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POSITIVE DEFINITE MATRIX–VALUED KERNELS AND THEIR

SCALAR VALUED PROJECTIONS: COUNTEREXAMPLES

JEAN CARLO GUELLA

(Communicated by S. Varošanec)

Abstract. In this paper we show that the strictly positive definite matrix valued isotropic kernels
in the circle and the dot product kernels in Euclidean spaces are not well behaved with respect
to its scalar valued projections. We generalize the counterexamples that we obtained to an ab-
stract setting by using the concepts of unitarily invariant kernels and adjointly invariant kernels,
provided the existence of an aperiodic invariant function.

1. Introduction

A matrix valued kernel K : X ×X → M�(C) is positive definite if for every finite
quantity of distinct points x1,x2, . . . ,xn in X and vectors v1,v2, . . . ,vn ∈ C� , we have

n


i, j=1

〈K(xi,x j)vi,v j〉 � 0.

In addition, if the above inequalities are strict whenever at least one of the vectors vi is
nonzero, then the kernel is termed strictly positive definite.

When � = 1, the previous definition is the standard notion of a positive definite and
strictly positive definite kernel. A very simple connection between the matrix valued
and the scalar valued cases is obtained by the scalar valued projections of the kernel,
which are the scalar valued kernels Kv : X ×X → C , v ∈ C� \ {0} , given by

Kv(x,y) = 〈K(x,y)v,v〉, x,y ∈ X . (1)

If the matrix valued kernel K : X×X →M�(C) is a positive definite (strictly), then
all of its scalar valued projections kernels are positive definite (strictly). Indeed, for
distinct points x1,x2, . . . ,xn in X , scalars c1,c2, . . . ,cn ∈ C and a vector v ∈ C� \ {0} ,
we have that

n


i, j=1

cic jKv(xi,x j) =
n


i, j=1

〈K(xi,x j)civi,c jv j〉 � 0.
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Additionally, if K is strictly positive definite then Kv is strictly positive definite as well
because for 1 � i � n all vectors civi would be zero, but this can only occur if all scalars
ci , 1 � i � n , are zero.

However, the converse of this property is not true in general. For instance, given
two functions f : X → R and h : X → R , all scalar valued projections of the kernel

K(x,y) =
(

2 f (x) f (y) f (x)h(y)+h(x) f (y)
f (x)h(y)+h(x) f (y) 2h(x)h(y)

)
,

are positive definite. Suitable choice of the functions f and h lead to a counterexample,
like f (x1) = 1, f (x2) = 1, h(x1) = 1 and h(x2) = 2, for arbitrary distinct points x1,x2

in X . Note that if the set X has a topology for which the space real valued continuous
functions defined on X , that is C(X ,R) , has dimension at least two, the above method
generates a counterexample for the converse of the scalar valued projections when the
kernel K is continuous.

However, several important classes of kernels are well behaved with respect its the
scalar valued projections, precisely, that the fact that all scalar valued projections of a
matrix valued kernel are positive definite (strictly) is equivalent that the matrix valued
kernel is positive definite (strictly).

Below, we present several of those classes and describe which ones are well be-
haved with respect to its scalar valued projections:

(1) Isotropic kernels in real spheres X = Sd , the unit sphere in Rd+1 , K contin-
uous and also isotropic in the sense that

K(Qx,Qy) = K(x,y), x,y ∈ Sd, Q ∈ O(d +1),

where O(d +1) is the set of all orthogonal transformations on Rd+1 . The characteriza-
tion of the positive definite scalar valued kernels fulfilling this conditionwas achieved in
[27], while the strictly positive definite case was proved in [9] (d � 2) and [21] (d = 1).
The positive definite matrix valued case traces back to [33], while the strictly positive
definite case was proved in [17] except for the case d = 1, which remained open. Ex-
cept for the strictly positive definite kernels in S1 , all of them are well behaved with
respect to the scalar valued projections.

There is also the limiting case, of kernels defined on S , the unit sphere of an
infinity dimensional real Hilbert space, K is continuous and the isotropy is the invari-
ance of the kernel for all linear isometries in it. The previous references contain the
analysis for this case and it is well behaved with respect to the scalar valued projections
property.

(2) Isotropic kernels in two-point compact homogeneous spaces X = Md , where
Md is a compact connected two point homogeneous space, but not a real sphere in
Rd+1 , K continuous and also isotropic in the sense that

K(Qx,Qy) = K(x,y), x,y ∈ Sd, Q ∈ ISO(Md),

where ISO(Md) is the set of all isometries in Md . The two-point compact homoge-
neous spaces were classified in [31], while the characterization of the positive defi-
nite isotropic kernels were characterized in [12]. The strictly positive definite case was
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proved in [1], and the matrix valued results were obtained in [8]. Unlike the real sphere,
the characterizations for the infinite dimensional case (for the real, complex and quater-
nionic projective spaces) came as a corollary of a different paper [14]. Although there
is no paper that explicitly describes the matrix valued case in the infinite dimensional
setting, it is well behaved with respect to the scalar valued projections as well as the
other cases.

(3) Radial kernels X = Rd , K continuous and also radial in the sense that

K(Qx+ z,Qy+ z) = K(x,y), x,y,z ∈ Rd , Q ∈ O(d).

The characterization of the positive definite scalar valued kernels fulfilling this condi-
tion was achieved in [27], while the strictly positive definite case was proved in [29]
(d � 2). The positive definite matrix valued case was characterized in [32], while the
strictly positive definite case was proved in [16] except for the case d = 1, which re-
mained open.

Like the real sphere, the previous papers contain proofs for the infinite dimensional
case.

