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ZYGMUND–TYPE INTEGRAL INEQUALITIES

FOR POLYNOMIALS NOT VANISHING IN A DISC

GRADIMIR V. MILOVANOVIĆ ∗ , ABDULLAH MIR AND ASHIQ HUSSAIN BHAT

(Communicated by I. Perić)

Abstract. The study of inequalities in various norms for polynomials and their derivatives in
the plane is fundamental to geometric function theory. This paper focuses on Zygmund-type
norm estimates for polynomials that do not vanish in a positive-radius disc. We establish integral
norm estimates for the growth of higher-order derivatives of a polynomial in the plane, includ-
ing extensions of several important inequalities of approximation theory and related inequalities
established by Jain [Turk. J. Math. 31 (2007), 89–94].

1. Introduction

Let Pn denote the class of all complex polynomials P(z) = ∑n
j=0 a jz j of de-

gree n , and let P′(z) be its derivative. For any polynomial P ∈ Pn , we set M(P,R) :=
max
|z|=R

|P(z)| , the uniform norm of P on the disc |z| = R , R > 0, and m := min
|z|=k

|P(z)| .
The integral norm of P over the unit disc |z| = 1 is expressed as

||P||γ :=
(

1
2π

∫ 2π

0
|P(eiθ )|γ dθ

)1/γ
,

for any γ > 0 and 0 � θ < 2π . According to a well-known result in analysis [20], it
holds that:

lim
γ→∞

(
1
2π

∫ 2π

0
|P(eiθ )|γ dθ

)1/γ
:= ||P||∞,

where

||P||∞ = max
|z|=1

|P(z)|.

The study of comparison inequalities that relate the norm of polynomials on a disc is a
well-known topic in analysis, particularly due to its numerous applications in geometric
function theory. Bernstein-type inequalities relating norm estimates, which generalize
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classical estimates for polynomials, are the most familiar in the study (see, for example,
[1], [8], [9], [14], [16]). These inequalities are important in the literature for proving
the inverse theorems in approximation theory and, of course, have their own intrinsic
interest. These inequalities exist for various norms and for many classes of functions,
such as polynomials with various constraints and on various regions of the complex
plane. If P ∈ Pn , then

||P′||∞ � n||P||∞ (1.1)

and for every γ � 1,
||P′||γ � n||P||γ . (1.2)

Inequality (1.1) is a classical result by Bernstein [5], while as its integral norm ana-
logue in the form of inequality (1.2) was established by Zygmund in [21] for all trigono-
metric polynomials of degree n , not just for those of the form P(eiθ ) . The inequalities
(1.1) and (1.2) demonstrate how quickly a polynomial of degree n or its derivative can
change, which is crucial in approximation theory. Since the establishment of these in-
equalities, a large number of papers on polynomial approximation theory have been
published. These works rapidly advanced the theory of extremal problems of analytic
functions, particularly polynomials, as well as its implications in other fields. In [4],
Arestov showed that the inequality (1.2) remains true for 0 < γ < 1 as well. Taking
the limit as γ → ∞ in (1.2) yields inequality (1.1). Inequalities (1.1) and (1.2) can be
strengthened for polynomials without zeros inside the unit disc |z| = 1. Specifically, if
P(z) �= 0 in |z| < 1, then inequalities (1.1) and (1.2) can be replaced by:

||P′||∞ � n
2
||P||∞ (1.3)

and
||P′||γ � n

||1+ z||γ
||P||γ . (1.4)

Erdős first proposed inequality (1.3), which was later confirmed by Lax in [15],
whereas inequality (1.4) was found out by De-Bruijn in [7] for γ � 1. Rahman and
Schmeisser in [19] extended the validity of inequality (1.4) to the range 0 < γ < 1.
Taking the limit as γ → ∞ in (1.4) yields inequality (1.3).

As a generalization of (1.3) Malik in [17] proved that if P ∈ Pn and P(z) �= 0 in
|z| < k , k � 1, then

||P′||∞ � n
1+ k

||P||∞,

whereas under the same hypothesis, Govil and Rahman in [19] extended this inequality
by showing that

||P′||γ � n
||k+ z||γ

||P||γ , γ � 1.

