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Abstract. This paper extends the boundedness of the one-sided maximal operators from the
Lebesgue spaces with variable exponents to the one-sided Herz spaces with variable exponents.
The main result generalizes the boundedness of the one-sided maximal operators on the classical
Herz spaces.

1. Introduction

In this paper, we establish the boundedness of the one-sided maximal operators on
the one-sided Herz spaces with variable exponents.

The Herz spaces with variable exponents are extensions of the Herz spaces and
the Lebesgue spaces with variable exponents. The Herz spaces were introduced by
Herz in [9] to study the Fourier series. The Herz spaces also provide applications on
summability of Fourier series, harmonic analysis and partial differential equations, see
[6, 15, 22, 30, 31]. The Lebesgue spaces with variable exponent are extensions of
the Lebesgue spaces. It provides applications on partial differential equation and fluid
dynamics, see [4, Part III]. An important breakthrough for the studies of the Lebesgue
spaces with variable exponent is on the boundedness of the Hardy-Littlewood maximal
function, see [3, 4, 27, 28].

The one-sided maximal operators are the “original” maximal function studies by
Hardy and Littlewood in [8]. They are ancestors of the nowadays well known Hardy-
Littlewood maximal function. The study of the one-sided maximal operators has it own
independent interest. For example, it offers applications on the ergodic theory. For
the mapping properties of the one-sided maximal operators and theirs applications, see
[23, 24, 25, 26, 34].

The boundedness of the one-sided maximal operators has been extended to the
Lebesgue spaces with variable exponents in [5, 29]. It motivates us to investigate the
boundedness of the one-sided maximal operators on the Herz spaces with variable ex-
ponents. We introduce the one-sided Herz spaces with variable exponents to study the
boundedness of the one-sided maximal operators. We obtain our main result by using
the notion of localized operators introduced in [14].
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This paper is organized as follows. Section 2 contains the definitions of the one-
sided maximal operators, the Lebesgue spaces with variable exponents and the one-
sided Herz spaces with variable exponents. The boundedness of the one-sided maximal
operators on the Lebesgue spaces with variable exponents is also recalled in this section.
The main result of this paper, the boundedness of the one-sided maximal operators on
the one-sided Herz spaces with variable exponents, is established in Section 3.

2. Definitions and preliminaries

Let M and L1
loc denote the space of Lebesgue measurable functions and the space

of locally integrable functions on R , respectively.
For any f ∈ L1

loc , the one-sided Hardy-Littlewood maximal operators M+ f and
M− f are defined as

M+ f (x) = sup
t>0

1
t

∫ x+t

x
| f (y)|dy, x ∈ R,

M− f (x) = sup
t>0

1
t

∫ x

x−t
| f (y)|dy, x ∈ R,

respectively.
We now recall the definition of the Lebesgue spaces with variable exponents on R

[3, 4].

DEFINITION 1. Let p(·) : R → (1,∞) be a Lebesgue measurable function. The
Lebesgue space with variable exponent Lp(·) consists of all Lebesgue measurable func-
tions f : R → C so that

‖ f‖Lp(·) = inf{λ > 0 : ρ( f/λ ) � 1} < ∞

where

ρ( f ) =
∫

R
| f (x)|p(x)dx.

We call p(·) the exponent function of Lp(·) .

The Lebesgue space with variable exponent is a Banach function space. For simplicity,
we refer the reader to [2, Chapter 1] for the definition of Banach function space and its
properties.

For any exponent function p(·) : R → (1,∞) , write

p+ = ess sup
x∈(0,∞)

p(x) and p− = ess inf
x∈(0,∞)

p(x).

For any Lebesgue measurable function p(·) : R→ (1,∞) , define p′(x) = p(x)
p(x)−1 , x∈R .

For the details of the Lebesgue spaces with variable exponents, the reader is referred to
[3, 4].
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DEFINITION 2. Let p(·) : R → (1,∞) be a Lebesgue measurable function. We
write p(·) ∈ M+ if M+ : Lp(·) → Lp(·) is bounded. We write p(·) ∈ M− if M− :
Lp(·) → Lp(·) is bounded.

