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HARDY-HILBERT TYPE INEQUALITIES ON
HOMOGENEOUS GROUPS-AN INTRODUCTION
AND GENERALIZATION TO THE KERNEL CASE
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(Communicated by S. Varosanec)

Abstract. There is a lot of information available concerning Hardy-Hilbert type inequalities in
one or more dimensions. In this paper we introduce the development of such inequalities on
homogeneous groups. Moreover, we point out a unification of several of the Hardy-Hilbert type
inequalities in the classical case to a general kernel case. Finally, we generalize these results to
the homogeneous group case.

1. Introduction

First, let us recall the well-known classical Hilbert’s integral inequality.
If f and g are measurable real-valued functions such that f, g € L?(0,), then
the following inequality

/()N/Ooo%g}(jy)dxdy<n</:f2(x)dx>l/2 (/:gz(y)dy>l/27 (1)

holds, where the constant factor 7 in (1) is the best possible (see [15]).

Hilbert worked mostly with the discrete version of (1), see his 1906 paper [6]. The
proof of the sharp constant 7 as well as the integral version (1) was derived by Schur in
1911 (see [16]). Later, in 1925, Hardy proved an extension of inequality (1) as follows
(see [4]):

THEOREM A. If p>1, gq=p/(p—1), f(x) >0 and g(x) > 0 are such that
f€LP(0,00) and g € L1(0,00), then the inequality
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holds. Moreover, the constant factor in (2) is the best possible (see also [5],

T
sin(7t/p)
[9], [12] and the references therein).

From the history it is known that the main motivation for Hardy to begin the study,
which was finalized in 1925 his famous sharp inequality (see [3])

[ [ row) e (G25) [T reoas o,

was to find an easy proof of Hilbert’s inequality (1). For these reasons the inequality
(2) is called the Hardy-Hilbert inequality.

It has after that been an almost unbelievable development of what is called Hardy-
type inequalities. For this more than 100 years of development we refer to the books
[9], [14] and the references therein. We also refer to the recent review paper [13].

It has not been the same intensive development of the Hardy-Hilbert type inequal-
ities. However, it has especially during recent years been an increasing interest also in
this case and several results dealing with numerous variants, generalizations and exten-
sions have appeared in the literature, see [5], [8], [10], [11], [16], [17], [18] and the
references therein. There is now a large number of results generalizing (2) by replacing
the kernel k(x,y) = 1/(x+y) with some other kernels with similar homogeneity prop-
erties. In several cases such results are referred to as Hardy-Hilbert’s type inequalities.

The main aim of this paper is to initiate the development of Hardy-Hilbert type
inequalities on a homogeneous group G equipped with a quasi-norm |-|. For this
introduction we have chosen the following two results from the literature mentioned
above:

THEOREM B. Let p>1, g=p/(p—1), and let f and g be nonnegative mea-
surable functions such that f € LP(0,00) and g € L1(0,0). Then, the Hilbert integral
inequality (2) holds if and only if the following integral inequality holds:

([( 1) o) g (L) o

For a much more general such equivalence result we refer to [9, Lemma 7.69].

THEOREM C. Ifp>1, k>1, +— k—l———l and A >0, f and g are non-

m

negative functions such that 0 < fmxp 1P (x)dx < o0 and 0 < I yal ~h)-1 g4(y)dy
< oo, then we have

//fl+y dxdy
<7LST(’—H)</O 1P (x) )1/1’</ ¥ ”’_lqy)dy>l/q,

“4)
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where the constant factor is the best possible.

T
Asin(r/m)

In Section 4 of this paper we rewrite (4) in an equivalent form, so that it is known
from the general theory (see [10] and the books [7], [9] and c.f. also [5] which shows
that already Hardy was aware of this more general idea). We claim that several results
in the literature can be put to this general frame, see our Section 4 especially Theorem
3.

The organization and main results of this paper can be described as follows: In
order not to disturb our discussions later on we present some preliminaries on homo-
geneous groups in Section 2. In Section 3 we generalize and unify Theorems A — C in
this homogeneous group frame (see Theorems 1 and Proposition 1). We also point out
how our Theorem 1 reads in R” on a form we believe is also new (see Corollary 1).
To be able to put Proposition 1 (and similar generalizations) to a more general kernel
frame we use Section 4 to present, unify and slightly generalize the classical theory to
this general kernel case. Our main Theorem is summarized in Theorem 3. Inspired
by this theory in Section 5 we generalize also our Hardy-Hilbert theory on homoge-
neous groups to a general kernel case. The main results are given in Theorems 4, 5 and
Corollary 3.

