
Mathematical
Inequalities

& Applications

Volume 28, Number 2 (2025), 221–238 doi:10.7153/mia-2025-28-15

NEW INEQUALITIES FOR THE HADAMARD

PRODUCT OF HILBERT SPACE OPERATORS

FUAD KITTANEH, HAMID REZA MORADI AND MOHAMMAD SABABHEH ∗

(Communicated by J.-C. Bourin)

Abstract. The main goal of this paper is to present further investigations of the Hadamard prod-
uct of Hilbert space operators and matrices. In particular, we prove a Cauchy-Schwarz-type
inequality involving the Hadamard product.

Then, singular value and norm bounds will be obtained as an application of the afore-
mentioned Cauchy-Schwarz inequality. For example, if A and B are compact operators on a
separable Hilbert space, it is shown that

s j (A◦B) � ‖|A∗| ◦ |B∗|‖ 1
2 s

1
2
j (|A| ◦ |B|)

where ◦ , ‖ ·‖ and | · | denote the Hadamard product, the usual operator norm, and the absolute
value, respectively.

After that, numerical radius and spectral radius bounds for operator forms involving the
Hadamard product are presented.

1. Introduction

For a separable Hilbert space H , the notation B(H) will stand for the C∗ -algebra
of bounded linear operators from H to itself. When H is finite-dimensional, say of
dimension n , B(H) is identified with the algebra Mn of all n×n complex matrices.

A product operation on B(H) has been defined by many forms, with certain de-
sirable properties for each form. The usual operation is defined for A,B ∈ B(H) by
(AB)x = A(Bx) , for x ∈ H .

Another important product is the so-called Hadamard product, which is defined
via a fixed orthonormal basis of {e j} of H . More precisely, if A,B ∈ B(H) , then the
Hadamard product of A,B is denoted by A ◦ B , and is defined by

〈
(A◦B)ei,e j

〉
=〈

Aei,e j
〉〈

Bei,e j
〉
, where 〈·, ·〉 denotes the defined inner product on H.

When H is finite-dimensional, the Hadamard product is simply the entry-wise
multiplication of matrices.

The Hadamard product has received considerable attention in the literature, as the
reader can see in [5, 20]. We also refer to [28] for an excellent overview and history.
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One can obtain the Hadamard product by filtering the Kronecker product through a
positive linear map. More precisely, if A,B∈B(H) , and if A⊗B denotes the Kronecker
(or tensor) product of A and B , then

A◦B = U∗ (A⊗B)U, (1)

where U : H → H⊗H is the isometry determined by Uei = ei ⊗ ei for all i ∈ N ; see
[11]. In what follows, the operator U will denote this particular isometry.

Utilizing (1), together with the properties of the Kronecker product, one can de-
duce some interesting properties of the Hadamard product.

Our concern in this paper is to show some new properties and inequalities that in-
volve the Hadamard product. For example, we discuss sufficient conditions that ensure
accretivity of A ◦B . We recall here that an operator T ∈ B(H) is said to be accre-
tive provided that ℜT � O , where ℜT is the real part of T , defined by ℜT = T+T ∗

2 ,
and O is the zero operator in B(H). By writing T � O we mean that 〈Tx,x〉 � 0 for
all x ∈ H . Such an operator is referred to as being a positive operator. Similarly, the
imaginary part of T is defined by ℑT = T−T ∗

2i . When both ℜT,ℑT � O , we say that
T is accretive-dissipative. An operator T ∈ B(H) is said to be sectorial if, for some
0 � θ < π

2 , we have

W (T ) ⊂ Sθ := {z ∈ C : |ℑz| � tanθ ℜz} ,

where W (T ) is the numerical range of T , defined by W (T ) = {〈Tx,x〉 : x ∈ H,‖x‖ =
1}. When W (T ) ⊂ Sθ , we will write T ∈ Sθ .

This class of operators has received renowned attention in the recent advances in
the field, and we refer the reader to [22] for some work dedicated to this concern.

Related to the real part, we state the following simple observations, whose proof
follows immediately noting the distributive property of the Hadamard product.

PROPOSITION 1. Let A,B ∈ B(H) . Then

A◦B = ℜA◦ℜB−ℑA◦ℑB+ i(ℑA◦ℜB+ ℜA◦ℑB).

More precisely,
ℜ(A◦B) = ℜA◦ℜB−ℑA◦ℑB (2)

and
ℑ(A◦B) = ℑA◦ℜB+ ℜA◦ℑB. (3)

When A,B ∈ B(H) are self-adjoint, we say that A � B when A−B � O. Propo-
sition 1 says that A ◦B is accretive if ℜA ◦ℜB � ℑA ◦ℑB . On the other hand, the
Hadamard product enjoys the property that T1 ◦T2 � T3 ◦T4 , whenever T1 � T3 � O
and T2 � T4 � O . This can be proved easily noting distributivity of the Hadamard
product, and the fact that the Hadamard product of two positive operators in necessarily
positive; see [26] and [28, Theorem 3.1]. Indeed, if T1 � T3 � O and T2 � T4 � O, it
follows that

T1 ◦T2−T3 ◦T2 = (T1 −T3)◦T2 � O (4)
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and
T3 ◦T2−T3 ◦T4 = T3 ◦ (T2−T4) � O. (5)

Adding (4) and (5) implies that T1 ◦T2 � T3 ◦T4, provided that T1 � T3 � O and T2 �
T4 � O.

