (Pn(AiX)−Pn(AiX)) .

The derivative DF(X)(B) is given by the following

DF(X)(B)

= Tr

(
m


i=1

i lim
n

(DPn(AiX)(B)−DPn(AiX)(B))

)

= Tr

(
B

m


i=1

i lim
n

(
1
2
P′

n(AiX)

−
(

P′
n(AiX)b+

∫ 

0
( +A−1

i X)−1P′
n(AiX)( +XA−1

i )−1d( )
)))

= Tr

(
B

m


i=1

i

(
1
2
g′(AiX)

−
(

g′(AiX)b+
∫ 

0
( +A−1

i X)−1g′(AiX)( +XA−1
i )−1d( )

)))
.
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Therefore, DF(X)(B) = 0 for any Hermitian B if and only if

m


i=1

i

2
g′(AiX)

=
m


i=1

i

(
g′(AiX)b+

∫ 

0
( +A−1

i X)−1g′(AiX)( +XA−1
i )−1d( )

)
. �

3. Inverse problems for matrix means

In this section we focus on inverse problem for matrix means that involves operator
monotone functions.

PROPOSITION 1. Let A and B in Pn such that 0 < 3B � A and  be an operator
mean in the sense of Kubo-Ando such that the correspondent representative function f
satisfies f ′ (1) = 1/2 . Then the following equation has a positive definite solution T
such that B � T � A,

T = A−TB (16)

Proof. Let K = {T ∈ Pn|B � T � A} . Then, K is a convex compact set in
Mn(C) . Let define G(T ) = A− TB for T ∈ K . We will show that G(T ) ∈ K .
Note that

T 1/2 f (T−1/2BT−1/2)T 1/2 = TB � BB = B.

Since ! �  �  and B � T � A , we get

A−TB � A−AB � A− A+B
2

=
1
2
A− B

2
� 3

2
B− B

2
= B

which implies

G(T ) � B. (17)

On the other hand, it is trivial that G(T ) � A . Thus, G is a self-map on the compact
and convex set K . According to Brouwer’s fixed point theorem [4, Corollary 9.2], G
has a fixed point. �

THEOREM 3. Suppose f is a continuous function on (0,) such that f−1 : (0,)
→ (0,) is operator monotone and ( f−1)′(1) = 1/2 . Suppose that 0 < 3 f−1(B) �
2 f−1(A) , then the inverse problem

{
A = f

(
X+Y

2

)
B = f (Pf (Y,X))

(18)

have a positive definite solution (X ,Y ) , where Pf (Y,X) = X1/2 f (X−1/2YX−1/2)X1/2

is the operator perspective of f [12, 15].
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Proof. The system (18) is equivalent to the following system⎧⎪⎨
⎪⎩

f−1(A) =
X +Y

2

f−1(B) = X1/2 f
(
X−1/2YX−1/2

)
X1/2.

(19)

Let A1 = f−1(A) , B1 = f−1(B) . Since 3 f−1(B) � 2 f−1(A) , we have B1 = f−1(B) �
3
2 f−1(B) � f−1(A) = A1 , and the system (19) is written by⎧⎪⎨

⎪⎩
A1 =

X +Y
2

B1 = X1/2 f
(
X−1/2YX−1/2

)
X1/2.

(20)

Furthermore, the system (20) is equivalent the system⎧⎨
⎩

X = 2A1−X1/2 f−1
(
X−1/2B1X−1/2

)
X1/2 = 2A1−XB1

Y = X1/2 f−1
(
X−1/2B1X−1/2

)
X1/2,

(21)

where  is the corresponding operator mean to f−1. According to Proposition 1, the
first equation in (21) has a positive solution that implies that the system (21) also has a
positive solution (X ,Y ). �

4. Concluding remark on characterization of the trace

To finish the paper, we show a new characterization of the trace property in the
relation with the new quantum divergence defined in the second section. For the trace
property characterization we refer to the papers [3, 8] and references therein.

THEOREM 4. Let p > 1 and  be a positive linear map on M n . Then for any
positive matrices A,B of order n, the following equality

 (A,B) =  ((AB)p)− ((A#B)p)

is a quantum divergence if and only if  is a scalar multiple of the canonical trace.

Proof. Suppose that (A,B) is a quantum divergence. Then  (A,B) � 0 for
any positive definite matrices A and B . Therefore

 ((AB)p) �  ((A#B)p). (22)

For arbitrary 0 < X � Y , there exists a pair of A,B such that

X = A#B and Y = AB.
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On account of (22) we have

(X p) � (Y p).

By [3, Theorem],  is a scalar multiple of the canonical trace.

The converse implication is a direct consequence of Theorem 1. �
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