2. Preliminaries

In this section, we recall the basics of homogeneous groups. For further reading
on homogeneous groups and other inequalities on homogeneous groups, we refer to the
monographs [1], [2], [14] and references therein.

A Lie group G (identified with (RV,0)) is called a homogeneous group if it is
equipped with a dilation mapping

D, RN RN 1>0,
defined as
D) (x) = (A" x1,Axp, .., A™Nxn), vi,va,..., vy >0,

which is an automorphism of the group G for each A > 0. Here and in the sequel, we
will denote the image of x € G under D; by A(x) or, simply Ax. The homogeneous
dimension Q of a homogeneous Lie group G is defined by

O=vit+wvn+--+w.

It is well known that a homogeneous group is necessarily nilpotent and unimodular.
There are different particular examples of homogeneous groups such as the Euclidean
space R (in which case Q = N), the Heisenberg group, as well as general stratified
groups (homogeneous Carnot groups) and graded groups.

The Haar measure dx on G is nothing but the Lebesgue measure on RV .

Let us denote the volume of a measurable set @ C G by |®|. Then we have the
following consequences: for A > 0

ID;(0)] = A%\0| and /G F(Ax)dy = A2 /G F(x)dr. 5)
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DEFINITION 1. A quasi-norm on a homogeneous group G is any continuous
function |- | : G — [0,0) satisfying the following conditions:

() |x| =[x forall xe G
(ii) |[Ax|=Alx| forall xe G and A >0
(iii) |x]=0<=x=0.

Before we finish this section, we need to mention the following polar decompo-
sition on a homogeneous group G since it plays an important role in the proofs of our
main results, see e.g. [14, Proposition 1.2.10]

LEMMA 1. Let

S={xeG:x|=1}CG

be the unit sphere with respect to the quasi-norm | -|. Then there is a unique Radon
measure 6 on & such that for all f € L'(G),
[reae= [ [ 1) do ©
G 0 J&

Here and in the sequel, we use the following notations. A quasi-ball in the homo-
geneous group G with radius |x|, x € G, and centered at the origin will be denoted by
B(0,]x]). We denote the surface measure of the unit sphere S in G by |&].

The Haar measure of the quasi-ball B(0,|x|) denoted by |B(0, |x|)|, can be calcu-
lated by using polar decomposition (6) as

W 18|
_ _ 0-1 _ 0
|B(0, |x|)| = /13(07\x\)dy_/() r </6 dG(t)) dr= 0 |x|%. (7

3. Some introductory Hardy-Hilbert type inequalities on homogeneous groups

Our first main result is the following unification and generalization of Theorems
A and B:

THEOREM 1. Let G be a homogeneous group with the homogeneous dimension
O equipped with a quasi-norm |-|. Let p>1, q=p/(p—1), and let f and g be non-
negative and measurable functions on G. Moreover, assume that F = F(r) € LP(0,00)

and G = G(s) € L1(0, 00) where

F(r) —rl’ /frxdG()andG( —sq /gsydO'() (8)
Then, the following Hardy-Hilbert type inequality holds:

|x| Va lyl 1/p
/GIXI+|y| (B(o,x)|) (W) dxdy

Sm </ 0 >I/P (/Ggq(y)dy>l/q. )
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Moreover, the following integral inequalities hold and they are both equivalent to

(9):
i@ (VN )
(/G (A; x+y<B<o,x>|) d") B(O,y>|dy>
1/p (10)
17
SlIl </f ) ,
and
8(v) bl Y\ %
(@(/wa(mo,yn) dy) B0, |x|>d"> "

1/q
(o)
sm

T
The constant SQi is sharp in all inequalities (9)—(11).

in(r/p)

Proof. By using polar decomposition (6) and (7) on a homogeneous group G, we

have
. 1 1/
r= LT \xmy\ <|B<|>||x|>> q<|B<oy,|y|>> a

= — 7dd
\G\/o /0 rts o

where F(r) and G(s) are defined by (8). Then, by Hardy-Hilbert’s inequality (2),
Jensen’s inequality and again (6), we obtain that