In conclusion, we can state the following result.

COROLLARY 1. Let A,B ∈ B(H) be accretive-dissipative such that ℜA � ℑA
and ℜB � ℑB. Then A◦B is accretive.

Before proceeding, we list some useful properties of the Kronecker product that
we will use in this work.

LEMMA 1. Let T1,T2,T3,T4 ∈ B(H) . Then

(i) T1⊗ (T2 +T3) = T1⊗T2 +T1⊗T3 and (T1 +T2)⊗T3 = T1⊗T3 +T2⊗T3.

(ii) (T1⊗T2)
∗ = T ∗

1 ⊗T∗
2 .

(iii) (T1T2)⊗ (T3T4) = (T1⊗T3)(T2⊗T4) .

(iv) If r is a positive integer, then (T1 ⊗T2)r = Tr
1 ⊗Tr

2 .

(v) T1⊗T2 = (T1⊗1)(1⊗T2) = (1⊗T2)(T1 ⊗1) , where 1 is the identity operator
in B(H).

(vi) ‖T1⊗T2‖= ‖T1‖ ‖T2‖, where ‖·‖ stands for the usual operator (spectral) norm.

(vii) |T1⊗T2| = |T1|⊗ |T2| , where | · | stands for the absolute value.

(viii) If T1,T2 � O and r � 0 , then (T1 ⊗T2)r = T r
1 ⊗Tr

2 .

Among those useful tools in obtaining our results is the so-called Aluthge trans-
form, which was defined in [4] for the operator T with polar decomposition T = V |T |
by T̃ = |T | 1

2V |T | 1
2 . This has been used in the literature by many authors to deduce new

and sharp bounds for celebrated quantities, such as the numerical radius. We recall that
if T ∈ B(H) , the numerical radius of T is defined by ω(T ) = sup‖x‖=1 |〈Tx,x〉| . We
refer the reader to [18, 24, 25] as a list of references that utilized the Aluthge transform
to study the numerical radius. In this paper, applications will involve some new bounds
for the numerical radius of the Hadamard product.

Another application of the obtained results will be singular value bounds. Given a
compact operator T ∈ B(H) , its singular values are arranged in a non-increasing order
according to their multiplicities. Thus, s1(T ) � s2(T ) � . . . .

In the sequel, we will use the notation K(H) to denote the class of compact oper-
ators in B(H) , where H , as indicated earlier, is a separable Hilbert space.

We list some lemmas that we will need to prove our main results.
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LEMMA 2. (See [16, Lemma 1] and [7, Proposition 1.3.2]) Let T1,T2,T3 ∈B(H) ,
where T1 and T2 are positive. Then the following statements are mutually equivalent:

(i)

[
T2 T3

T ∗
3 T1

]
is a positive operator in B(H⊕H) .

(ii)

[
T1 T ∗

3
T3 T2

]
is a positive operator in B(H⊕H) .

(iii) |〈T3x,y〉|2 � 〈T1x,x〉 〈T2y,y〉 for all x,y ∈ H .

(iv) There exists a contraction T4 (i.e., ‖T4‖ � 1 ) such that T3 = T
1
2

2 T4T
1
2

1 .

The max-min principle is a useful tool in obtaining singular value bounds, which
can be found in [27, Theorem 1.5] or [12, Theorem 9.1].

LEMMA 3. Let T ∈ K(H) . Then for j = 1,2, . . . ,

s j(T ) = max
dimM= j

min
x∈M
‖x‖=1

‖Tx‖ .

LEMMA 4. [14, (4.6)] Let T1,T2 ∈ B(H) . Then

1
2

sup
θ∈R

∥∥∥T1 + eiθT ∗
2

∥∥∥ = ω
([

O T1

T2 O

])
.