We now give some concrete conditions that guarantee p(·)∈M+∪M− from [29].

DEFINITION 3. Let p(·) : R → (1,∞) be a Lebesgue measurable function with
1 < p− � p+ < ∞ . We write p(·) ∈ L+ if there is a constant C > 0 such that

p(y) � p(x)+
C

ln(y− x)

for all x,y ∈ R with 0 < y− x � 1
2 .

We write p(·) ∈ L− if p̃(·) ∈ L+ where p̃(x) = p(−x) , x ∈ R .

DEFINITION 4. Let p(·) : R → (1,∞) be a Lebesgue measurable function. We
write p(·) ∈ P if there is a constant c > 0 such that

∫
{x:p(x) �=0}

c
1

p(x) dx < ∞.

We have the following result from [29, Theorem 1].

THEOREM 1. Let p(·) : R → (1,∞) be a Lebesgue measurable function.

1. If p(·)∈L+ and there exists a non-increasing function q(·) satisfying 1 < q− �
q+ < ∞ , |p(·)−q(·)| ∈ P , then p(·) ∈ M+ .

2. If p(·)∈L− and there exists a non-decreasing function q(·) satisfying 1 < q− �
q+ < ∞ , |p(·)−q(·)| ∈ P , then p(·) ∈ M− .

We have another condition that guarantees p(·) ∈ M+ ∪M− . We need to recall
some notations from [29] to present this condition.

Let e0 = 1 and ek+1 = eek , k ∈ N\{0} . Write ln0 x = x . Let k ∈ N\{0} . For any
x ∈ (ek,∞) , write lnk x = ln(lnk−1 x) . For any α > 0, write

bk,α(x) = − 1
α

d
dx

(ln−α
k x), x ∈ (ek,∞).

DEFINITION 5. Let p(·) : R → (1,∞) be a Lebesgue measurable function with
1 < p− � p+ < ∞ . We write p(·) ∈ Q if

1. p(x) = p(−x) for all x ∈ R ,

2. there are α,C > 0 and k ∈ N\{0} such that p(·) is monotone on (ek,∞) and∣∣∣∣dp(x)
dx

∣∣∣∣� Cbk,α(x), x ∈ (ek,∞).
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The following result is from [29, Theorem 2].

THEOREM 2. Let p(·) : R → (1,∞) be a Lebesgue measurable function.

1. If p(·)∈L+ and there exists a q(·)∈Q such that |p(·)−q(·)| ∈P , then p(·)∈
M+ .

2. If p(·)∈L− and there exists a q(·)∈Q such that |p(·)−q(·)| ∈P , then p(·)∈
M− .

We now present the definition of the one-sided Herz spaces with variable expo-
nents studied in this paper. For any m ∈ N\{0} , define

D0 = (−1,1), Dm = [2m−1,2m), D−m = (−2m,−2m−1].

DEFINITION 6. Let θ ∈ (0,∞) , α ∈ (−∞,∞) and p(·) : R→ (1,∞) be a Lebesgue
measurable function. The one-sided Herz space with variable exponent K̊α

p(·),θ consists
of all Lebesgue measurable functions f satisfying

‖ f‖K̊α
p(·),θ

=

(
∑
k∈Z

∥∥2kα f χDk

∥∥θ
Lp(·)

) 1
θ

< ∞.

When α > 0, the Herz space with variable exponent studied in [1, 10, 11] is a
subspace of K̊α

p(·),θ . Whenever p(·) = p , p ∈ (1,∞) , is a constant function, we denote

K̊α
p(·),θ by K̊α

p,θ . It is an extension of the classical Herz spaces. For the studies of the
classical Herz space and its generalizations, see [6, 9, 14, 16, 20, 21, 22, 30, 31, 35].

A number of important results in harmonic analysis, such as the boundedness of
the Hardy-Littlewood maximal function, the singular integral operators and bilinear
operators had been extended to the classical Herz spaces and Herz spaces with variable
exponents studied in [1, 10, 11], see [12, 13, 17, 18, 19].