With the exception of strictly positive definite kernels in R1 , all of them are well
behaved with respect to the scalar valued projections.

(4) Translation invariant kernels X = Rd , K is continuous and translation in-
variant, in the sense that

K(x+ z,y+ z) = K(x,y), x,y,z ∈ Rd .

The characterization of all positive definite kernels that fulfill this property is in the
classical paper [7], only sufficient conditions of when this kernel is strictly positive
definite are known and an operator valued version of these kernels can be found in
[23]. Only the positive definite case is well behaved with respect to the scalar valued
projections.

(5) Real Dot product kernels X = H , a real Hilbert space, K is continuous and
adjointly invariant, in the sense that

K(Ax,y) = K(x,Aty), x,y ∈ H , A ∈ L (H )

where At is the adjoint operator of A and L (H ) is the vector space of continuous
linear operators from H to itself. If a kernel fulfills this property then there exists a
continuous function h : R → R such that K(x,y) = h(〈x,y〉) (we prove this affirmation
in Lemma 6). The characterization of which functions h generates a positive definite
kernel is obtained as a corollary of a result in [27] when dim(H ) = , and generalized
to when dim(H ) � 2 in [20]. The characterization for when dim(H ) = 1 can be
obtained as Corollary of Remark 3.9 in [5] at page 161. The strictly positive definite
case was proved in [25] for dim(H ) � 2. We are not aware of a characterization for
the strictly positive definite case when dim(H ) = 1. Only the positive definite case is
well behaved with respect to the scalar valued projections.

In the following example we close the gaps in the families (1) , (4) and (5) by
providing an example of a positive definite matrix valued kernel that is not strictly
positive definite but whose all scalar valued projections are strictly positive definite:
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EXAMPLE 1. Consider the kernels

(cos ,sin ),(cos ,sin) ∈ S1×S1 →
[

ecos(− ) ecos(+− )

ecos(−−) ecos(− )

]
,

 ∈ [0,2),  /∈ Q ,

(x,y) ∈ Rm ×Rm →
[

e−‖x−y‖2
e−‖x+z−y‖2

e−‖x−y−z‖2
e−‖x−y‖2

]
, z ∈ Rm \ {0},

(x,y) ∈ Rm ×Rm →
[

er2〈x,y〉 +1 er〈x,y〉

er〈x,y〉 e〈x,y〉 +1

]
, r ∈ R\ {0,1,−1},

which are, respectively, an isotropic kernel in S1 , a translation invariant kernel in Rm

and a real dot product kernel in Rm . They are positive definite but not strictly positive
definite (which is a consequence of Theorem 1) and all scalar valued projections are
strictly positive definite.

In Section 2 we generalize the first two examples to a broader setting, of kernels
unitarily invariant by a family (more precisely a semigroup) of functions, where the cri-
teria is based on the existence of an aperiodic function in the center of the semigroup.
With this result, we are able to fully characterize in Subsection 2.1 which locally com-
pact Abelian groups G the group invariant continuous matrix valued strictly positive
definite kernels are well behaved with respect to the scalar valued projections. On
Subsection 2.2 we show that the strictly positive definite isotropic kernels on complex
spheres are not well behaved with respect to its scalar valued projections.

In Section 3 we obtain similar results of Section 2, but for kernels that are adjointly
invariant by a semigroup of functions with involution, provided the existence of an
injective aperiodic function in the center of the semigroup. We prove in Subsection
3.1 a similar representation as presented in the class of kernels (5) for the continuous
complex dot product spaces. By making an adjustment on Theorem 5, we are able to
prove that the continuous matrix valued strictly positive definite real and complex dot
product kernels are not well behaved with respect to its scalar valued projections

It is important to point out that the results we present can be easily adapted for
the operator valued kernels, see [23]. Also, as in general the most common classes of
scalar valued positive definite kernels with an invariance (either unitarily or adjointly)
are uniquely described by a specific set of functions, then for those classes the posi-
tive definite matrix valued kernels are well behaved with respect to the scalar valued
projections (usually the matrix valued case is characterized using this property, see the
references mentioned in the classes (1),(2),(3),(4) and (5)).

We reemphasize that all known methods that characterize matrix valued strictly
positive definite kernels with a symmetry (either unitarily or adjointly), occur by the
scalar valued projections. Hence, for the 3 examples presented, a new and complete
different method will be required to characterize these matrix valued strictly positive
definite kernels.
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2. Unitarily invariant kernels

We recall that a semigroup (S,◦) is a set S together with an operation ◦ : S×S→ S
that is associative, that is, ((a◦b)◦c) = (a◦ (b◦c)) , for every a,b,c∈ S . A semigroup
(S,◦) has an unity if there exist e ∈ S for which e◦ a = a ◦ e = a for all a ∈ S .

For a topological space X , we define C(X ,X) as the set of all continuous functions
from X to X , which is a semigroup with the standard composition of functions, and
the unit is the identity function.

The classes of kernels (1),(2),(3) and (4) , presented in Section 1, have some-
thing in common, these kernels satisfy the following property:

DEFINITION 1. Let X be a topological space and S ⊂ C(X ,X) be a family of
continuous functions. We say that a continuous matrix valued kernel K : X × X →
M�(C) is unitarily invariant the family of functions S if

K((x),(y)) = K(x,y)

for all x,y ∈ X and  ∈ S .

We assume that the space X has a topology and that the kernel K is continuous,
only by its importance rather than a condition itself. The term unitarily is inspired by the
standard definition of unitary matrix, which occurs when X = Rm and K(x,y) = 〈x,y〉 .