I %L </ o )1/17 (/:G’i(s)ds)l/q
:Q|G|@</O o1 (E/Gf(rx)dc(x))pdry/p
([ (g L g(sy)da@))qu)l/q
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Q|6|@ (L (g forrimaot) d’>w

X (/()st1 (%/ g”(sy)dff(y)> dS>l/q
Sm (/ fPx )W (/Ggq(y)dy>1/q~

orn
sin(7/p)

from the sharpness of the constant in (2) and Jensen’s inequality.
Next we assume that (9) holds and use it with

W (b NN b\
”:(/fow(mwl) dx) (o)

Then we find that

(x) R
/«;,(/@ xf+y<B<o,x>|) dx) Fopm Y
W N bl )Y
/ / \xmy\ <|BO|x|>> (B<ofy>|) ey
1 1
Sm ( / fP(x ) v ( /@ g”(y)dy> .

v @ (b NN 1
</ e ) l/<f;</«slx{+|y|(3<o7x>|) dx) mdy} ’

and since 1 —1/g = 1/p we conclude that (10) holds.
Conversely, we assume that (10) holds. Then, by Holder’s inequality,

x| la ly| 1/p
/G|x|+|y| (B(O,x)|) (ﬁ) dxdy

b\ s i\
—/ <<|B0y|y|)) /@xf+y<B(0,x>l) dx>dy

1/ . . 1/ P 1/p
< (L) VG </G b (metmn) qu> |B<<|>},)||y|>dy]
oy (o) (Lewa)

17

Therefore, (9) holds and the sharpness of the constant in (9) is guaranteed
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so (9) holds. The proof of the equivalence between (9) and (11) can be done analo-
gously. But, simply, the equivalence between the inequalities (10) and (11) follows by
changing notations and use the symmetry (e.g. that 11—7 + é =1 so sin(%) = sin(%)).
The proof is complete. []

COROLLARY 1. Let p>1, g=p/(p—1) and let f and g be nonnegative and
measurable functions on R", n € Z, such that f € LP(R") and g € L1(R"). Then,
the following Hardy-Hilbert type inequality holds:

7| |04 y) 1 dxdy
/n R [x] 4yl

o ni n/2 1/p d 1/q
sin % T(§ +1)< ) (/ g y) '

Moreover, the following integral inequalities hold and are equivalent to (12):

(L i ) et o)

12)

(13)
and
) (1) 17 YVa  on /2 )1/tl
d "dx < — 9(y)d .
(L (Lo nt ey "I ey o
(14)
nn n/2
The constant m is sharp in all three inequalities (12)—(14).

I' =T'(x) denotes the usual Gamma function in Corollary 1.

Proof. Use Theorem 1 for the case when G = R" so that Q = n and B(0, |x|)
stands for the volume of a ball with radius |x|. Therefore, it is known that in this case

n.n/2
FE )

So the calculation of the sharp constant only consist of some standard calculations. [

B(0,|x[) =

e[

REMARK 1. Note that the “kernel”

!y
x| + 1]
in (12) is homogeneous of degree —n so it also follows from the general theory that
(12) holds with some constant but with our technique we also get the sharp constant
l’lTC n/2
sinZ F( +1)°
we explaln more in detail in next two sections. See also the books [7] and [9].

The equivalence of (12)—(14) follows also from standard arguments
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By using the technique above in the proof of (9) we can make a similar generaliza-
tion of several Hardy-Hilbert type inequalities in the literature with other kernels k(x,y)
than the classical Hilbert kernel k(x,y) = 1/(x+y). As one example with the kernel
1/(x* +y*) in (4) we can generalize Theorem C as follows:

PROPOSITION 1. Let G be a homogeneous group with the homogeneous dimen-
sion Q equipped with a quasi-norm |-|. If p>1, k> 1, i =1z —|— - =1, and

A>0, fand g are nonnegative functions such that 0 < fo r“’(1 b- 1F“’( )dr < oo
and 0 <[5 s - 'G(s)ds < oo, then the inequality

()g(y) RS A N N
/G/@flf|$|l<|3<o,|x|>> <B<ofy>|) ey

1/p X 1/q (15)
Ty (L ttyrwae) (b toma)
/l sin ( G
orn
holds, where F(r) and G(s) are defined by (8). Moreover, the constant factor Tosin (2/0)

in (15) is the best possible.