It was shown by Gardner and Weems in [10] that the last inequality also holds for
0 < γ < 1.

Govil and Rahman in [11] generalized Malik’s inequality [17] in a different direc-
tion and proved that if P ∈ Pn and P(z) �= 0 in |z| < k , k � 1 and 1 � s < n , then

||P(s)||∞ � n(n−1) · · ·(n− s+1)
1+ ks ||P||∞. (1.5)
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As an extension of the inequality (1.5), Aziz and Shah in [3] proved that if P ∈ Pn

and P(z) �= 0 in |z| < k , k � 1, then for 1 � s < n and for each γ > 0,

||P(s)||γ � n(n−1) · · ·(n− s+1)
||ks + z||γ

||P||γ . (1.6)

Under the same hypothesis, Aziz and Rather in [2] refined inequality (1.6) using the
coefficients of the polynomial P(z) in the form of the following inequality:

||P(s)||γ � n(n−1) · · ·(n− s+1)
||δ (k,s)+ z||γ

||P||γ , (1.7)

where δ (k,s) is defined as

δ (k,s) =
C(n,s)|a0|ks+1 + |as|k2s

C(n,s)|a0|+ |as|ks+1 , C(n,s) =
(

n
s

)
. (1.8)

As a consequence of the maximum modulus principle, the following inequality
holds for any polynomial P ∈ Pn and for each R � 1:

M(P,R) � Rn||P||∞, (1.9)

with equality holds for P(z) = λ zn .
Hardy in [12] established the following integral mean extension of (1.9), for each

R � 1, we have
||P(Rz)||γ � Rn||P||γ , γ > 0. (1.10)

As a generalization of the aforementioned inequality of Malik [17], Dewan and Bid-
kham in [6] proved that if P∈Pn and P(z) �= 0 in |z|< k , k � 1, then for 0 < r � R � k ,

M(P′,R) � n(R+ k)n−1

(r+ k)n M(P,r). (1.11)

Jain in [13] established the following result for 0 � s < n and 1 � R � k when
generalizing (1.11) (for r = 1) to the sth derivative of the polynomial under the same
assumptions:

M(P(s),R) � 1
Rs + ks

[{
ds

dxs (1+ xn)
}

x=1

](
R+ k
1+ k

)n

||P||∞. (1.12)

Mir in [18] extended and refined (1.12) by involving the coefficients of the polyno-
mial P(z) . He proved that if P ∈ Pn and P(z) �= 0 in |z| < k , k > 0, then for 0 � s < n
and 0 < r � R � k ,

M(P(s),R) � C(n,s)|a0|R+ |as|ks+1

C(n,s)
(
ks+1 +Rs+1

)|a0|+
(
ks+1Rs + k2sR

)|as|

×
[{

ds

dxs (1+ xn)
}

x=1

](
R+ k
r+ k

)n

M(p,r). (1.13)
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In the same paper [18] and under the same hypothesis, Mir improved (1.13) by deriving
the following inequality applicable for 1 � s < n and 0 < r � R � k :

M(P(s),R) � C(n,s)(|a0|−m)R+ |as|ks+1

C(n,s)
(
ks+1 +Rs+1

)
(|a0|−m)+

(
ks+1Rs + k2sR

)|as|

×
[{

ds

dxs (1+ xn)
}

x=1

](
R+ k
r+ k

)n

(M(p,r)−m) . (1.14)

Given the importance of the problem in approximation theory of determining the
growth of analytic functions with respect to various norms, particularly polynomials,
it is natural to investigate integral norm estimates for these functions. This paper es-
tablishes various Lγ -norm inequalities of Zygmund-type for polynomials not vanishing
in a positive radius disc. The obtained results will include various generalizations and
refinements of the aforementioned inequalities, as well as other related inequalities.