The organization of the subsequent sections will be as follows. In the first part,
we show a Cauchy-Schwarz-type inequality for the Hadamard product, where we show
that

|〈(T1T2 ◦T3T4)x,y〉| �
√〈(

|T2|2 ◦ |T4|2
)

x,x
〉〈(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)y,y
〉
,

where T1,T2,T3,T4 ∈ B(H) and x,y ∈ H . This will be employed to demonstrate some
simpler forms with some further applications. For example, it is shown that the operator

matrix

[
|T2|2 ◦ |T4|2 T1T2 ◦T3T4

T ∗
2 T ∗

1 ◦T ∗
4 T ∗

3 |T ∗
1 |2 ◦

∣∣T ∗
3

∣∣2
]

is positive in B(H⊕H). After that, the above

Cauchy-Schwarz inequality discusses possible bounds for the singular values of certain
matrix forms involving the Hadamard product. This discussion will lead to the relation

‖ℜ(A◦B)‖ � sec2θ ‖ℜA◦ℜB‖,

where A,B ∈ Sθ . Then, numerical radius bounds are studied, and interestingly, as an
application, we strengthen the above inequality by removing the factor sec2 θ for the
class of accretive-dissipative operators.
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2. Main results

2.1. Cauchy-Schwarz type inequalities

In this subsection, we present several inequalities that can be considered of the
Cauchy-Schwarz type for the Hadamard product. Applications of the obtained inequal-
ities on singular values and numerical radii will follow. We remind the reader of the
celebrated inequalities [15], known as the mixed Cauchy-Schwarz inequality, which
states

|〈Ax,y〉|2 �
〈
|A|2(1−t)x,x

〉〈
|A∗|2ty,y

〉
, (6)

where A ∈ B(H) and 0 � t � 1. In what follows, we prove a mixed Cauchy-Schwarz
inequality for the Hadamard product.

THEOREM 1. Let T1,T2,T3,T4 ∈ B(H) . Then for any x,y ∈ H ,

|〈(T1T2 ◦T3T4)x,y〉| �
√〈(

|T2|2 ◦ |T4|2
)

x,x
〉〈(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)y,y
〉
.

Proof. Let x,y ∈ H . By the Cauchy-Schwarz inequality, the relation (1) and
Lemma 1, we have

|〈(T1T2 ◦T3T4)x,y〉| = |〈U∗ (T1T2⊗T3T4)Ux,y〉|
= |〈U∗ (T1 ⊗T3)(T2⊗T4)Ux,y〉|
= |〈(T2⊗T4)Ux,(T ∗

1 ⊗T ∗
3 )Uy〉|

� ‖(T2⊗T4)Ux‖‖(T ∗
1 ⊗T ∗

3 )Uy‖

=
√〈

U∗|T2 ⊗T4|2Ux,x
〉〈

U∗∣∣T ∗
1 ⊗T ∗

3

∣∣2Uy,y
〉

=
√〈

U∗
(
|T2|2⊗|T4|2

)
Ux,x

〉〈
U∗

(∣∣T ∗
1

∣∣2⊗ ∣∣T ∗
3

∣∣2)Uy,y
〉

=
√〈(

|T2|2 ◦ |T4|2
)

x,x
〉〈(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)y,y
〉
,

as required. �

COROLLARY 2. Let A,B ∈ B(H) and let 0 � t � 1 . Then for any x,y ∈ H ,

|〈(A◦B)x,y〉| �
√〈(

|A|2t ◦ |B|2(1−t)
)

x,x
〉〈(

|A∗|2(1−t) ◦ |B∗|2t
)

y,y
〉
. (7)

In particular,

|〈(A◦B)x,y〉| �
√
〈(|A| ◦ |B|)x,x〉 〈(|A∗| ◦ |B∗|)y,y〉

and

|〈(A◦B)x,y〉| �
√〈(

1 ◦ |B|2
)

x,x
〉〈(

|A∗|2 ◦ 1
)

y,y
〉
.
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Proof. Let A =V1 |A| and B =V2 |B| be the polar decompositions of A and B , re-
spectively. Letting T1 =V1|A|1−t , T2 = |A|t , T3 =V2|B|t , and T4 = |B|1−t , in Theorem
1, we deduce the desired result. �

REMARK 1. Letting x = y = ei , in Theorem 1, we infer that

|〈(T1T2 ◦T3T4)ei,ei〉| �
√〈(

|T2|2 ◦ |T4|2
)

ei,ei

〉〈(∣∣T ∗
1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)ei,ei

〉
=

√〈((
|T2|2 ◦ |T4|2

)
◦
(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2))
ei,ei

〉
.

Now Theorem 1, together with Lemma 2, implies the following result, which
presents a new positive operator matrix involving the Hadamard product.

COROLLARY 3. Let T1,T2,T3,T4 ∈ B(H) . Then

[
|T2|2 ◦ |T4|2 T1T2 ◦T3T4

T ∗
2 T ∗

1 ◦T ∗
4 T ∗

3 |T ∗
1 |2 ◦

∣∣T ∗
3

∣∣2
]

is

a positive operator in B(H⊕H).

We recall that when A,B ∈ B(H) are positive, and 0 � t � 1, the quantity
1
2

(
AtB1−t +A1−tBt

)
, which represents the Heinz means for A and B , has received

significant attention in the literature, due to its relation with other operator means. The
reader is referred to [7, 10, 19, 17, 23] for some work treating this quantity and to [6]
for treating this quantity when the Hadamard product replaces the usual product. In the
following result, we present an upper bound for ℜ(A ◦B) in terms of a quantity that
simulates the above Heinz quantity.