The proof of Proposition 1 is analogous to that of Theorem 1 but guided by the the-
ory in the classical case (see Section 4), we choose another strategy namely to directly
generalize Hardy-Hilbert theory to the general kernel case so for example Proposition
1 (and other similar generalizations of classical results) are just special cases of our
general result. In the next section we present the motivation for this strategy.

4. On the general kernel case: the classical situation

By a kernel we mean a positive and measurable function k(x,y) on Ry x R, we
say that the kernel is homogeneous of order A if

k(ax,ay) = alk(x,y), x,yeR,, a>0.

The kernels of order —1 are of particular importance for the general theory. For such
kernels we define the constant

Cl’;:/ k(17y)y_%dy:/ k(x7l)x_$dx, (16)
0 0

1 1
where p>1, —4+—-=1.
p

The following Theorem is known (see [9, Theorem 7.48]):

THEOREM 2. Let the kernel k(x,y) satisfy (16) and p > 1. Then the inequality

/ (/ k(o) f y> dxgc/()wfl’(x)dx (17)
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holds for all positive and measurable functions on R if and only if CI’; < eo. Moreover,
the sharp constant in (17) is C = (C,)".

REMARK 2. A simple proof of Theorem 2 can be found in [10], but the result was
known before, see [5, Theorem 319] and even in multidimensional cases in the works
of N. Karapetiants and S. Samko (see their book [7] and the references therein).

EXAMPLE 1. In Theorem C we replace x”(!"%)~!fP(x) by fP(x) and
yall= ! g9(y) by g4(y) and we find that (4) can equ1valently be written as

—1+4+1 y A+l

/ / I +y f(x)g(y) dxdy

7Lsm Asin (L) (/ Frx )l/p (/Owgq(y)dyy/q.

1’!

Al Al
PR Ny

Hence, since the kernel k(x,y) = is obviously homogeneous

A A
x*+y
of degree —1 we can conclude that Theorem C is a simple special case of Theorem 2.

Another important remark is:

REMARK 3. By using a standard dilation argument we see that among homoge-
neous kernels k(x,y) (17) can never hold for any A # —1 so the condition A = —1 in
Theorem 2 is also necessary. See [9, Remark 7.68].

Another useful equivalence result holds for all kernels.

1 1
LEMMA 2. Let p>1, —+—=1, C >0 and k(x,y) be a general kernel. Then
P q

the following inequalities are equivalent:

b </(’Mk(x’y>f(x>dx) <o | e (19)
b (/0“’ el )qu <ot [ g)ay 20)

Proof. For the proof of the equivalence between (18) and (19) see Lemma 7.69
in [9]. The proof of the equivalence of (18) and (20) is similar but for the reader’s
convenience we give the details:
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Let (20) hold. Then, by Holder’s inequality

ni= | } / " k() F()g(y)dxdy

<([(] °°k<x7y>g<y>dy)qu) % (/ wf”(X)dX);
<C (/Owgq(y)dyf (/wap(X)dX)%

so inequality (18) holds. Conversely, assume that (18) holds and apply it with

flx) = (/Omk(x,y)g(y)dy>q_1 eLr.

Then, by using (18)

I = /ON (/Omk(x,y)g(y)dy)qu
<c ( (] weonar) (ql)pdx> % (f °°g‘f<y>dy)‘l’

=C11% (/Omgq(y)dy)q,

1 1
s0 (20) holds because 1 — — = —. The proof is complete. []
P 9

Summing up our investigations above we have the following equivalence Theorem
connected to Hardy-Hilbert type inequalities with kernels.

THEOREM 3. Let p > 1, the kernel k(x,y) be homogeneous of order —1 and the
constant CI’; be defined by (16). Then the following four statements are equivalent

(1) The constant C;; < oo,

(2) The Hardy-Hilbert type inequality (18) holds.
(3) The inequality (19) holds.

(4) The inequality (20) holds.

Moreover, the constant C; is sharp in all of (18)—(20).

