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THREE GEOMETRIC CONSTANTS FOR TOTAL MORREY SPACES

MINGQUAN WEI ∗ , SA LI, XIAOYU LIU AND YIHAO HOU

(Communicated by S. Varošanec)

Abstract. In this paper, we calculate the von Neumann–Jordan constant, the James constant
and the Dunkl–Williams constant for total Morrey spaces. As a corollary, the aforementioned
constants for modified Morrey spaces are established.

1. Introduction

For a Banach space (X ,‖·‖) , the von Neumann–Jordan constant CNJ(X) (see [8]),
the James constant CJ(X) (see [7]), and the Dunkl–Williams constant CDW(X) (see
[3]) are given by

CNJ(X) := sup

{
‖x+ y‖2

X +‖x− y‖2
X

2
(‖x‖2

X +‖y‖2
X

) : x,y ∈ X\{0}
}

,

CJ(X) := sup{min{‖x+ y‖X,‖x− y‖X} : x,y ∈ X ,‖x‖X = ‖y‖X = 1},

CDW(X) := sup

{‖x‖X +‖y‖X

‖x− y‖X

∥∥∥∥ x
‖x‖X

− y
‖y‖X

∥∥∥∥
X

: x,y ∈ X\{0},x �= y

}
,

respectively. These constants measure the uniform nonsquareness of X . For the von
Neumann–Jordan constant CNJ(X) , it is well known that 1 �CNJ(X) � 2, and CNJ(X)
= 1 if and only if X is a Hilbert space (see [1]). It was shown in [4] that

√
2 �CJ(X) �

2, and CJ(X) =
√

2 if X is a Hilbert space. Besides, from [3], we know that 2 �
CDW(X) � 4, and that CDW(X) = 2 if and only if X is a Hilbert space.

For some concrete Banach spaces, the geometric constants can be precisely given.
For instance, the geometric constants for Lebesgue spaces and discrete Lebesgue spaces
were established in [4]. Recently, Gunawan et al. [6, 9] calculated the aforementioned
geometric constants for Morrey spaces and small Morrey spaces. In this paper, we
shall consider these three constants for total Morrey spaces, which can be seen as the
intermediate spaces between Lebesgue spaces and Morrey spaces. Now we recall the
definition of the total Morrey space Lp, , (Rn) . Let 0 < p <  , 0 �  , � n , [t]1 =
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min{1, t}, t > 0. The total Morrey space Lp, , (Rn) is the set of all locally integrable
functions f with the finite (quasi-)norm

‖ f‖Lp, , = sup
x∈Rn,t>0

[t]
− 

p
1 [1/t]


p
1 ‖ f‖Lp(B(x,t)),

where B(x, t) denotes the ball centered at x with radius t > 0. A particular case of
Lp, , (Rn) is the modified Morrey space denoted by L̃p, (Rn) = Lp, ,0 (Rn) .

It was proven in [5] that Lp, , (Rn) is a Banach space for 1 � p <  . As a
consequence, we have

CNJ(Lp, ,(Rn)) � 2, CJ(Lp, ,(Rn)) � 2, CDW(Lp, ,(Rn)) � 4

for 1 � p <  and 0 <  � n, 0 �  � n . Our aim in this paper is to establish the
precise geometric constants for total Morrey spaces. In fact, we shall prove that the
inequalities given above are exactly equalities.

2. Main result

Our main result can be stated as follows.

THEOREM 1. Let 1 � p < , 0 <  � n, 0 �  � n. Then we have CNJ(Lp, ,(Rn))
= CJ(Lp, ,(Rn)) = 2 and CDW(Lp, ,(Rn)) = 4.

Proof. We borrow some ideas from [2, 6, 9]. For sufficiently small , ∈ (0,1) ,
we define some useful functions as follows:

f (x) = (0,1) (|x|) |x|
−n

p ;

g(x) = (0,) (|x|) f (x) = (0,) (|x|) |x|
−n

p ;

h(x) = f (x)−g(x) = (,1) (|x|) |x|
−n

p ;

k(x) = − f (x)+2g(x) =
(
2(0,) (|x|)− (0,1) (|x|)

) |x| −n
p ;

l(x) = (1+  )g(x)+ (1−  )h(x) =
(
2(0,) (|x|)−  +1

)
(0,1) (|x|) |x|

−n
p .