2. Main results

Without loss of generality, we use the following notations in our results:

S0 =
C(n,s)|a0|ks+1 + |as|k2sR

C(n,s)|a0|Rs+1 + |as|ks+1Rs , S1 =
C(n,s)|a0|ks+1 + |as|k2sR
C(n,s)|a0|R+ |as|ks+1

S2 =
C(n,s)(|a0|− |δ |m)ks+1 + |as|k2sR
C(n,s)(|a0|− |δ |m)R+ |as|ks+1 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

as well as

F(r) ≡ F(r,n,s) =
{

ds

dxs (1+ xn)
}

x=r
=

⎧⎪⎨
⎪⎩

1+ rn, s = 0,

rn−ss!

(
n
s

)
, 1 � s � n.

(2.2)

Note that S0 = S1/Rs and for δ = 0, S1 = S2 .
We begin with a generalization of (1.7), which further generalizes and refines re-

lated results.

THEOREM 1. If P ∈ Pn and P(z) �= 0 in |z| < k , k � 1 , then for 1 � R � k , for
each γ > 0 and 1 � s < n,

||P(s)(Rz)||γ � F(R)
||S0 + z||γ ||P||γ , (2.3)

where S0 and F are defined in (2.1) and (2.2), respectively.

REMARK 1. For R = 1 in (2.3), we get (1.7).

The following result immediately follows by taking the limit γ → ∞ in (2.3).
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COROLLARY 1. If P ∈ Pn and P(z) �= 0 in |z| < k , k � 1 , then for 1 � R � k
and 1 � s < n,

M(P(s),R) � F(R)
S0 +1

||P||∞. (2.4)

If we take R = 1 in (2.4), we get the following refinement of (1.5) and note that it
was also established by Aziz and Rather [2].

COROLLARY 2. If P ∈ Pn and P(z) �= 0 in |z| < k , k � 1 , then for 1 � s < n,

||P(s)||∞ � F(1)
δ (k,s)+1

||P||∞,

where δ (k,s) is defined as in (1.8).

REMARK 2. If P(z) �= 0 in |z|< k , k > 0, the polynomial P(Rz) �= 0 in |z|� k/R ,
k/R � 1, 0 < R � k . Hence applying inequality (3.2) of Lemma 1 (stated in next
section) to P(Rz) , we get for 0 � s < n ,

1
C(n,s)

∣∣∣∣ as

a0

∣∣∣∣Rs
(

k
R

)s

� 1,

i.e., ∣∣∣∣ as

a0

∣∣∣∣ks � C(n,s). (2.5)

Also k � R , therefore ∣∣∣∣ as

a0

∣∣∣∣ks(k−R) � (k−R)C(n,s),

which implies

C(n,s)R+
∣∣∣∣as

a0

∣∣∣∣ks+1 � R

∣∣∣∣ as

a0

∣∣∣∣ks +C(n,s)k.

This gives S1 � ks , i.e., S1/Rs � (k/R)s , which gives

1
1+S1/Rs � 1

1+(k/R)s .

As k/R � 1, therefore the previous inequality implies for every γ > 0,

1∥∥∥z+
S1

Rs

∥∥∥
γ

� 1∥∥∥z+
( k

R

)s∥∥∥
γ

.

Equivalently,
1

||Rsz+S1||γ
� 1

||Rsz+ ks||γ
, γ > 0. (2.6)
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Inequality (2.6) is also equivalent to

1
||S0 + z||γ

� Rs

||Rsz+ ks||γ
, γ > 0, (2.7)

where S0 and S1 are as defined in (2.1).

Using (2.7) in (2.3), we get the following extension of (1.6).

COROLLARY 3. If P ∈ Pn and P(z) �= 0 in |z| < k , k � 1 , then for 1 � R � k ,
for each γ > 0 and 1 � s < n,

||P(s)(Rz)||γ � RsF(1)
||Rsz+ ks||γ ||P||γ . (2.8)

REMARK 3. It is evident that (1.6) is a special case of (2.8), when R = 1.

Making γ → ∞ in (2.8), we get the following generalization of (1.5).