Although we have made no assumption about the set S in the above definition,
we can assume without loss of generality that it is a semigroup of continuous functions
with an unity. Indeed, the identity function i : X → X satisfies the required symmetry
relation, and given two functions 1,2 ∈ S , then 21 also satisfies, because

K(x,y) = K(1(x),1(y)) = K(2(1(x)),2(1(y))), x,y ∈ X .

If a continuous matrix valued kernel K is unitarily invariant by a semigroup of
continuous functions with unity S and is positive definite, we use the notation K ∈
P(X ,S,C�) . If in addition the kernel is strictly positive definite we use the nota-
tion K ∈ P+(X ,S,C�) . Similarly, if all of the scalar valued projections of a contin-
uous matrix valued kernel K that is unitarily invariant by a semigroup of continuous
functions with unity S are scalar valued positive definite kernels, we use the nota-
tion K ∈ Ppro j(X ,S,C�) . Likewise if in addition all of the scalar valued projections
of the kernel K are scalar valued strictly positive definite kernels, we use the notation
K ∈ P+

pro j(X ,S,C�) . When � = 1 we use the simplified notation P(X ,S) and P+(X ,S) .
We reemphasize that, as shown at the Introduction, the inclusions

P(X ,S,C�) ⊂ Ppro j(X ,S,C�) (2)

P+(X ,S,C�) ⊂ P+
pro j(X ,S,C�) (3)

always holds and that under the conditions of Theorem 2 we show that the inclusion
P+(X ,S,C�) ⊂ P+

pro j(X ,S,C�) is strict.
The following simple Lemma explain why we focus only on M2(C) valued ker-

nels.
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LEMMA 1. Let X be a topological space, S a semigroup of continuous functions
on X . Then P+

pro j(X ,S,C�) = P+(X ,S,C�) for some � � 2 if and only if P+
pro j(X ,S,Cm)

= P+(X ,S,Cm) for every 2 � m � � .

Proof. The converse is immediate. If it holds for an � , then for any 2 � m � �
and kernel K in P+

pro j(X ,S,Cm) we extend it to have M�(C) values by adding 0 in

the remaining �2 −m2 +(�−m) off diagonal coordinates and on the remaining �−m
diagonal coordinates we put an arbitrary P+(X ,S) kernel (like 〈Ke1,e1〉). This new
kernel is in P+

pro j(X ,S,C�) , hence in P+(X ,S,C�) , and from that we obtain that the
original kernel K is in P+(X ,S,Cm) . �

Another simple statement that we use, which is independent of the setting of ker-
nels unitarily invariant by a semigroup of functions, but it will simplify the construction
of the counterexample is the following

LEMMA 2. Let K : X × X → M2(C) be a kernel. Then K is (strictly) positive
definite if and only if for every finite quantity of distinct points x1,x2, . . . ,xn ∈ X , the
following matrix in M2n(C)

[
[K11(xi,x j)]ni, j=1 [K12(xi,x j)]ni, j=1
[K21(xi,x j)]ni, j=1 [K22(xi,x j)]ni, j=1

]
,

is positive semidefinite (definite).

We denote by Z(S) the center of the semigroup S , that is the abelian semigroup

Z(S) := { ∈ S :  =  , for all  ∈ S}.

Note that Z(S) is never empty, being the identity function i : X → X an example.

THEOREM 1. Let k ∈ P(X ,S) and  ∈ Z(S) . The matrix valued kernel K : X ×
X → M2(C) given by

K(x,y) = [Ki j]
2
i, j=1 =

[
k((x),(y)) k((x),y)

k(x,(y)) k(x,y)

]
, x,y ∈ X ,

belongs to P(X ,S,C2)\P+(X ,S,C2) . Also, if P+(X ,S) is non empty then all functions
in S are injective.

Proof. The kernel K is continuous because both the kernel k and the function 
are continuous. The kernel K is invariant by the semigroup S because if x,y ∈ X and
 ∈ S , we have that

K12((x),(y)) = k(((x)),(y)) = k(((x)),(y)) = k((x),y) = K12(x,y).
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In the second equality we have used the fact that  ∈ Z(S) and in the third one that k is
invariant by the semigroup S . Similarly for the other 3 entries of K . Next, let us verify
the positive definiteness of K . For distinct points x1, . . . ,xn ∈ X , we have that[

[k((xi),(x j))]ni, j=1 [k((xi),x j)]ni, j=1
[k(xi,(x j))]ni, j=1 [k(xi,x j)]ni, j=1

]
= [k(yi,y j)]2n

i, j=1 ,

where

yi =
{
(xi) if i = 1, . . . ,n
xi−n if i = n+1, . . . ,2n

Thus, by Lemma 2 the positive definiteness of K follows from that of k . In order to see
that K is not strictly positive definite, we consider two cases. Given an arbitrary x ∈ X ,
either (x) = x , and then

K(x,x) =
[

k(x,x) k(x,x)
k(x,x) k(x,x)

]

and K is obviously not strictly positive definite, or (x) 	= x , defining x1 = x and
x2 = (x) , we have that by Lemma 2, the matrices

[K(xi,x j)]2i, j=1 ,

⎡
⎢⎢⎣

k((x),(x)) k((x),2(x)) k((x),x) k((x),(x)
k(2(x),(x)) k(2(x),2(x)) k(2(x),x) k(2(x),(x))

k(x,(x)) k(x,2(x)) k(x,x) k(x,(x))
K((x),(x)) k((x),2(x)) k((x),x) k((x),(x))

⎤
⎥⎥⎦

have rank < 4.
For the second part, if by an absurd there is an k ∈ P+(X ,S,C) but there is an

 ∈ S that is non injective, taking distinct x1,x2 ∈ X such that (x1) = (x2) = z , the
matrix[

k(x1,x1) k(x1,x2)
k(x2,x1) k(x2,x2)

]
=

[
k((x1),(x1)) k((x1),(x2))
k((x2),(x1)) k((x2),(x2))

]
=

[
k(z,z) k(z,z)
k(z,z) k(z,z)

]

is non invertible, which is an absurd. �
Several results in dynamical system theory are related to the periodic behavior

(or lack of) for the iterations of a function  : X → X , for instance on Sharkovskii’s
Theorem and the logistic function behavior in [18]. To proceed, we introduce a new
definition, based on this terminology.