THEOREM 2. Let A,B ∈ B(H) and let 0 � t � 1 . Then

ℜ(A◦B) � |A|2t ◦ |B|2(1−t) + |A∗|2(1−t) ◦ |B∗|2t
2

.

Proof. Implementing the arithmetic-geometric mean inequality, it follows from
(7) that

〈ℜ(A◦B)x,x〉 = ℜ〈(A◦B)x,x〉
� |〈(A◦B)x,x〉|

�
√〈(

|A|2t ◦ |B|2(1−t)
)

x,x
〉〈(

|A∗|2(1−t) ◦ |B∗|2t
)

x,x
〉

� 1
2

〈(
|A|2t ◦ |B|2(1−t) + |A∗|2(1−t) ◦ |B∗|2t

)
x,x

〉
.

This implies the desired result. �

We have the following result as a direct consequence of Theorem 2.
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COROLLARY 4. Let A,B ∈ B(H) . Then

ℜ(A◦B) � |A| ◦ |B|+ |A∗| ◦ |B∗|
2

.

In particular, if A,B are two normal operators, then

ℜ(A◦B) � |A| ◦ |B| .

Notice that using the results in [9], we can also get several bounds for |ℜ(A◦B)|
in terms of |A| ◦ |B| and |A∗| ◦ |B∗| .

2.2. Singular value bounds

In this subsection, we present some bounds for the singular values of operator
forms that involve the Hadamard product. We recall, here, that if T1,T2 ∈ K(H) , then
[27, Theorem 1.6]

s j(T1T2) � ‖T1‖s j(T2) and s j(T1T2) � ‖T2‖s j(T1), j = 1,2, . . . . (8)

This clearly extends the sub-multiplicative property of the operator norm. The above
inequalities together imply that if T1,T2,T3 ∈ K(H) , then [13, p. 27].

s j(T1T2T3) � ‖T1‖ ‖T3‖s j(T2), j = 1,2, . . . .

For up-to-date discussion regarding singular value bounds, the reader may refer to [2,
3, 21, 30].

THEOREM 3. Let T1,T2,T3,T4 ∈ K(H) . Then for j = 1,2, . . . ,

s j (T1T2 ◦T3T4) �
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2

s
1
2
j

(
|T2|2 ◦ |T4|2

)
.

Proof. If we take supremum over unit vectors y ∈ H in Theorem 2, we obtain, for
all unit vectors x ∈ H,

‖(T1T2 ◦T3T4)x‖ �
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2
〈(

|T2|2 ◦ |T4|2
)

x,x
〉 1

2

�
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2
∥∥∥(

|T2|2 ◦ |T4|2
)

x
∥∥∥ 1

2

where the second inequality is obtained via the Cauchy-Schwarz inequality. That is,

‖(T1T2 ◦T3T4)x‖ �
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2
∥∥∥(

|T2|2 ◦ |T4|2
)

x
∥∥∥ 1

2
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for all unit vectors x ∈ H . Thus, Lemma 3 implies

s j (T1T2 ◦T3T4) = max
dimM= j

min
x∈M
‖x‖=1

‖(T1T2 ◦T3T4)x‖

�
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2

max
dimM= j

min
x∈M
‖x‖=1

∥∥∥(
|T2|2 ◦ |T4|2

)
x
∥∥∥ 1

2

=
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2

⎛⎜⎝ max
dimM= j

min
x∈M
‖x‖=1

∥∥∥(
|T2|2 ◦ |T4|2

)
x
∥∥∥
⎞⎟⎠

1
2

=
∥∥∥|T ∗

1 |2 ◦ |T ∗
3 |2

∥∥∥ 1
2

s
1
2
j

(
|T2|2 ◦ |T4|2

)
,

as required. �

COROLLARY 5. Let A,B ∈ K(H) and let 0 � t � 1 . Then for j = 1,2, . . . ,

s j (A◦B) �
∥∥∥|A∗|2(1−t) ◦ |B∗|2t

∥∥∥ 1
2

s
1
2
j

(
|A|2t ◦ |B|2(1−t)

)
.

Proof. Let A = U |A| and B = V |B| be the polar decompositions of A and B ,
respectively. Letting T1 =U |A|1−t , T2 = |A|t , T3 =V |B|t , and T4 = |B|1−t , in Theorem
3, we deduce the desired result. �

REMARK 2. We notice that Corollary 5 gives a possible extension of (8) to the
Hadamard product. For example, when t = 1

2 , we obtain

s j(A◦B) � ‖|A∗| ◦ |B∗|‖ 1
2 s

1
2
j (|A| ◦ |B|).