COROLLARY 4. If P ∈ Pn and P(z) �= 0 in |z| < k, k � 1 , then for 1 � R � k
and 1 � s < n,

M(P(s),R) � RsF(1)
Rs + ks ||P||∞. (2.9)

REMARK 4. By taking R = 1 in (2.9), we get (1.5).

Next, we establish the following integral analogue of (1.13), and it also generalizes
the other related results as well.

THEOREM 2. If P ∈ Pn and P(z) �= 0 in |z| < k, k > 0 , then for 0 � s < n,
0 < r � R � k and for each γ > 0 ,

||P(s)(Rz)||γ � F(1)
||Rsz+S1||γ

(
R+ k
r+ k

)n

||P(rz)||γ . (2.10)

where S1 and F are defined in (2.1) and (2.2), respectively.

REMARK 5. Making the limit as γ → ∞ in (2.10), we get (1.13).

Using (2.6) of Remark 2, the following result is a direct consequence of Theo-
rem 2. It generalizes (1.11) and reflects the integral mean extension of a result due to
Mir ([18], Corollary 1.3).

COROLLARY 5. If P ∈ Pn and P(z) �= 0 in |z| < k, k > 0 , then for 0 � s < n,
0 < r � R � k , and for each γ > 0 ,

||P(s)(Rz)||γ � F(1)
||Rsz+ ks||γ

(
R+ k
r+ k

)n

||p(rz)||γ . (2.11)
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REMARK 6. By taking the limit as γ → ∞ in (2.11), we get a result of Mir [18,
Corollary 1.3]. In addition to this, if we take s = 1, it reduces to (1.11).

Taking s = 0 in (2.11), we get the following result.

COROLLARY 6. If P ∈ Pn and P(z) �= 0 in |z|< k , k > 0 , then for 0 < r � R � k
and for each γ > 0 ,

||P(Rz)||γ � 2
||1+ z||γ

(
R+ k
r+ k

)n

||P(rz)||γ .

Finally, we prove the following theorem which gives a generalization of Theorem2
and also represents the integral analogue of (1.14).

THEOREM 3. If P ∈ Pn and P(z) �= 0 in |z| < k, k > 0 , then for 1 � s < n,
0 < r � R � k , for every complex number δ with |δ | � 1 and for each γ > 0 ,

||P(s)(Rz)||γ � F(1)
||Rsz+S2||γ

(
R+ k
r+ k

)n

||P(rz)− δm||γ , (2.12)

where S2 and F are defined in (2.1) and (2.2), respectively.

Letting γ → ∞ in (2.12), we get the following result:

COROLLARY 7. If P ∈ Pn and P(z) �= 0 in |z| < k , k > 0 , then for 1 � s < n,
0 < r � R � k , and for every complex number δ with |δ | � 1 ,

M(P(s),R) � F(1)
Rs +S2

(
R+ k
r+ k

)n

||P(rz)− δm||∞. (2.13)

REMARK 7. Suppose z0 on |z| = 1 be such that

max
|z|=1

|P(rz)− δm| = |P(rz0)− δm|. (2.14)

We can write

|P(rz0)− δm|=
∣∣∣|P(rz0)|eiθ0 −|δ |eiθm

∣∣∣
=

∣∣∣|P(rz0)|− |δ |ei(θ−θ0)m
∣∣∣ .

On choosing the argument of δ as θ = θ0 gives

|P(rz0)− δm| = ||P(rz0)|− |δ |m| . (2.15)

Since |δ | � 1, therefore
|P(rz0)| � m � |δ |m,
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which on using in (2.15) gives

|P(rz0)− δm|= |P(rz0)|− |δ |m. (2.16)

From (2.14) and (2.16), we get on using the fact |P(rz0)| � max
|z|=1

|P(rz)| , that

max
|z|=1

|P(rz)− δm| � max
|z|=1

|P(rz)|− |δ |m = M(P,r)−|δ |m. (2.17)

Combining (2.17) with (2.13), we arrive at the following result:

COROLLARY 8. If P ∈ Pn and P(z) �= 0 in |z| < k , k > 0 , then for 1 � s < n,
0 < r � R � k , and for every complex number δ with |δ | � 1 ,

M(P(s),R) � F(1)
Rs +S2

(
R+ k
r+ k

)n

(M(P,r)−|δ |m). (2.18)

REMARK 8. Letting |δ | → 1 in (2.18), we get (1.14) due to Mir [18].