DEFINITION 2. Let X be a topological space. A function  ∈C(X ,X) is said to
be aperiodic if m(x) 	= x for all x ∈ X and m ∈ N .

Note that the existence of an aperiodic function is more restrictive than demanding
that the semigroup S is non torsion, that is, that the functions m 	= iX for every m∈N .

The next lemma and its corollary will help us understand how the set

{y1,y2, . . . ,y2n} := {(x1),(x2), . . .(xn),x1,x2, . . .xn}.
that appeared on the proof of Theorem 1 behaves if  is an aperiodic injective function
in Z(S) .
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LEMMA 3. Suppose that S is a semigroup of functions in C(X ,X) and  ∈ Z(S)
is an aperiodic injective function. For any distinct points x1,x2, . . .xn ∈ X , consider
the set F := {i ∈ {1,2, . . . ,n}, (xi) ∈ {x1,x2, . . .xn}} and the function  : F →
{1,2, . . . ,n} for which x(i) = (xi) . Then the set F and the function  are well defined
and satisfy:

(i)  is injective
(ii) 0 � |F | � n−1 .
(iii) If i∈F there exists q∈N , which depends on i , where i,(i),2(i), . . .q(i)∈

F , but q+1(i) /∈ F .

Proof. The function  is well defined because the points x1, . . . ,xn are distinct
and is injective because  is an injective function.

In order to prove (ii) , suppose by contradiction that |F| = n . In particular, the
function  : {1,2, . . . ,n}→ {1,2, . . . ,n} is bijective. Since the group of bijective func-
tions over {1,2, . . . ,n} is finite, there will be an M ∈ N where M = In , the identity
function over {1,2, . . . ,n} . Note that M 	= 1 because  is aperiodic, so M � 2, but

x1 = xM(1) = (xM−1(1)) = . . . = M−1(x(1)) = M(x1)

but then M(x1) = x1 , which is an absurd because  is aperiodic.
The proof of (iii) is similar to the one we presented in (ii) . Suppose by contra-

diction that exists i ∈ F for which q(i) ∈ F for all q ∈ N . Since the set {x1, . . . ,xn}
is finite, there will exist natural numbers p < q , where x p(i) = xq(i) . But,

q−p(x p(i)) = q−p( p(xi)) = q(xi) = xq(i) = x p(i)

which is an absurd because  is aperiodic. �
We restate Lemma 3 in a more convenient way for the proof of our main result.

The proof is omitted.

COROLLARY 1. Under the same hypotheses of Lemma 3, there exists m∈Z+ and
p ∈ N , with m = |F | and p = n−|F| , m+2p distinct points z ∈ X , such that:

(i) {(x1),(x2), . . .(xn),x1,x2, . . .xn}= {z1, . . . ,zm,zm+1, . . . ,zm+p,zm+p+1, . . . ,
zm+2p} .

(ii) {z1, . . . ,zm} := {(xi), i ∈ F} = {x(i), i ∈ F} .
(iii) {zm+1, . . . ,zm+p} := {(x), /∈ F} .
(iv) {zm+p+1, . . . ,zm+2p} := {xi, i /∈ (F)} .

We emphasize that the sets in (iii) and (iv) have the same number of elements
because  is an injective function.

Now we are able to prove the main result of this paper.

THEOREM 2. Suppose that S is a semigroup of functions in C(X ,X) , there exists
an aperiodic function  ∈ Z(S) and that P+(X ,S) is non empty. Then, for any � � 2

P+(X ,S,C�) � P+
Pro j(X ,S,C�)
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Proof. By Lemma 1, we only have to show an example for � = 2.
Let k ∈ P+(X ,S) and  ∈ Z(S) for which m(x) 	= x for all m ∈ N and x ∈ X .

Theorem 1 asserts that the kernel K : X ×X → M2(C) given by

K(x,y) =
[

k((x),(y)) k((x),y)
k(x,(y)) k(x,y)

]
, x,y ∈ X ,

belongs to P(X ,S,C2)\P+(X ,S,C2) and that  is injective. Next, we show that K ∈
P+

Pro j(X ,S,C2) . Fix v ∈ C2 \ {(0,0)} and arbitrary distinct points x1, . . . ,xn in X .
Let y1, . . . ,y2n as in the proof of Theorem 1. We will show [Kv(xi,x j)]ni, j=1 is positive
definite. If c1, . . . ,cn ∈ C and

0 =
n


i, j=1

cic jKv(xi,x j),

then, we have that

0 =
n


i, j=1

cic j[v1v1k((xi),(x j))+ v1v2k((xi),x j)+ v2v1k(xi,(x j))+ v2v2k(xi,x j)]

=
2n


i, j=1

did jk(yi,y j),

where di = v1ci and di+n = v2ci for 1 � i � n . Taking into account Lemma 3 and
Corollary 1, we can rewrite this double sum as:

m+2p


 ,=1

ee k(z ,z ) = 0,

where:
(I) 1 �  � m , e = v1ci + v2c(i) , for some i ∈ F .
(II) m+1 �  � m+ p , e = v1ci , for some i /∈ F .
(III) m+ p+1 �  � m+2p , e = v2ci , for some i /∈ (F) .
But the kernel k is strictly positive definite and the m+2p points z are distinct,

so e = 0 for all 1 �  � m+ 2p . We separete the proof in the case that v1 	= 0 and
the case that v1 = 0.