OPEN QUESTION 1. Find necessary and sufficient conditions on a general kernel
k(x,y) so that the Hardy-Hilbert type inequality (18) (and, thus, the equivalent inequal-
ity (19) and (20)) holds.
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REMARK 4. For the case with homogeneous kernels we have a satisfactory an-
swer in our Theorem 3 combined with Remark 3.

Guided by the investigations in this section we shall finalize this paper by inves-
tigating the corresponding theory also in the homogeneous group situation also in this
most general kernel situation.

5. The general kernel case: the homogeneous group situation

In this case, by a kernel we mean a non-negative function k(|x|,[y|) on G x G.
We say that the kernel is homogeneous of order A if

k(alx|,aly) = a*k(xl.bl), xyeC, a>0.

First we state the following Lemma we need later on but which is also of independent
interest:

LEMMA 3. Let k(|x|,|y|) be a homogeneous kernel of degree —Q on G x G. If

1 1
p>1, —+—=1, then
P g

Qo Qo
k1| 5 d :/kx7l o §dr.
LRl Fdy= [ ke D

Proof. Let k(]x|,|y|) be a homogeneous kernel of degree —Q on G x G. Then,
using polar decomposition (6), we have that

LD Fdv= [ [ k(1,950 a0(E)ds
G 0 S
:/ /k(l/s,l)s’l’Q/l’dG(é)ds. 1)
0 S
Let r = 1/s. Then, from (21), we have that
LB P ay= [ [ K102 ao(E)ar
G 0 S
= [ Kl 1)l
G

This completes the proof. [

The kernels of order —Q is of particular importance for the general theory. For
such kernels we define the constant (c.f. Lemma 3)

. o 0
Cy= [ KL dy = [ k(. D~ a @2)

11
where p>1, —+—-=1.
P 4

Our first main result in this section is the following generalization of Theorem 2:
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THEOREM 4. Let the kernel k(|x|,|y|) satisfy (22) and p > 1. Then the inequality

(L(Lasbbroa) a) <c([rma)” o

holds for all positive and measurable functions f on G if and only if
C <. (24)

Moreover, the sharp constant in (23) is C = C;;.

Proof. Sufficiency. Suppose that (24) holds. By Jensen’s inequality and then Fu-
bini’s theorem, we have that

p
[, (L broar) o
G \JG
P
I 2 A A L 0-1,-0/p ,0/p 0-1
-)" /6<C;/0 J K60 00 018N (E)ar | 10 do(m)ar
# Pl Q/q ¢p -0/q
<@ [ ([ Kb )y ) i -2lnas
— (c*\P! -0/q 0/q ¢p
(€)™ [ ([ ks bbb 2rar) b2y
@) [ (L rxlat @ar) r)ey
_ *\ P P
(C) /G () dy, 25)
so that (23) follows from (24) and (25). Moreover, the best constant C in (23) satisfies

c<C.

Necessity. To prove that (23) implies (24), we define the test function f by

£ =10 P 0y (1),

for B > 0. Then, the right hand side of (23) becomes

(Lrrea)” = ([ [ougaoear)”
- (/IM/Grlﬁl’dG(é)dr>l/p

_ @)1/17 e
(ﬁp ' (20)
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On the other hand, the left hand side of (23) becomes

1
p P
(L (frlbhroiar) o)
G \J/G
1
w [ peo oo p »
= ||"*7 </ (/ P k()2 P (s) dS) d”) -
0 0 ’
By using the sharpness in Holder’s inequality, we have
» 1
p
(f Lkl bhroiar) o)
= ‘G‘HL / /wrQl’lk 1,S)s 17%7[3111(r)dsdr
HWH *1
> \6|1+5/0 /1 r?k(r,s)sQ_l_F_ﬁl//(r)dsdr =1, 27

1
for w(r) = (Bp)7 r~ 17V gy oy where L1 =1,
Next we use Fubini’s theorem and obtain that

I = ‘G‘Ur% (ﬁp)é /Nr%*ﬁ(l’*l)*lfQ </Nk<l75> SQ717%7ﬁ ds) dr
1 1 r
=18 gt [ ot ([ Trane ) ar
1 7

R e e I
0 max {1,

1

L(Bp)e [ 0-1-2- 1\ P7
:GH’—/ k(1,215 - dr. 28
ot e [ kLo (max {1, 28)

Hence, by using (26)—(28) together with (23), we can conclude that

I 0 1 —Bp
\G\/ k(1,0)2" 7 ﬁ(max{l,;}) dt < C < oo, (29)
0

Thus, by letting B — 0T in (29) and using the Fatou’s lemma, we see that (24) holds
and even

C;<C<oo.