3. Auxiliary results

To prove our results, we need the following lemmas.

LEMMA 1. If P ∈ Pn and P(z) �= 0 in |z| < k, k � 1 and Q(z) = znP(1/z) , then
for 1 � s < n and |z| = 1 ,

δ (k,s)|P(s)(z)| � |Q(s)(z)|, (3.1)

and
1

C(n,s)

∣∣∣∣ as

a0

∣∣∣∣ks � 1, (3.2)

where

δ (k,s) =
C(n,s)|a0|ks+1 + |as|k2s

C(n,s)|a0|+ |as|ks+1 .

The above lemma due to Aziz and Rather [2]. It is easy to see that (3.1) and (3.2)
holds for s = 0 as well. In the same paper, they also proved the following result.

LEMMA 2. If P ∈ Pn and Q(z) = znP(1/z) , then for each α , 0 � α < 2π and
γ > 0 ,

∫ 2π

0

∫ 2π

0

∣∣∣Q′(eiθ )+ eiαP′(eiθ )
∣∣∣γ

dθ dα � 2πnγ
∫ 2π

0
|P′(eiθ )|γ dθ . (3.3)

Using inequality (1.7) and the fact that ||1+ z||γ � 2 for γ > 0, we easily obtain
the following:
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LEMMA 3. If P ∈ Pn and P(z) �= 0 in |z| < k , k � 1 , then for 0 � s < n and for
each γ > 0 ,

||P(s)||γ � F(1)
||δ (k,s)+ z||γ

||P||γ .

LEMMA 4. If P ∈ Pn and P(z) �= 0 in |z|< k , k > 0 , then for 0 < r � R � k and
for each γ > 0 ,

||P(Rz)||γ �
(

R+ k
r+ k

)n

||P(rz)||γ .

Proof. Since P(z) has all its zeros in |z| � k > 0, we write

P(z) =
n

∏
j=1

(z− r je
iθ j),

where r j � k , j = 1,2, . . . ,n . Now, for 0 < r � R � k and 0 � θ < 2π , we have

∣∣∣∣P(Reiθ )
P(reiθ )

∣∣∣∣ =
n

∏
j=1

∣∣∣∣Reiθ − r jeiθ j

reiθ − r jeiθ j

∣∣∣∣
=

n

∏
j=1

∣∣∣∣Rei(θ−θ j)− r j

rei(θ−θ j) − r j

∣∣∣∣
�

n

∏
j=1

(
R+ k
r+ k

)
=

(
R+ k
r+ k

)n

.

Therefore, for any γ > 0, we have

|P(Reiθ )|γ =
(

R+ k
r+ k

)nγ
|P(reiθ )|γ ,

and hence

||P(Rz)||γ �
(

R+ k
r+ k

)n

||P(rz)||γ . �

4. Proofs of the main results

Proof of Theorem 1. Let f (z) = Q(z) + eiαP(z) , where Q(z) = znP(1/z) , then
F(z) is a polynomial of degree n , and we have

f (s)(z) = Q(s)(z)+ eiαP(s)(z),

which is clearly a polynomial of degree n− s , 1 � s < n .
Applying inequality (1.10) to f (s)(z) , we have for R � 1 and for each γ > 0,

∫ 2π

0

∣∣∣Q(s)(Reiθ )+ eiαP(s)(Reiθ )
∣∣∣γ

dθ � R(n−s)γ
∫ 2π

0

∣∣∣Q(s)(eiθ )+ eiαP(s)(eiθ )
∣∣∣γ

dθ .
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Applying inequality (1.2) repeatedly to the right-hand side of the above inequality
(without the factor R(n−s)γ ), it follows for each γ > 0,

∫ 2π

0

∣∣∣Q(s)(Reiθ )+ eiαP(s)(eiθ )
∣∣∣γ

dθ

� (n− s+1)γ
∫ 2π

0

∣∣∣Q(s−1)(eiθ )+ eiαP(s−1)(eiθ )
∣∣∣γ

dθ

...