If v1 	= 0, since p � 1, equation (II) implies that ci = 0 for all i /∈ F . If i ∈ F ,
by the relation (iii) in Lemma 3, there exist q ∈ Z+ , which depends on i , for which
i,(i),2(i), . . . ,q(i) ∈ F , but q+1 /∈ F . In particular, equation (I) implies that

0 = v1cq(i) + v2cq+1(i) = v1cq(i),

so cq(i) = 0. In case q > 1, we use equation (I) again in order to obtain

0 = v1cq−1(i) + v2cq(i) = v1cq−1(i),

so cq−1(i) = 0. After finitely many similar steps we conclude that ci = 0, and so, the
kernel Kv is strict.
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If v1 = 0, then v2 	= 0. Equation (I) imply that 0 = v2c , for all  ∈ (F) while
equation (III) imply that 0 = v2c for all  /∈ (F) , and again, c = 0 for all  and
the kernel Kv is strictly positive definite. �

REMARK 1. If the function  ∈ Z(S) in Theorem 1 is not aperiodic or is not
injective, then it can be proved that K /∈ P+

Pro j(X ,S,C2) .

The fact that  ∈ Z(S) is an essential requirement. This can be seen on a very
familiar example, the set of kernels defined on R and invariant by the group of func-
tions i,w(x) := (−1)ix + w , i ∈ {0,1} and w ∈ R , which by the coments made at
the introduction, are the radial kernels in R1 . The center of this group only contains
the identity function 0,0 . Furthermore, fixed a function i,w ∈ S , w 	= 0, if a kernel
k : R×R → C ∈ P(R,S) is such that

k(x,i,w(y)) = k((x),i,w((y)))

for all  ∈ S and x,y ∈ R (hence the kernel in Theorem 1 would be well defined even
if i,w is not in Z(S)), then this kernel is a nonnegative constant function.

2.1. Abelian groups

In this subsection we completely characterize the locally compact Abelian groups
G together with the group of functions S = {g : G → G , (x) = gx , g ∈ G} , for
which P+

pro j(G,S,C�) = P+(G,S,C�) , for any � ∈ N . These kernels are usually called

on the literature as translational invariant. It is worth mentioning that Ppro j(G,S,C�) =
P(G,S,C�) , any � ∈ N and every locally compact Abelian group G , this result is a
consequence of Theorem III.3 page 20 in [23].

Except for the finite Abelian groups, we will not need the complete description
of the positive definite kernels P(G,S) or the harmonic analysis on locally compact
Abelian groups. The interested reader may look at [26] or [30] for more information on
them.

In order to prove the characterization, first note that all functions g ∈ S are in-
jective and Z(S) = S . Moreover, m

g (x) = gmx , so it exists an aperiodic function g in
S if and only if the group G admits an element of infinite order, that is, if G is not a
torsion group. In order to use a notation more common in the literature to present this
type of kernels, we omit the S term.

A directly application of Theorem 2 leads to the following result:

COROLLARY 2. Let G be an Abelian locally compact group that is non torsion
and for which P(G,C) is non empty. Then

P+(G,C�) � P+
Pro j(G,C�),

for any � � 2 .
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The d -dimensional torus Td , defined as

Td := {x ∈ Rd : − � x j <  ; j = 1,2, . . . ,d},

is a locally compact Abelian group and is non torsion. There exist strictly positive
definite translational invariant kernels on it like

(x,y) ∈ Td ×Td →
d


m=1

2

2− ei(xm−ym) = 
∈Zd

+

1

2| |
e−ixe−iy ∈ C.

The complete characterization of P(Td ,C) can be found in [28], while the characteri-
zation for P+(Td ,C) was given in Theorem 3.5 [11].

In Corollary 2.4 of [11], it was also proved a very interesting result, if G is com-
pact then P+(G,C) is non empty if and only if G is metrizable.

The d dimensional Euclidean space Rd is also non torsion (any nonzero element
is an example), there exists a strictly positive definite translation invariant kernel on it,
like the Gaussian kernel

(x,y) ∈ Rd ×Rd → e−‖x−y‖2
,

see Section 3 in [13] for this and other properties for this kernel. Then, the kernel

(x,y) ∈ Rd ×Rd →
[

e−‖x−y‖2
e−‖x+z−y‖2

e−‖x−y−z‖2
e−‖x−y‖2

]
, z ∈ Rd \ {0},

belongs to P+
Pro j(R

d ,C2)\P+(Rd ,C2) . Note that this kernel is invariant by translation
but is not invariant by rotation. As described by the family of kernels (3) at the Intro-
duction, for m � 2, the class of kernels invariant by both operations is well behaved
with respect to the scalar valued projections.

Now, we aim to prove the case where G is a torsion group. In this case, given a
finite quantity of distinct points x1, . . . ,xn ∈ G , the group generated by these elements

〈x1, . . .xn〉 = {xp1
1 xp2

2 . . .xpn
n , p1, . . . pn ∈ N}

is finite and Abelian. Given a kernel K : G×G→ M�(C) , it is strictly positive definite
if and only if the kernel K restricted to the set 〈x1, . . .xn〉 is strictly positive definite for
every finite quantity of distinct points x1, . . .xn ∈ G . But, by the fundamental Theorem
of finite Abelian groups (see Section 1.8 in [19]), a set like 〈x1, . . .xn〉 is isomorphic to
a direct sum of Zq groups, that means

〈x1, . . .xn〉 
 Zq1 × . . .×Zql .