In particular,
‖A◦B‖�

√
‖ |A∗| ◦ |B∗| ‖‖ |A| ◦ |B| ‖. (9)

In [29, (19)], it has been shown that if A,B ∈ Mn , then

‖A◦B‖2 � 1
2

(‖AA∗ ◦BB∗‖+‖AB∗ ◦BA∗‖) . (10)

Now we give two examples to show that (9) and (10) are not comparable, in general.

For this, let A =
[
[−1 −1

0 0

]
and B =

[
0 1
0 0

]
. Then direct numerical calculations show

that

‖ |A∗| ◦ |B∗| ‖‖ |A| ◦ |B| ‖ = 1 and
1
2

(‖AA∗ ◦BB∗‖+‖AB∗ ◦BA∗‖) = 1.5,

showing that (9) is better than (10) in this example.
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On the other hand, letting A =
[

0 −1
−1 1

]
and B =

[−1 0
0 0

]
shows that

‖ |A∗| ◦ |B∗| ‖‖ |A| ◦ |B| ‖ = 0.8 and
1
2

(‖AA∗ ◦BB∗‖+‖AB∗ ◦BA∗‖) = 0.5,

which indicates that (10) is better than (9) for this choice. Thus, neither (9) nor (10) is
uniformly better than the other.

The inequality in Remark 2, in the matrix case, is also a consequence of [8, Corol-
lary 2.7], which states that

|Φ(Z)| � Φ
(
|Z∗|1+p

)
�Φ

(
|Z∗|1−p

)
for all 2-positive linear map Φ , and all real numbers p . With Z = A⊗B , p = 0, and
Φ being the compression map extracting A◦B , we derive easily, for j,k = 0,1, . . .

s2
1+ j+k (A◦B) � s1+ j (|A∗| ◦ |B∗|)s1+k (|A| ◦ |B|) .

COROLLARY 6. Let A ∈ K(H) and let 0 � t � 1 . Then for j = 1,2, . . . ,

s j (A◦A∗) �
∥∥∥|A∗|2(1−t) ◦ |A|2t

∥∥∥ 1
2

s
1
2
j

(
|A|2t ◦ |A∗|2(1−t)

)
.

In particular,

s j (A◦A∗) � ‖A‖ s
1
2
j

(
|A|2t ◦ |A∗|2(1−t)

)
.

Proof. The first inequality follows from Corollary 5 by putting B = A∗ . The
second inequality is obtained from the following observations, where we use (1) and
Lemma 1, ∥∥∥|A∗|2(1−t) ◦ |A|2t

∥∥∥ =
∥∥∥U∗

(
|A∗|2(1−t)⊗|A|2t

)
U

∥∥∥
�

∥∥∥|A∗|2(1−t)⊗|A|2t
∥∥∥

=
∥∥∥|A∗|2(1−t)

∥∥∥∥∥∥|A|2t∥∥∥
= ‖ |A∗| ‖2(1−t)‖ |A| ‖2t

= ‖A‖2 . �

On the other hand, singular value bounds for sums of products have been well-
studied in the literature. Below, we present such bound for the Hadamard product.

THEOREM 4. Let T1,T2,T3,T4 ∈ K(H) and let 0 � t � 1 . Then for j = 1,2, . . . ,

s j ((T1 ◦T2)± (T3 ◦T4))

�
∥∥∥(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

+
(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ 1
2
s

1
2
j

×
((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
.
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Proof. Let x,y ∈ H . We have

|〈((T1 ◦T2)+ (T3 ◦T4))x,y〉|
= |〈(T1 ◦T2)x,y〉+ 〈(T3 ◦T4)x,y〉|
� |〈(T1 ◦T2)x,y〉|+ |〈(T3 ◦T4)x,y〉|

(by the triangle inequality)

�
√〈(

|T1|2t ◦ |T2|2(1−t)
)

x,x
〉〈(∣∣T ∗

1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)y,y
〉

+
√〈(

|T3|2t ◦ |T4|2(1−t)
)

x,x
〉〈(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t)y,y
〉

(by (7))

�
(〈(

|T1|2t ◦ |T2|2(1−t)
)

x,x
〉

+
〈(

|T3|2t ◦ |T4|2(1−t)
)

x,x
〉) 1

2

×
(〈(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

y,y
〉

+
〈(

|T ∗
3 |2(1−t) ◦ |T ∗

4 |2t
)

y,y
〉) 1

2

(by the Cauchy-Schwarz inequality)

=
√〈((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
x,x

〉
×

√〈((∣∣T ∗
1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t))
y,y

〉
.

That is,

|〈((T1 ◦T2)+ (T3 ◦T4))x,y〉|

�
√〈((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
x,x

〉
×

√〈((∣∣T ∗
1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t))
y,y

〉
.