� (n− s+1)γ(n− s+2)γ · · ·(n−1)γ
∫ 2π

0

∣∣∣Q′(eiθ )+ eiαP′(eiθ )
∣∣∣γ

dθ .

In this way, we obtain
∫ 2π

0

∣∣∣Q(s)(Reiθ )+ eiαP(s)(Reiθ )
∣∣∣γ

dθ

� R(n−s)γ(n− s+1)γ(n− s+2)γ · · · (n−1)γ
∫ 2π

0

∣∣∣Q′(eiθ )+ eiαP′(eiθ )
∣∣∣γ

dθ .

Integrating both sides of this inequality, with respect to α from 0 to 2π , and using
Lemma 2, we get

∫ 2π

0

∫ 2π

0

∣∣∣Q(s)(Reiθ )+ eiαP(s)(Reiθ )
∣∣∣γ

dθ dα

� R(n−s)γ(n− s+1)γ(n− s+2)γ · · · (n−1)γ
∫ 2π

0

∫ 2π

0

∣∣∣Q′(eiθ )+ eiαP′(eiθ )
∣∣∣γ

dθ dα

� 2πR(n−s)γ(n− s+1)γ(n− s+2)γ · · · (n−1)γnγ
∫ 2π

0

∣∣P(eiθ )
∣∣γ

dθ . (4.1)

Using (3.1) of Lemma 1 for the polynomial P(Rz) having no zeros in |z|< k/R , where
k/R � 1, then for 1 � s < n and |z| = 1,

S0|P(s)(Rz)| � |Q(s)(Rz)| for |z| = 1, (4.2)

where S0 is defined in (2.1). It is easy to verify that S0 � 1.
Now for all real α and t1 � t2 � 1, it can be easily verified that

∣∣t1 + eiα
∣∣ �∣∣t2 + eiα∣∣ . Observe that for all γ > 0 and a,b ∈ C such that |a| � |b|x , where x � 1,

we have ∫ 2π

0

∣∣a+ eiαb
∣∣γ

dα � |b|γ
∫ 2π

0

∣∣x+ eiα∣∣γ
dα. (4.3)

Indeed, if b = 0, the above inequality is obvious. In case b �= 0, we get
∫ 2π

0

∣∣∣1+ eiα a
b

∣∣∣γ
dα =

∫ 2π

0

∣∣∣1+ eiα
∣∣∣a
b

∣∣∣∣∣∣γ
dα

�
∫ 2π

0

∣∣∣
∣∣∣a
b

∣∣∣+ eiα
∣∣∣γ

dα

�
∫ 2π

0

∣∣x+ eiα∣∣γ dα.
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If we take a = Q(s)(Reiθ ) and b = P(s)(Reiθ ) , because |a| � |b|S0 from (4.2), then we
get from (4.3), that

∫ 2π

0

∣∣∣Q(s)(Reiθ )+ eiαP(s)(Reiθ )
∣∣∣γ

dα � |P(s)(Reiθ )|γ
∫ 2π

0

∣∣S0 + eiα∣∣γ
dα.