Now we prove a version of Corollary 2 to a group like G = Zq1 × . . .×Zql , it turns
out to be a completely different result, and the general case will follow from this case
by the previous comments. Before that, we recall the characterizations of P(G,C) and
P+(G,C) , which can be found in [11] at Lemma 2.6.
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THEOREM 3. Let G = Zq1 × . . .×Zql and  : G → C . The kernel K(x,y) :=
(xy−1) is positive definite if and only if

(x) = 
g∈G

agg(x),

where ag � 0 and g(x) =l
r=1 e2 igrxr/qr for all g ∈ G. The representation is unique,

moreover, the kernel is strictly positive definite if and only if ag > 0 for all g ∈ G.

LEMMA 4. Let q1, . . . ,ql ∈ {2,3, . . .} , and G := Zq1 × . . .×Zql . Then P+(G,C)
is non empty and

P+
Pro j(G,C�) = P+(G,C�),

for any � � 2 .

Proof. Let  : G → C be such that the kernel K(x,y) := (xy−1) is an element
of P+

Pro j(G,C�) , � ∈ N . By a similar argument as done in Theorem III.3 at page 20 in

[23], we have that K ∈ P(G,C�) and it has the following decomposition

(xy−1) = K(x,y) = 
g∈G

Ag(K)g(x)g(y),

where Ag(K) ∈ M�(C) is a positive semidefinite matrix. But, since K ∈ P+
Pro j(G,C�) ,

for every v ∈ C� \ {0} , the kernel

Kv(x,y) = 〈[
g∈G

Ag(K)g(x)g(y)]v,v〉 = 
g∈G

〈Ag(K)v,v〉g(x)g(y),

is strictly positive definite. Theorem 3 implies that 〈Ag(K)v,v〉 > 0, thus the matrix
Ag(K) is positive definite. Hence, if x1, . . . ,xn ∈ G are distinct and v1, . . . ,vn ∈ C� , are
such that

0 =
n


i, j=1

〈K(xi,x j)vi,v j〉 =
n


i, j=1


g∈G

〈Ag(K)vi,v j〉g(xi)g(x j)

= 
g∈G

〈Ag(K)
n


i=1

vig(xi),
n


j=1

v jg(x j)〉,

then n
i=1 vig(xi) = 0, for all g ∈ G . After introducing coordinates we obtain that

vi = 0 for all i , and then K ∈ P+(G,C�) . �

COROLLARY 3. Let G be an Abelian locally compact torsion group. Then

P+
Pro j(G,C�) = P+(G,C�),

for any � ∈ N .
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2.2. Additional examples

Another class of kernels for which Theorem 2 can be applied are the isotropic
kernels in complex spheres. Let X = q , be the unit complex sphere in Cq , the kernel
K continuous and also isotropic in the sense that

K(Qx,Qy) = K(x,y), x,y ∈q;Q ∈ U (q),

where U (q) is the set of all unitary transformations on Cq . The characterization of
the positive definite scalar valued kernels fulfilling this condition was achieved in [22],
while the strictly positive definite case was proved in [15] (q � 2) and [21] (q = 1).
Similar to the real sphere, there is also the limiting case, of kernels defined on  , the
unit complex sphere of an infinity dimensional complex Hilbert space, K is continuous
and the isotropy is the invariance of the kernel for all linear isometries in it and can
be found in [10]. The characterization of the positive definite matrix valued case is a
consequence of the results in Section 8 at [6].

We can apply Theorem 2 for this type of kernel, because the unitary matrix ei I ,
where  /∈ Q and I is the identity matrix in Cq , defines an aperiodic function in q

that is in the center of U (q) .

3. Adjointly invariant kernels

In this section we prove an analogous of Theorem 2 to a class of kernels with a
different type of symmetry. Due to the similarities in the arguments, we sometimes
omit them.

We recall that as involution on a semigroup S is a function ∗ : S → S for which
∗(∗()) =  , for every  ∈ Z , and we write ∗ instead of ∗() . Additionally, for
every  , ∈ S we must have that ()∗ = ∗∗ .

DEFINITION 3. Let X be a topological space and a semigroup of continuous func-
tions S ⊂C(X ,X) . We say that the kernel K is adjointly invariant by the semigroup S
if there exists an involution function ∗ : S → S , for which

K(x,(y)) = K(∗(x),y),

for all x,y ∈ X and  ∈ S .

Unlike Definition 1, we assume from the beginning in Definition 3 that we have a
semigroup of functions because the involution needs to be defined for all elements of
the semigroup. Note that for the identity involution we could have used the approach in
Definition 1.

Similar to unitarily invariant kernels, given a matrix valued continuous kernel K
that is adjointly invariant by a semigroup of continuous functions with involution S , if
it is positive definite we use the notation K ∈ P∗(X ,S,C�) . If in addition the kernel
is strictly positive definite we use the notation K ∈ P+,∗(X ,S,C�) . Similarly, if all of
the scalar valued projections of a continuous kernel K that is unitarily invariant by a
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semigroup with involution of continuous functions with S are scalar valued positive
definite kernels, we use the notation K ∈ P∗

pro j(X ,S,C�) . Likewise if in addition all of
the scalar valued projections of the kernel K are scalar valued strictly positive definite
kernels, we use the notation K ∈ P∗,+

pro j(X ,S,C�) .
The following Lemma is a version of Lemma 1 to the context of adjointly invariant

kernels. The proof is omitted due to its similarities.

LEMMA 5. Let X be a topological space, (S,∗) be a semigroup of continuous
functions on X with an involution. Then P+,∗

pro j(X ,S,C�) = P+,∗(X ,S,C�) for some

� � 2 if and only if P+,∗
pro j(X ,S,Cm) = P+,∗(X ,S,Cm) for every 2 � m � � .