(11)

If we take supremum over unit vectors y ∈ H , in the above inequality, we obtain

‖((T1 ◦T2)+ (T3 ◦T4))x‖

�
∥∥∥(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

+
(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ 1
2

×
∥∥∥((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
x
∥∥∥ 1

2
.
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Consequently, using Lemma 3,

s j ((T1 ◦T2)+ (T3 ◦T4))
= max

dimM= j
min
x∈M
‖x‖=1

‖((T1 ◦T2)+ (T3 ◦T4))x‖

�
∥∥∥(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

+
(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ 1
2

× max
dimM= j

min
x∈M
‖x‖=1

∥∥∥((
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

))
x
∥∥∥ 1

2

=
∥∥∥(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

+
(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ 1
2

×

⎛⎜⎝ max
dimM= j

min
x∈M
‖x‖=1

∥∥∥((
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

))
x
∥∥∥
⎞⎟⎠

1
2

=
∥∥∥(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

+
(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ 1
2
s

1
2
j

×
((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
.

Namely,
s j ((T1 ◦T2)+ (T3 ◦T4))

�
∥∥∥(

|T ∗
1 |2(1−t) ◦ |T ∗

2 |2t
)

+
(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ 1
2
s

1
2
j

×
((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
.

Now by replacing T3 and T4 by iT3 and iT4 , respectively, we deduce the desired re-
sult. �

Theorem 4 may be used to obtain the following upper bound for the singular values
of the real and imaginary parts of the Hadamard product.

COROLLARY 7. Let A,B ∈ K(H) and let 0 � t � 1 . Then for j = 1,2, . . . ,

s j (ℜ(A◦B))

�
∥∥∥(

|ℜA|2(1−t) ◦ |ℜB|2t
)

+
(
|ℑA|2(1−t) ◦ |ℑB|2t

)∥∥∥ 1
2
s

1
2
j

×
((

|ℜA|2t ◦ |ℜB|2(1−t)
)

+
(
|ℑA|2t ◦ |ℑB|2(1−t)

))
,

and
s j (ℑ(A◦B))

�
∥∥∥(

|ℑA|2(1−t) ◦ |ℜB|2t
)

+
(
|ℜA|2(1−t) ◦ |ℑB|2t

)∥∥∥ 1
2
s

1
2
j

×
((

|ℑA|2t ◦ |ℜB|2(1−t)
)

+
(
|ℜA|2t ◦ |ℑB|2(1−t)

))
.
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Proof. Letting T1 = ℜA , T2 = ℜB , T3 = ℑA , and T4 = ℑB , in Theorem 4, we
have by (2) that

s j (ℜ(A◦B))
= s j ((ℜA◦ℜB)− (ℑA◦ℑB))

�
∥∥∥(

|ℜA|2(1−t) ◦ |ℜB|2t
)

+
(
|ℑA|2(1−t) ◦ |ℑB|2t

)∥∥∥ 1
2
s

1
2
j

×
((

|ℜA|2t ◦ |ℜB|2(1−t)
)

+
(
|ℑA|2t ◦ |ℑB|2(1−t)

))
.

Letting T1 = ℑA , T2 = ℜB , T3 = ℜA , and T4 = ℑB , in Theorem 4, we have by (3) that

s j (ℑ(A◦B))
= s j ((ℑA◦ℜB)+ (ℜA◦ℑB))

�
∥∥∥(

|ℑA|2(1−t) ◦ |ℜB|2t
)

+
(
|ℜA|2(1−t) ◦ |ℑB|2t

)∥∥∥ 1
2
s

1
2
j

×
((

|ℑA|2t ◦ |ℜB|2(1−t)
)

+
(
|ℜA|2t ◦ |ℑB|2(1−t)

))
.

This completes the proof. �

COROLLARY 8. Let A,B∈K(H)∩Sθ for some θ ∈ [
0, π

2

)
. Then for j = 1,2, . . . ,

s j (ℜ(A◦B)) � sec2θ ‖ℜA◦ℜB‖ 1
2 s

1
2
j (ℜA◦ℜB).

Proof. We have by Corollary 7 and the definition of Sθ that

s j (ℜ(A◦B))

� ‖(ℜA◦ℜB)+ (ℑA◦ℑB)‖ 1
2 s

1
2
j ((ℜA◦ℜB)+ (ℑA◦ℑB))

�
(
1+ tan2θ

)‖ℜA◦ℜB‖ 1
2 s

1
2
j (ℜA◦ℜB)

= sec2θ ‖ℜA◦ℜB‖ 1
2 s

1
2
j (ℜA◦ℜB) ,

as required. �

This entails the following bound, which tells that the real part is sub-multiplicative
on the class of sectorial matrices up to a certain constant that depends on the sector.

COROLLARY 9. Let A,B ∈ K(H)∩Sθ . Then

‖ℜ(A◦B)‖ � sec2θ ‖ℜA◦ℜB‖.
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2.3. Numerical radius bounds

In this subsection, we present some bounds for the numerical radius of the Hadamard
product.