The following result assures that for any f ∈ K̊α
p(·),θ , M+ f and M− f are Lebesgue

measurable.

PROPOSITION 1. Let θ ∈ (0,∞) , α ∈ (−∞,∞) and p(·) : R→ (1,∞) be a Lebes-
gue measurable function. For any f ∈ K̊α

p(·),θ , M+ f ,M− f are Lebesgue measurable
functions.

Proof. We show that for any m ∈ N and f ∈ K̊α
p(·),θ ,

∫ 2m

−2m | f (y)|dy is finite.

The Hölder inequality for Lp(·) [3, Theorem 2.36] gives

∫ 2m

−2m
| f (y)|dy =

m

∑
k=−m

∫
R

χDk (y)| f (y)|dy � C
m

∑
k=−m

‖χDk‖Lp′(·)‖χDk f‖Lp(·) .



ONE-SIDED MAXIMAL OPERATORS 193

When θ ∈ (1,∞) , the Hölder inequality and the inequality ‖χDk‖Lp′(·) � ‖χ(−2m,2m)‖Lp′(·)
yield

∫ 2m

−2m
| f (y)|dy

� C

(
m

∑
k=−m

(2−kα‖χDk‖Lp′(·))θ ′
) 1

θ ′
(

m

∑
k=−m

(2kα‖χDk f‖Lp(·) )θ

) 1
θ

� C

(
m

∑
k=−m

(2−kα‖χ(−2m,2m)‖Lp′(·) )θ ′
) 1

θ ′
‖ f‖K̊α

p(·),θ

� C(2m)
1
θ ′ 2m|α |‖χ(−2m,2m)‖Lp′(·)‖ f‖K̊α

p(·),θ
< ∞.

When θ ∈ (0,1] , the θ -inequality gives

∫ 2m

−2m
| f (y)|dy � C

m

∑
k=−m

‖χDk‖Lp′(·)‖χDk f‖Lp(·)

� C2m|α |‖χ(−2m,2m)‖Lp′(·)

(
m

∑
k=−m

(2kα‖χDk f‖Lp(·) )θ

) 1
θ

� C2m|α |‖χ(−2m,2m)‖Lp′(·)‖ f‖K̊α
p(·),θ

< ∞.

Thus, K̊α
p(·),θ ⊂ L1

loc . As the one-sided maximal operators M+ and M− are defined for

locally integrable functions, M+ and M− are defined on K̊α
p(·),θ .

We now use the idea from [7, p.91] to show that for any f ∈ K̊α
p(·),θ , M+ f and

M− f are Lebesgue measurable.
For any x∈ R and t > 0, F+(x,t) = 1

t

∫ x+t
x | f (y)|dy and F−(x,t) = 1

t

∫ x
x−t | f (y)|dy

are continuous in t for each x . In view of the Fubini’s theorem, F+(x,t) and F−(x,t)
are measurable in x for each t . As F+(x,t) and F−(x, t) are continuous in r , we see
that

sup
t∈Q∩(0,∞)

F+(x,t) = sup
t>0

F+(x,t) = M+ f (x)

sup
t∈Q∩(0,∞)

F−(x,t) = sup
t>0

F−(x,t) = M− f (x).

Therefore, for any f ∈ K̊α
p(·),θ , M+ f and M− f are Lebesgue measurable. �

The above proposition assures that it does make sense to study the boundedness
of the one-sided maximal operators M+ and M− on the one-sided Herz space with
variable exponent K̊α

p(·),θ .
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3. Main results

The main result of this paper, the boundedness of the one-sided maximal opera-
tors on the one-sided Herz spaces with variable exponent K̊α

p(·),θ , is established in this
section.

THEOREM 3. Let θ ∈ (0,∞) , α ∈ (0,∞) , p(·) : R → (1,∞) be a Lebesgue mea-
surable function. If 1 < p− � p+ < ∞ and p(·) ∈ M+ , then M+ : K̊α

p(·),θ → K̊α
p(·),θ is

bounded.