The following Theorem is a version of Theorem 1 to the context of adjointly in-
variant kernels.

THEOREM 4. Let k ∈ P∗(X ,S,C) and  ∈ Z(S) . The matrix valued kernel K :
X ×X → M2(C) given by

K(x,y) = [Ki j]
2
i, j=1 =

[
k((x),(y)) k((x),y)

k(x,(y)) k(x,y)

]
, x,y ∈ X ,

belongs to P∗(X ,S,C2)\P+,∗(X ,S,C2) .

Proof. The kernel K is continuous because both the kernel k and the function
 are continuous. Note that since  ∈ Z(S) then ∗ = ∗ for all  ∈ S , and then
∗ = (∗) = (∗) = ∗ for all  ∈ S , thus ∗ ∈ Z(S) . The kernel K is adjointly
invariant by the semigroup S because if x,y ∈ X and  ∈ S , we have that

K11(x,(y)) = k((x),((y))) = k((x),((y))) = k(∗((x)),(y))
= k((∗(x)),(y)) = K11(∗(x),y).

It follows that the K11 is adjointly invariant by the semigroup S . The rest of the argu-
ments are the same as the ones in the proof of Theorem 1. �

Unlike Theorem 1, it is not clear if the non emptiness of P+,∗(X ,S) implies that
all functions in S are injective.

Note that in Lemma 3 and Corollary 1 we did not made any use of the kernel,
actually we only used the properties of the functions on the semigroup, being so, they
are still valid in this new setting and we immediately have the proof of Theorem 2 to
the context of adjointly invariant by a semigroup of functions.

THEOREM 5. Suppose that (S,∗) is a semigroup with involution of functions in
C(X ,X) , there exists an aperiodic injective function  ∈ Z(S) and that P+,∗(X ,S) is
non empty. Then, for any � � 2

P+,∗(X ,S,C�) � P+,∗
Pro j(X ,S,C�).
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Other examples for adjointly invariant kernels are:
— X = Rm , z(x) = x + z and (z)∗ = −z . This would lead to Bochner (or

translational invariant) kernels in Rm .
— X = Rm , z(x) = x + z and (z)∗ = z . This would lead to characterizing

which functions h : Rm → R the kernel h(x+ y) is positive definite, which is proved in
Theorem 6.5.11 in [5].

3.1. Dot product kernels

In this subsection we explain in details how dot product kernels can be understood
as an adjointly invariant kernel and why we had to add the identity matrix to obtain
Example 1 for this class of kernels.

LEMMA 6. Let H be a real Hilbert space and a continuous kernel k : H ×H →
C . If

k(Ax,y) = k(x,Aty), x,y ∈ H , A ∈ L (H )

then, there exists a continuous function h : R → C for which k(x,y) = h(〈x,y〉) .

Proof. Let x,y be nonzero elements of H . Let (e )∈ be a complete orthonor-
mal basis for H .

If x,y are linearly dependent, pick an  ∈ and operator A for which A(e) := x
and A(e ) is orthogonal with respect to x for all  	=  . Hence, At(y) = 〈x,y〉e and
then

k(x,y) = k(Ae ,y) = k(e ,Aty) = k(e ,〈x,y〉e).

If x,y are linearly independent, pick distinct  , ∈  , and an operator A for which
A(e) = x , A(e) = x−〈x,y〉y/‖y‖2 and A(e ) is orthogonal with respect to x and y
for all  	=  , . Hence, At(y) = 〈x,y〉e and then

k(x,y) = k(Ae ,y) = k(e ,Aty) = k(e ,〈x,y〉e).

By the continuity of k , we may include the cases where either x or y are zero. �

The references and results regarding the real product kernels were given at the
class of functions (5) in Section 1.

With similar arguments as Lemma 6 it is possible to prove the following charac-
terization for when H is a complex Hilbert space.

LEMMA 7. Let H be a complex Hilbert space and a continuous kernel K : H ×
H → C . If

K(Ax,y) = K(x,A∗y), x,y ∈ H , A ∈ L (H )

then, there exists a continuous function h : C → C for which K(x,y) = h(〈x,y〉) .
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Regarding complex dot product kernels, the characterization of which functions h
generates a positive definite kernel is obtained in [10] when dim(H) =  , and gener-
alized to dimC(H) � 3 in [24]. We are not aware of a complete characterization for
the cases dimC = 1,2. The strictly positive definite case was also proved in [24] for
dimC(H) � 3. The positive definite case is well behaved with respect to the scalar
valued projections.

Usually the dot product kernels are presented in a different way, as the character-
ization of which functions h : R → C (or h : C → C) are such that for any positive
semidefinite real (or complex) matrix A , the matrix h(A) , being pointwise defined,
is positive semidefinite, that is, which functions preserves positivity. Along this line
several important results were achieved in [2], [3] and [4].

By taking k and (x) = rx , where r is not a root of unity (r 	= −1,0,1 in the
real case and r 	= e2 iq , q ∈ Q , in the complex case), the counterexample in Theo-
rem 5 can be applied to the set H \ {0} , as  is aperiodic on this set. If we add
the point 0 ∈ H , the matrix valued kernel defined in Theorem 4 does not belong to
P+,∗

pro j(H ,L (H ),C2) , because the matrix K(0,0) is not invertible.
On the following Lemma, we adapt the proof of Theorem 4 and Theorem 5 to

obtain examples that the matrix valued dot product kernels are not well behaved with
respect to its scalar valued projections.