THEOREM 5. Let T1,T2,T3,T4 ∈ B(H) . Then

ω (T1T2 ◦T3T4) �
√∥∥∥|T2|2 ◦ |T4|2

∥∥∥ ∥∥∥∣∣T ∗
1

∣∣2 ◦ ∣∣T ∗
3

∣∣2∥∥∥.

and

ω (T1T2 ◦T3T4) � 1
2

∥∥∥(
|T2|2 ◦ |T4|2

)
+

(
|T ∗

1 |2 ◦ |T ∗
3 |2

)∥∥∥ .

Proof. For the first inequality, let x ∈ H be a unit vector. It follows from Theorem
1 that

|〈(T1T2 ◦T3T4)x,x〉| �
√〈(

|T2|2 ◦ |T4|2
)

x,x
〉〈(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)x,x
〉

�
√∥∥∥(

|T2|2 ◦ |T4|2
)

x
∥∥∥ ∥∥∥(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)x
∥∥∥

�
√∥∥∥|T2|2 ◦ |T4|2

∥∥∥ ∥∥∥∣∣T ∗
1

∣∣2 ◦ ∣∣T ∗
3

∣∣2∥∥∥.

That is,

|〈(T1T2 ◦T3T4)x,x〉| �
√∥∥∥|T2|2 ◦ |T4|2

∥∥∥ ∥∥∥∣∣T ∗
1

∣∣2 ◦ ∣∣T ∗
3

∣∣2∥∥∥.

We deduce the desired result after taking supremum over all unit vectors x ∈ H .
The second inequality follows from the following observation

|〈(T1T2 ◦T3T4)x,x〉| �
√〈(

|T2|2 ◦ |T4|2
)

x,x
〉〈(∣∣T ∗

1

∣∣2 ◦ ∣∣T ∗
3

∣∣2)x,x
〉

� 1
2

(〈(
|T2|2 ◦ |T4|2

)
x,x

〉
+

〈(
|T ∗

1 |2 ◦ |T ∗
3 |2

)
x,x

〉)
(by the arithmetic-geometric mean inequality)

=
1
2

〈((
|T2|2 ◦ |T4|2

)
+

(
|T ∗

1 |2 ◦ |T ∗
3 |2

))
x,x

〉
� 1

2

∥∥∥(
|T2|2 ◦ |T4|2

)
+

(
|T ∗

1 |2 ◦ |T ∗
3 |2

)∥∥∥ .

That is,

|〈(T1T2 ◦T3T4)x,x〉| � 1
2

∥∥∥(
|T2|2 ◦ |T4|2

)
+

(
|T ∗

1 |2 ◦ |T ∗
3 |2

)∥∥∥ .

We conclude the desired result after taking supremum over all unit vectors x ∈ H . �
This entails the following simple bound for the Hadamard product of two opera-

tors.
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COROLLARY 10. Let A,B ∈ B(H) and let 0 � t � 1 . Then

ω (A◦B) �
√∥∥∥|A|2t ◦ |B|2(1−t)

∥∥∥ ∥∥∥|A∗|2(1−t) ◦ |B∗|2t
∥∥∥

and

ω (A◦B) � 1
2

∥∥∥|A|2t ◦ |B|2(1−t) + |A∗|2(1−t) ◦ |B∗|2t
∥∥∥ .

Proof. Let A = U |A| and B = V |B| be the polar decompositions of A and B ,
respectively. Letting T1 =U |A|1−t , T2 = |A|t , T3 =V |B|t , and T4 = |B|1−t , in Theorem
5, we deduce the desired result. �

THEOREM 6. Let T1,T2,T3,T4 ∈ B(H) and let 0 � t � 1 . Then

ω ((T1 ◦T2)+(T3 ◦T4))

� 1
2

∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)
+

(
|T ∗

1 |2(1−t) ◦ |T ∗
2 |2t

)
+

(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ .

Proof. It follows from (11) that

|〈((T1 ◦T2)+ (T3 ◦T4))x,x〉|

�
√〈((

|T1|2t ◦ |T2|2(1−t)
)

+
(
|T3|2t ◦ |T4|2(1−t)

))
x,x

〉
×

√〈((∣∣T ∗
1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t))
x,x

〉
� 1

2

〈((
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)
+

(
|T ∗

1 |2(1−t) ◦ |T ∗
2 |2t

)
+

(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

))
x,x

〉
� 1

2

∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)
+

(
|T ∗

1 |2(1−t) ◦ |T ∗
2 |2t

)
+

(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ .

Thus, we have shown that

|〈((T1 ◦T2)+ (T3 ◦T4))x,x〉|
� 1

2

∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)
+

(
|T ∗

1 |2(1−t) ◦ |T ∗
2 |2t

)
+

(
|T ∗

3 |2(1−t) ◦ |T ∗
4 |2t

)∥∥∥ ,

which implies the expected result after taking supremum over all unit vectors x ∈
H . �



NEW INEQUALITIES FOR THE HADAMARD PRODUCT 235

COROLLARY 11. Let A,B ∈ B(H) and let 0 � t � 1 . Then

‖ℜ(A◦B)‖ � 1
2

∥∥∥(
|ℜA|2t ◦ |ℜB|2(1−t)

)
+

(
|ℑA|2t ◦ |ℑB|2(1−t)

)
+

(
|ℜA|2(1−t) ◦ |ℜB|2t

)
+

(
|ℑA|2(1−t) ◦ |ℑB|2t

)∥∥∥ .

In particular,
‖ℜ(A◦B)‖ � ‖(|ℜA| ◦ |ℜB|)+ (|ℑA| ◦ |ℑB|)‖ .

Proof. Letting T1 = ℜA , T2 = ℜB , T3 = ℑA , and T4 = ℑB , in Theorem 6, we
have by (2) that

‖ℜ(A◦B)‖ = ω (ℜ(A◦B))
= ω ((ℜA◦ℜB)+ (ℑA◦ℑB))

� 1
2

∥∥∥(
|ℜA|2t ◦ |ℜB|2(1−t)

)
+

(
|ℑA|2t ◦ |ℑB|2(1−t)

)
+

(
|ℜA|2(1−t) ◦ |ℜB|2t

)
+

(
|ℑA|2(1−t) ◦ |ℑB|2t

)∥∥∥ ,

as required. �

We have seen in Corollary 9 how the real part can be sub-multiplicative over the
Hadamard product, up to a certain constant, when dealing with sectorial matrices. In
the following, we show a stronger result for the class of accretive-dissipative operators.

COROLLARY 12. Let A,B ∈ B(H) be two accretive-dissipative operators. Then

‖ℜ(A◦B)‖ � ‖ℜA◦ℜB‖ .

We conclude this work by presenting upper bounds for the numerical and spectral
radius of operator matrices involving the Hadamard product.

THEOREM 7. Let T1,T2,T3,T4 ∈ B(H) and let 0 � t � 1 . Then

ω
([

O T1 ◦T2
T ∗
3 ◦T ∗

4 O

])
� 1

2

√∥∥∥(∣∣T ∗
1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t)∥∥∥
×

√∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)∥∥∥.

Proof. It follows from Theorem 4 that

‖(T1 ◦T2)+(T3 ◦T4)‖ �
√∥∥∥(∣∣T ∗

1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t)∥∥∥
×

√∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)∥∥∥.
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If we replace T3 by eiθ T3 , we infer that

∥∥∥(T1 ◦T2)+eiθ (T3 ◦T4)
∥∥∥ �

√∥∥∥(∣∣T ∗
1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t)∥∥∥
×

√∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)∥∥∥.

Consequently,

ω
([

O T1 ◦T2
T ∗
3 ◦T ∗

4 O

])
= ω

([
O T1 ◦T2

(T3 ◦T4)
∗ O

])
=

1
2

sup
θ∈R

∥∥∥(T1 ◦T2)+eiθ (T3 ◦T4)
∥∥∥

� 1
2

√∥∥∥(∣∣T ∗
1

∣∣2(1−t) ◦ ∣∣T ∗
2

∣∣2t)+
(∣∣T ∗

3

∣∣2(1−t) ◦ ∣∣T ∗
4

∣∣2t)∥∥∥
×

√∥∥∥(
|T1|2t ◦ |T2|2(1−t)

)
+

(
|T3|2t ◦ |T4|2(1−t)

)∥∥∥,

where we have used Lemma 3 to obtain the last equality. This completes the proof. �

THEOREM 8. For j = 1,2 , let Ai j,Bi j ∈ B(H) , and let A =
[
A11 A12

A21 A22

]
and B =[

B11 B12

B21 B22

]
. Then

r (A◦B) � 1
2

(
ω (A11 ◦B11)+ω (A22 ◦B22)

+
√

(ω (A11 ◦B11)−ω (A22 ◦B22))
2 +4‖A12 ◦B12‖‖A21 ◦B21‖

)
,

where r(·) denotes the spectral radius.

Proof. Employing [1, Lemma 2.1], one can write

r (A◦B) = r

([
A11 A12
A21 A22

]
◦
[
B11 B12
B21 B22

])
= r

([
A11 ◦B11 A12 ◦B12
A21 ◦B21 A22 ◦B22

])
� ω

([
A11 ◦B11 A12 ◦B12
A21 ◦B21 A22 ◦B22

])
� 1

2

(
ω (A11 ◦B11)+ω (A22 ◦B22)

+
√

(ω (A11 ◦B11)−ω (A22 ◦B22))
2 +4‖A12 ◦B12‖‖A21 ◦B21‖

)
,

as required. �
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