Proof. We first establish that for any f ∈ K̊α
p(·),θ and x ∈ Dm , m ∈ Z , we have

χDm(x)M+ f (x) � M+(χ∪∞
k=mDk f )(x), x ∈ R. (1)

When x �∈ Dm , we have

χDm(x)M+ f (x) = 0 � M+(χ∪∞
k=mDk f )(x). (2)

Whenever x ∈ Dm , we find that for any h > 0

1
h

∫ x+h

x
| f (y)|dy =

1
h

∫ x+h

x
χ∪∞

k=mDk(y)| f (y)|dy (3)

� M+(χ∪∞
k=mDk f )(x)

because x ∈ Dm asserts that (x,x + h) ⊂ (x,∞) ⊂ ∪∞
k=mDk . By taking the supremum

over h > 0 on (3), we find that for any x ∈ Dm

χDm(x)M+ f (x) � M+(χ∪∞
k=mDk f )(x). (4)

Consequently, (2) and (4) yield (1).
Next, we apply the norm ‖ · ‖Lp(·) on both sides of (1), we obtain

‖χDmM+ f‖Lp(·) � ‖M+(χ∪∞
k=mDk f )‖Lp(·) .

As α > 0, the Hölder inequality on �θ for θ � 1 and the θ -inequality for 0 < θ < 1
yield χ∪∞

k=mDk f ∈ Lp(·) . Consequently, p(·) ∈ M+ gives

‖χDmM+ f‖Lp(·) � C‖χ∪∞
k=mDk f‖Lp(·) � C

∞

∑
k=m

‖χDk f‖Lp(·) (5)

for some C > 0.
We now consider the case when θ ∈ (1,∞) . (5) gives

∑
m∈Z

(2mα‖χDmM+ f‖Lp(·) )θ � C ∑
m∈Z

(
∞

∑
k=m

2mα‖χDk f‖Lp(·)

)θ

= C ∑
m∈Z

(
∞

∑
k=m

2(m−k)α2kα‖χDk f‖Lp(·)

)θ

.
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We now use the idea in [32, Proposition 1.2]. The Hölder inequality guarantees that

∑
m∈Z

(2mα‖χDmM+ f‖Lp(·) )θ

� C ∑
m∈Z

(
∞

∑
k=m

2
θ
2 (m−k)α(2kα‖χDk f‖Lp(·) )θ

)(
∞

∑
k=m

2
θ ′
2 (m−k)α

) θ
θ ′

.

As α > 0, we find that ∑∞
k=m 2

θ ′
2 (m−k)α <C for some C > 0 independent of m . There-

fore, by interchanging the summations, we obtain

∑
m∈Z

(2mα‖χDmM+ f‖Lp(·) )θ � C ∑
m∈Z

∞

∑
k=m

2
θ
2 (m−k)α(2kα‖χDk f‖Lp(·) )θ

� C ∑
k∈Z

k

∑
m=−∞

2
θ
2 (m−k)α(2kα‖χDk f‖Lp(·) )θ

=C ∑
k∈Z

(2kα‖χDk f‖Lp(·) )θ
k

∑
m=−∞

2
θ
2 (m−k)α

� C ∑
k∈Z

(2kα‖χDk f‖Lp(·) )θ

where we have the last inequality because α > 0. Hence,

‖M+ f‖K̊α
p(·),θ

=

(
∑

m∈Z

(2mα‖χDmM+ f‖Lp(·) )θ

) 1
θ

� C

(
∑
k∈Z

(2kα‖χDk f‖Lp(·) )θ

) 1
θ

= C‖ f‖K̊α
p(·),θ

.

Therefore, we establish the boundedness of M+ : K̊α
p(·),θ → K̊α

p(·),θ when θ ∈ (1,∞) .