By using the definition of total Morrey spaces, we have

‖ f‖Lp, , = sup
x∈Rn,t>0

[t]
− 

p
1 [1/t]


p
1 ‖ f‖Lp(B(x,t))

= sup
x∈Rn,t>0

(min{t,1})− 
p (min{1/t,1}) p ‖ f‖Lp(B(x,t))

= max

{
sup

x∈Rn,t�1
t−


p ‖ f‖Lp(B(x,t)), sup

x∈Rn,0<t<1
t−


p ‖ f‖Lp(B(x,t))

}
.
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Let n be the area of the unit sphere in R
n . By a simple calculation, we get

sup
x∈Rn,t�1

t−

p ‖ f‖Lp(B(x,t)) = sup

x∈Rn,t�1
t−


p

(∫
B(x,t)

(0,1) (|y|) |y|−ndy

) 1
p

=
(∫

B(0,1)
|x|−ndx

) 1
p

= 
1
p

n

(∫ 1

0
r−1dr

) 1
p

=
(n



) 1
p
,

and

sup
x∈Rn,0<t<1

t−

p ‖ f‖Lp(B(x,t)) = sup

0<t<1
t−


p

(∫
B(0,t)

|x|−ndx

) 1
p

= 
1
p

n sup
0<t<1

t−

p

(∫ t

0
r−1dr

) 1
p

=
(n



) 1
p
.

Consequently, ‖ f‖Lp, , =
(n

) 1

p . In a similar way, we obtain

sup
x∈Rn,t�1

t−

p ‖g‖Lp(B(x,t)) =

(∫
B(0,)

|x|−ndx

) 1
p

=
(n



) 1
p 


p ,

and

sup
x∈Rn,0<t<1

t−

p ‖g‖Lp(B(x,t)) = sup

0<t<1
t−


p

(∫
B(0,t)

(0,) (|x|) |x|−ndx

) 1
p

= max

{
sup

0<t<
t−


p

(∫
B(0,t)

(0,) (|x|) |x|−ndx

) 1
p

,

sup
<t<1

t−

p

(∫
B(0,t)

(0,) (|x|) |x|−ndx

) 1
p
}

= 1/p
n max

{
sup

0<t<
t−


p

(∫ t

0
r−1dr

) 1
p

, sup
<t<1

t−

p

(∫ 

0
r−1dr

) 1
p
}

= 1/p
n max

⎧⎨⎩ sup
0<t<

t−

p

(
t



) 1
p

, sup
<t<1

(
1


) 1
p (

t

) 
p

⎫⎬⎭=
(n



) 1
p
,
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which yield ‖g‖Lp, , = max

{(n

) 1

p 

p ,
(n

) 1

p

}
=
(n

) 1

p = ‖ f‖Lp, , .

For h , we have the following estimate:

‖h‖Lp, , � ‖h‖Lp(B(0,1)) =
(∫

B(0,1)
(,1) (|x|) |x|−ndx

) 1
p

= 1/p
n

(∫ 1


r−1dr

) 1
p

=
(n



) 1
p
(
1− 

) 1
p =

(
1− 

) 1
p ‖ f‖Lp, , .

Noting that |k| = | f | , we get ‖k‖Lp, , = ‖ f‖Lp, , .
As for l , we have

l(x) =
(
2(0,) (|x|)−  +1

)
(0,1) (|x|) |x|

−n
p

=

⎧⎪⎪⎨⎪⎪⎩
(1+  ) |x| −n

p , if 0 < |x| < ;

(1−  ) |x| −n
p , if  � |x| < 1;

0, if |x| � 1.

Now we calculate the total Morrey norm of l :

‖l‖Lp, , = max

{
sup

x∈Rn,t�1
t−


p ‖l‖Lp(B(x,t)), sup

x∈Rn,0<t<1
t−


p ‖l‖Lp(B(x,t))

}

= max

{(∫
B(0,1)

|l(x)|pdx

) 1
p

, sup
0<t<

t−

p

(∫
B(0,t)

|l(x)|pdx

) 1
p

,

sup
<t<1

t−

p

(∫
B(0,t)

|l(x)|pdx

) 1
p
}

=: max{I1, I2, I3} .

For I2 , there holds

sup
0<t<

t−

p

(∫
B(0,t)

|l(x)|pdx

) 1
p

= sup
0<t<

t−

p

(∫
B(0,t)

(1+  )p |x|−ndx

) 1
p

= (1+  )‖ f‖Lp, , .