LEMMA 8. Let k : H ×H → C be a continuous strictly positive definite kernel
that is adjointly invariant by L (H ) , where H is either a real or complex Hilbert
space. Then, if r is not a root of unity and (x) = rx ∈ L (H ) , the matrix valued
kernel

K(x,y)+ k(0,0)I =
[

k(rx,ry)+ k(0,0) k(rx,y)
k(x,ry) k(x,y)+ k(0,0)

]
, x,y ∈ H

belongs to P∗(H ,L (H ),C2)\P+,∗(H ,L (H ),C2) and also belongs to
P+,∗

pro j(H ,L (H ),C2) , where K is the kernel defined in Theorem 4.

Proof. The kernel K ∈P∗(H ,L (H ),C2) by Theorem4 while the kernel k(0,0)I
∈ P∗(H ,L (H ),C2) by a simple direct verification, thus their sum is also an element
of P∗(H ,L (H ),C2) .

The matrix valued kernel does not belong to P+,∗(H ,L (H ),C2) because the
double sum over the the 3 points 0,x,rx (instead of 2 used in Theorem 4) and the
corresponding vectors in order (−1,1),(1,0),(0,−1) is zero.

Now, we prove that the matrix valued kernel is an element of P+,∗
pro j(H ,L (H ),C2) ,

and we divide the argument in three parts:
Part 1) The scalar valued kernel l(x,y) := k(x,y)−k(0,0) ∈ P∗(H \{0},L (H ))

is strictly positive definite in H \ {0}:
The invariance is immediate, as for the kernel being strictly positive definite, let

x1, . . . ,xn ∈ H \ {0} be distinct and the scalars c1, . . . ,cn ∈ C that are not all zero.
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Define c0 := −n
i=1 ci and x0 := 0, then

n


i, j=0

cic jk(xi,x j) = c0c0 + c0

n


j=1

c jk(0,x j)+ c0

n


i=1

cik(xi,0)+
n


i, j=1

cic jk(xi,x j)

= −c0c0k(0,0)+
n


i, j=1

cic jk(xi,x j) =
n


i, j=1

cic jl(xi,x j),

because k(x,0) = k(0,x) = k(0,0) for every x ∈ H by Lemma 6 and Lemma 7. As
the kernel k is strictly positive definite in H , the first double sum is a posite number,
hence, l is a strictly positive definite kernel as well.

Part 2) The matrix valued kernel

L(x,y) :=
[

l(rx,ry) l(rx,y)
l(x,ry) l(x,y)

]
, x,y ∈ H \ {0}

belongs to P∗(H \ {0},L (H ),C2) \P+,∗(H \ {0},L (H ),C2) and to P+,∗
pro j(H \

{0},L (H ),C2) when r is not a root of unity:
This is a direct application of Theorem 4 and Theorem 5 because we are dealing

with an aperiodic and injective function in H \ {0}.
Part 3) Conclusion:
Let v = (v1,v2) 	= (0,0) . Then, for distinct points x0, . . . ,xn ∈ H , where x0 = 0,

and complex scalars c0, . . . ,cn , the scalar valued kernel [K + k(0,0)I]v satisfies

n


i, j=0

cic j[K + k(0,0)I]v(xi,x j)

n


i, j=0

cic j
(
Kv(xi,x j)+ k(0,0)‖v‖2)

=
n


i, j=0

cic j
(
Kv(xi,x j)− k(0,0)|v1 + v2|2 + k(0,0)|v1 + v2|2 + k(0,0)‖v‖2)

=
n


i, j=1

cic jLv(xi,x j)+
n


i, j=0

cic j
(
k(0,0)|v1 + v2|2 + k(0,0)‖v‖2)

=
n


i, j=1

cic jLv(xi,x j)+

∣∣∣∣∣
n


i=0

ci

∣∣∣∣∣
2 (

k(0,0)|v1 + v2|2 + k(0,0)‖v‖2) .

Note that both terms are nonnegative. Since the first term does not include the element
0, Part 2 implies that it is zero if and only if all scalars c1, . . . ,cn are zero. On the
other hand, if all scalars c1, . . . ,cn are zero the second term implies that c0 = 0, which
concludes that K + k(0,0)I is in P+,∗

pro j(H ,L (H ),C2) . �

REMARK 2. The previous result can be generalized to an abstract setting with the
same type of argument. Suppose that X̃ = X ∪{0} is a topological space and (S,∗) is
a semigroup of functions in C(X̃ , X̃) with the identity for which:
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i) (0) = 0 for every  ∈ S .

ii) For every x ∈ X its orbit satisfies {(x), ∈ S} = X .

iii) 0 is an accumulation point.

These three properties implies that if k ∈ P∗(X̃ ,S) then k(0,0) = k(0,x) = k(x,0) for
any x ∈ X̃ ). Indeed, for arbitrary y,z ∈ X , by relation ii) there exists an  ∈ S for
which (y) = z , hence by relation i) and the invariance

k(0,z) = k(0,(y)) = k(∗(0),y) = k(0,y).

The conclusion comes from the continuity of k and the fact that 0 is an accumulation
point. By similar arguments as done in Lemma 8, for any k ∈ P∗(X̃ ,S) and  ∈ S the
matrix valued kernel

(x,y) ∈ X̃ × X̃ →
[

k((x),(y))+ k(0,0) k((x),y)
k(x,(y)) k(x,y)+ k(0,0)

]
,

belongs to P∗(X̃ ,S,C2) \P+,∗(X̃ ,S,C2) . In addition, if k ∈ P+,∗(X̃ ,S) and  is an
aperiodic injective function when restricted to X , the previous kernel is an element of
P+,∗

pro j(X̃ ,S,C2) .
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