We consider the case θ ∈ (0,1] . The θ -inequality and (5) yield

∑
m∈Z

(2mα‖χDmM+ f‖Lp(·) )θ � C ∑
m∈Z

(
∞

∑
k=m

2mα‖χDk f‖Lp(·)

)θ

=C ∑
m∈Z

(
∞

∑
k=m

2(m−k)α2kα‖χDk f‖Lp(·)

)θ

� C ∑
m∈Z

∞

∑
k=m

2θ(m−k)α(2kα‖χDk f‖Lp(·) )θ .
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By interchanging the summations, we get

∑
m∈Z

(2mα‖χDmM+ f‖Lp(·))θ � C ∑
k∈Z

k

∑
m=−∞

2θ(m−k)α(2kα‖χDk f‖Lp(·) )θ

= C ∑
k∈Z

(2kα‖χDk f‖Lp(·) )θ
k

∑
m=−∞

2θ(m−k)α .

Since α > 0, we find that ∑k
m=−∞ 2θ(m−k)α < C for some C > 0 independent of k .

Consequently,

‖M+ f‖K̊α
p(·),θ

=

(
∑

m∈Z

(2mα‖χDmM+ f‖Lp(·) )θ

) 1
θ

� C

(
∑
k∈Z

(2kα‖χDk f‖Lp(·) )θ

) 1
θ

= C‖ f‖K̊α
p(·),θ

.

Thus, we establish the boundedness of M+ : K̊α
p(·),θ → K̊α

p(·),θ when θ ∈ (0,1] . �

We also have the boundedness of M− on the one-sided Herz spaces with variable
exponents K̊α

p(·),θ .

THEOREM 4. Let θ ∈ (0,∞) , α ∈ (−∞,0) , p(·) : R → (1,∞) be a Lebesgue
measurable function. If 1 < p− � p+ < ∞ and p(·) ∈M− , then M− : K̊α

p(·),θ → K̊α
p(·),θ

is bounded.

As the proof of the above result is similar to the proof of Theorem 3, for simplicity,
we omit the proof.

In view of Theorems 1, 2, 3 and 4, we have the following boundedness results
for the one-sided maximal operators M+ and M− on the one-sided Herz space with
variable exponent K̊α

p(·),θ .

COROLLARY 1. Let α ∈ R , θ ∈ (0,∞) and p(·) : R → (1,∞) be a Lebesgue
measurable function.

1. If α ∈ (0,∞) , p(·) ∈ L+ and there exists a non-increasing function q(·) satisfy-
ing 1 < q− � q+ < ∞ , |p(·)−q(·)| ∈P , then M+ : K̊α

p(·),θ → K̊α
p(·),θ is bounded.

2. If α ∈ (−∞,0) , p(·) ∈ L− and there exists a non-decreasing function q(·) sat-
isfying 1 < q− � q+ < ∞ , |p(·)− q(·)| ∈ P , then M− : K̊α

p(·),θ → K̊α
p(·),θ is

bounded.

COROLLARY 2. Let α ∈ R , θ ∈ (0,∞) and p(·) : R → (1,∞) be a Lebesgue
measurable function.
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1. If α ∈ (0,∞) , p(·)∈L+ and there exists a q(·)∈Q such that |p(·)−q(·)| ∈P ,
then M+ : K̊α

p(·),θ → K̊α
p(·),θ is bounded.

2. If α ∈ (−∞,0) , p(·) ∈ L− and there exists a q(·) ∈ Q such that |p(·)−q(·)| ∈
P , then M− : K̊α

p(·),θ → K̊α
p(·),θ is bounded.

Moreover, Theorems 3 and 4 also give the boundedness result for M+ and M− on
the one-sided Herz spaces K̊α

p,θ .

COROLLARY 3. Let θ ∈ (0,∞) , α ∈ R and p ∈ (1,∞) .

1. If α ∈ (0,∞) , then M+ : K̊α
p,θ → K̊α

p,θ is bounded.

2. If α ∈ (−∞,0) , then M− : K̊α
p,θ → K̊α

p,θ is bounded.

The mapping properties of M− on the weighted Herz spaces were given in [14].
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