For I1 , we obtain the following estimates:(∫
B(0,1)

|l(x)|pdx

) 1
p

= 1/p
n

(∫ 

0
(1+  )p r−1dr+

∫ 1


(1−  )p r−1dr

) 1
p

� 1/p
n

(∫ 1

0
(1+  )p r−1dr

) 1
p

= (1+  )
(n



) 1
p

= (1+  )‖ f‖Lp, , .
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For I3 , we have

sup
<t<1

t−

p

(∫
B(0,t)

|l(x)|pdx

) 1
p

= 1/p
n sup

<t<1
t−


p

(∫ 

0
(1+  )p r−1dr+

∫ t


(1−  )p r−1dr

) 1
p

� 1/p
n sup

<t<1
t−


p

(∫ t

0
(1+  )p r−1dr

) 1
p

= (1+  )
(n



) 1
p

= (1+  )‖ f‖Lp, , .

Combining the estimates for I1 , I2 and I3 , we get ‖l‖Lp, , = (1+  )‖ f‖Lp, , .

For the von Neumann–Jordan constant CNJ(Lp, ,(Rn)) , we have

CNJ(Lp, ,(Rn)) �
‖ f + k‖2

Lp, , +‖ f − k‖2
Lp, ,

2
(
‖ f‖2

Lp, , +‖k‖2
Lp, ,

)
=

‖2g‖2
Lp, , +‖2h‖2

Lp, ,

2
(
‖ f‖2

Lp, , +‖ f‖2
Lp, ,

)
�

‖ f‖2
Lp, , +

(
1− 

) 2
p ‖ f‖2

Lp, ,

‖ f‖2
Lp, ,

= 1+
(
1− 

) 2
p
.

Letting  → 0+ , we obtain CNJ(Lp, ,(Rn)) � 2. Since CNJ(Lp, ,(Rn)) � 2, we have
CNJ(Lp, ,(Rn)) = 2.

For the James constant CJ(Lp, ,(Rn)) , one has

CJ(Lp, ,(Rn)) � min

{∥∥∥∥ f
‖ f‖Lp, ,

+
k

‖k‖Lp, ,

∥∥∥∥
Lp, ,

,

∥∥∥∥ f
‖ f‖Lp, ,

− k
‖k‖Lp, ,

∥∥∥∥
Lp, ,

}
= min

{‖2g‖Lp, ,

‖ f‖Lp, ,
,
‖2h‖Lp, ,

‖ f‖Lp, ,

}
� min

{
2,2
(
1− 

) 1
p
}

= 2
(
1− 

) 1
p
.

By an argument similar to the estimates of CJ(Lp, ,(Rn)) , we have CJ(Lp, ,(Rn)) =
2.
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Finally, we calculate the Dunkl–Williams constant CDW(Lp, ,(Rn)) . In fact,

CDW(Lp, ,(Rn)) � ‖ f‖Lp, , +‖l‖Lp, ,

‖ f − l‖Lp, ,

∥∥∥∥ f
‖ f‖Lp, ,

− l
‖l‖Lp, ,

∥∥∥∥
Lp, ,

=
‖ f‖Lp, , +‖l‖Lp, ,

‖k‖Lp, ,

∥∥∥∥ (1+  ) f − l
(1+  )‖ f‖Lp, ,

∥∥∥∥
Lp, ,

=
‖ f‖Lp, , +‖l‖Lp, ,

‖ f‖Lp, ,
× 1

(1+  )‖ f‖Lp, ,
‖2h‖Lp, ,

� 2+ 


· 2
(1+  )‖ f‖Lp, ,

(
1− 

) 1
p ‖ f‖Lp, ,

=
4+2
1+ 

(
1− 

) 1
p
.

Letting , → 0+ , we have CDW(Lp, ,(Rn)) � 4. By virtue of CDW(Lp, ,(Rn)) � 4,
we get CDW(Lp, ,(Rn)) = 4. The proof is completed. �

By taking  = 0 in Theorem 1, we obtain the von Neumann–Jordan constant,
the James constant and the Dunkl–Williams constant for the modified Morrey space
L̃p, (Rn) .

COROLLARY 1. Let 1 � p <, 0 <  � n. Then CNJ(L̃p, (Rn)) =CJ(L̃p, (Rn))
= 2, CDW(L̃p, (Rn)) = 4 .

REMARK 1. Recall that a Banach space X with a norm ‖ · ‖X is uniformly non-
square if and only if there exists a  > 0 such that

min{‖x+ y‖X ,‖x− y‖X} � 2(1−  )

for all x,y ∈ X with ‖x‖X = ‖y‖X = 1. It then follows from the definition of the
James constant and CJ

(
Lp, ,(Rn)

)
= 2 that the total Morrey space Lp, ,(Rn) is not

uniformly non-square, and hence not uniformly convex (see [7]) for 1 � p < ,0 <
 � n,0 �  � n .
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