The proof is complete including the fact that C = Cj, is the sharp constant in (23). [J

Next, we point out the following Euclidean version (G = R) of the above theorem
(c.f. Theorem 2):
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COROLLARY 2. Let the kernel k(|x|,|y|) be homogeneous of order —1 satisfy
e _1 *° _1
C;;:2/0 k(1,s)s l’ds:2/0 k(r,1)r adr, (30)
1 _

where p > 1, 117 7= 1. Then the inequality

(/R (/Rk(l)chlyl)f(y)dyydx)% <C</pr(x)dx); 31)

holds for all positive and measurable functions f on R if and only if C}; < oo. More-
over, the sharp constant in (31) is C = C?,, where C; is defined in (30).

Next we state the following useful equivalence result of independent interest which
holds for all kernels:

1 1
LEMMA 4. Let p>1, —+— =1, C be a constant, 0 < C < e, and k(x,y) be a

general kernel. Then the following inequalities are equivalent:

//kxy )dxdy<C</fP )l</(;gq(y)dy)i o
/. ( L. k(x,y)f(x)dx) < [ o)
/(/kxy dy) dX<Cq/g (34)

Proof. Suppose that (32) holds. Let g(y) = (g k(x,y)f(x)dx)?~". Then, by
Holder’s inequality we have that

[ ([rnsen)s= [ [ o
SC(/Gfp(x)dxy (/Gg"(y)dyf
=C</Gf”(x)dx>'l’ (/G (/Gk(x,y)f(x)dxydy)‘l’,

so (33) holds because 1 — Ll] = %. Similarly, one can show that (32) implies (34).
Conversely, assume that (34) holds. Then, by Holder’s inequality and (34), we have

//kxy y)dxdy < (/ (/kxy )quy(l/gfp(x)dx)%
<C</Gg‘1(y)dy)a (/Gf”(X)dX)E,
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so the inequality (32) holds. Similarly we can prove that (33) implies (32) so the proof
is complete. [

Finally, by just combining Theorem 4 with Lemma 4 we obtain the following
generalization of the equivalence Theorem 5, which connects Hardy-type and Hardy-
Hilbert type inequalities with general kernels:

1 1
THEOREM 5. Let p > 1, —+ — =1, the kernel k(|x|,|y|) be homogeneous of
P 4

order —Q and the constant C,, be defined by (22). Then the following four statements
are equivalent:

(i) The constant C,, < eo.

(ii) The Hardy-Hilbert type inequality

[ LKl s gy < (/ o) )(/G g%y)dyf (35)

holds for some finite constant C > 0.

(iii) The Hardy-type inequality

[ ([tirea) ar<cr [ mwas o

holds for the same finite constant C > 0.

(iv) The inequality

[ ([ bheo) as<cr [ o o7

holds for the same finite constant C > 0.
Moreover, the constant C = C;; is sharp in all of (35)—(37).
Proof. By using a similar arguments as in the proof of Theorem 4 and Lemma 4
we finish the proof, so we omit the details. The proof is complete. [

In particular, we present the following Euclidean version which is also new in this
generality:

1 1
COROLLARY 3. Let p > 1, —+ — =1, the kernel k(|x|,|y|) be homogeneous of

P q
order —n and the constant C,, be defined by (22). Then the following four statements
are equivalent:

(i) The constant C;; < oo,
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(ii) The Hardy-Hilbert type inequality

L Kl b g)dsdy < c( i f”(x)dx); ( I gﬂf(y)dy)‘l’ (38)

holds for some finite constant C > 0.

(iii) The Hardy-type inequality

/Rn (/R k(|x|, |y|)f(X)dX)pdy <cP s £7(x)dx (39)

holds for the same finite constant C > 0.

(iv) The inequality

q
[ ([ bheoiar) avs e [ e (@0)
R \JR" R"

holds for the same finite constant C > 0.

Moreover, the constant C = C;; is sharp in all of (38)—(40).
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