Integrating both sides of this inequality with respect to θ from 0 to 2π , and using in
(4.1), we conclude that

∫ 2π

0
|P(s)(Reiθ )|γ dθ

∫ 2π

0

∣∣S0 + eiα∣∣γ
dα

� 2πR(n−s)γ(n− s+1)γ(n− s+2)γ · · · (n−1)γnγ
∫ 2π

0

∣∣P(eiθ )
∣∣γ

dθ ,

which implies

{
1
2π

∫ 2π

0
|P(s)(Reiθ )|γ dθ

}1/γ{ 1
2π

∫ 2π

0

∣∣S0 + eiα∣∣γ
dα

}1/γ

� R(n−s)(n− s+1)(n− s+2) · · · (n−1)n
{

1
2π

∫ 2π

0

∣∣P(eiθ )
∣∣γ

dθ
}1/γ

,

i.e.,

{
1
2π

∫ 2π

0
|P(s)(Reiθ )|γ dθ

}1/γ
�

R(n−s)(n− s+1)(n− s+2) · · · (n−1)n ||P||γ
||S0 + z||γ ,

which is equivalent to (2.3) and this completes the proof of Theorem 1.

Proof of Theorem 2. Recall that P(z) �= 0 in |z| < k , k > 0, therefore P(Rz) �= 0
in |z| < k/R , k/R � 1. On applying Lemma 3 to P(Rz) , we have for 0 � s < n ,

Rs||P(s)(Rz)||γ � F(1)
||S0 + z||γ ||P(Rz)||γ ,

where S0 and F are defined in (2.1) and (2.2), respectively. Noting that S0 = S1/Rs ,
therefore the previous inequality implies

||P(s)(Rz)||γ � F(1)
||Rsz+S1||γ

||P(Rz)||γ ,

which in conjunction with Lemma 4 gives

||P(s)(Rz)||γ � F(1)
||Rsz+S1||γ

(
R+ k
r+ k

)n

||P(rz)||γ , (4.4)

where S1 is defined in defined in (2.1) and this completes the proof of Theorem 2. �
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Proof of Theorem 3. By hypothesis P(z) �= 0 in |z| < k , k > 0. If P(z) has a zero
on |z|= k , then m = min

|z|=k
|P(z)|= 0 and the result follows from Theorem 2 in this case.

Henceforth, we assume that all the zeros of P(z) lie in |z| > k , so that m > 0. Now

m � |P(z)| for |z| = k,

therefore if δ is any complex number such that |δ | < 1, then

|δm| < m � |P(z)| for |z| = k.

Since all the zeros of P(z) lie in |z| > k , it follows by Rouché’s theorem that all the
zeros g(z) = P(z)− δm also lie in |z| > k , k > 0. Hence the polynomial g(Rz) =
P(Rz)− δm has no zeros in |z| < k/R , k/R � 1. Applying (4.4) to g(Rz) , we have

Rs||P(s)(Rz)||γ � F(1)
||A+ z||γ

(
R+ k
r+ k

)n

||P(rz)− δm||γ ,

where

A =
C(n,s)|a0 − δm|ks+1 + |as|k2sR

C(n,s)|a0 − δm|Rs+1 + |as|ks+1Rs .

This implies

||P(s)(Rz)||γ � F(1)
||Rsz+B||γ

(
R+ k
r+ k

)n

||P(rz)− δm||γ , (4.5)

where

B =
C(n,s)|a0 − δm|ks+1 + |as|k2sR
C(n,s)|a0− δm|R+ |as|ks+1 .

Also, for every δ ∈ C , we have

|a0− δm| � |a0|− |δ |m,

and since the function

x �→ C(n,s)xks+1 + |as|k2sR
C(n,s)xR+ |as|ks+1 (x � 0)

is non-decreasing, it follows that

B =
C(n,s)|a0 − δm|ks+1 + |as|k2sR
C(n,s)|a0− δm|R+ |as|ks+1

� C(n,s)(|a0|− |δ |m)ks+1 + |as|k2sR
C(n,s)(|a0|− |δ |m)R+ |as|ks+1 = S2.

Using this inequality in (4.5), we have for 1 � s < n and 0 < r � R � k ,

||P(s)(Rz)||γ � F(1)
||Rsz+S2||γ

(
R+ k
r+ k

)n

||P(rz)− δm||γ , (4.6)
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for every complex number δ with |δ |< 1 and for every γ > 0. For δ with |δ |= 1, the
inequality (4.6) follows by continuity and this completes the proof of Theorem 3. �
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