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CONTINUOUS RANKIN BOUND FOR HILBERT AND BANACH SPACES
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Abstract. Let (,) be a finite measure space and {}∈ be a normalized continuous Bessel
family for a real Hilbert space H . If the diagonal  := {( ,) :  ∈ } is measurable in the
measure space × , then we show that

sup
,∈, �=

〈 , 〉 � −(×)()
(×)((×)\)

. (1)

We call Inequality (1) as continuous Rankin bound. It improves 77 years old result of Rankin
[Ann. of Math., 1947]. It also answers one of the questions asked by K. M. Krishna in the paper
[Continuous Welch bounds with applications, Commun. Korean Math. Soc., 2023]. We also
derive Banach space version of Inequality (1).

1. Introduction

In 1947, Rankin derived following result for a collection of unit vectors in R
d .

THEOREM 1. (Rankin Bound) [12, 13] (Theorem 7.10 [17]) If { j}n
j=1 is a col-

lection of unit vectors in R
d , then

max
1� j,k�n, j �=k

〈 j,k〉 � −1
n−1

. (2)

In particular,

min
1� j,k�n, j �=k

‖ j − k‖2 � 2n
n−1

. (3)

Striking feature of Inequalities (2) and (3) is that they do not depend upon the
dimension d . Inequalities (2) and (3) play important roles in the study of packings of
lines (which motivated to study the packings of planes) [6, 5], Kepler conjecture [8, 15],
sphere packings [3, 18] and the geometry of numbers [4].

After the derivation of continuous Welch bounds in most general form, author of
the paper [11] asked what is the version of Rankin bound for collections indexed by
measure spaces. We are going to answer this in this paper.
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2. Continuous Rankin bound

We start by recalling the notion of continuous frames which are introduced inde-
pendently by Ali, Antoine and Gazeau [1] and Kaiser [9]. In the paper, H denotes a
real Hilbert space (need not be finite dimensional).

DEFINITION 1. [1, 9, 2, 7] Let (,) be a measure space. A collection {}∈
in a Hilbert space H is said to be a continuous frame (or generalized frame) for H if
the following holds.

(i) For each h ∈ H , the map  �  �→ 〈h, 〉 ∈ K is measurable.

(ii) There are a,b > 0 such that

a‖h‖2 �
∫


|〈h,〉|2 d() � b‖h‖2, ∀h ∈ H .

If we do not demand the first inequality in (ii), then we say it is a continuous Bessel
family for H . A continuous Bessel family {}∈ is said to be normalized or unit
norm if ‖‖ = 1, ∀ ∈ .

Given a continuous Bessel family, the analysis operator

 : H � h �→ h ∈ L 2(); h : �  �→ 〈h, 〉 ∈ K

is a well-defined bounded linear operator. Its adjoint, the synthesis operator is given by

 ∗
 : L 2() � f �→

∫


f () d() ∈ H .

By combining analysis and synthesis operators, we get the frame operator, defined as

S :=  ∗
  : H � h �→

∫


〈h,〉 d() ∈ H .

Note that the integrals are weak integrals (Pettis integrals [16]). With this machinery,
we generalize Theorem 1.

THEOREM 2. (Continuous Rankin Bound) Let (,) be a finite measure space
and {}∈ be a normalized continuous Bessel family for a real Hilbert space H .
If the diagonal  := {(,) :  ∈} is measurable in the measure space × , then

sup
 ,∈, �=

〈 , 〉 � −(× )()
(× )((×)\)

. (4)

In particular,

inf
 ,∈, �=

‖ − ‖2 � 2

(
1+

(× )()
(× )((×)\)

)
. (5)
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Proof. Since () <  ,  ∈ L 2() and∫
(×)\

|〈 , 〉|d(× )(, ) �
∫

(×)\
‖‖‖‖d(× )(, )

= (× )((×)\) < .

Now by using Fubini’s theorem, we get

0 � ‖ ∗
 ‖2 = 〈 ∗

 , ∗
 〉

=

〈∫


() d(),
∫


( ) d( )

〉
=

〈∫


 d(),
∫


 d( )

〉

=
∫


∫


〈 , 〉d()d( ) =
∫

×
〈 , 〉d(× )(, )

=
∫


〈 , 〉d(× )(, )+
∫

(×)\
〈 , 〉d(× )(, )

=
∫


〈 ,〉d(× )(, )+
∫

(×)\
〈 , 〉d(× )(, )

= (× )()+
∫

(×)\
〈 , 〉d(× )(, )

� (× )()+

(
sup

 ,∈, �=
〈 , 〉

)
(× )((×)\).

Now writing inner product using norm, we get

sup
 ,∈, �=

〈 , 〉 = sup
 ,∈, �=

(
‖‖2 +‖‖2−‖ − ‖2

2

)

= sup
 ,∈, �=

(
2−‖ − ‖2

2

)

= 1− inf ,∈, �= ‖ − ‖2

2
.

Therefore

1− inf ,∈, �= ‖ − ‖2

2
� −(× )()

(× )((×)\)

which gives

inf ,∈, �= ‖ − ‖2

2
� 1+

(× )()
(× )((×)\)

. �
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COROLLARY 1. Theorem 1 follows from Theorem 2.

Proof. Take = {1, . . . ,n} and  as the counting measure. �

EXAMPLE 1. Let  := [0,2 ] and  be the Lebesgue measure on  . Define

 := (cos,sin), ∀ ∈.

Then

∫

|〈(x,y), 〉|2 d =

∫ 2

0
|〈(x,y),(cos,sin)〉|2 d

=
∫ 2

0
(xcos + ysin)2 d

=
∫ 2

0
(x2 cos2 + y2 sin2+2xysin cos)d

= (x2 + y2)

=  ‖(x,y)‖2 , ∀(x,y) ∈ R
2.

Therefore {}∈ is a normalized continuous frame for R
2 . In particular, it is a

normalized continuous Bessel family for R
2 . We now have

sup
 ,∈, �=

〈 , 〉 = sup
 ,∈[0,2 ], �=

〈(cos,sin),(cos ,sin )〉

= sup
 ,∈[0,2 ], �=

(cos cos + sin sin )

= sup
 ,∈[0,2 ], �=

cos(− )

= 1 >
0

42 =
−(× )()

(× )((×)\)
.

EXAMPLE 2. Let (,) be a measure space. Let H be a reproducing kernel
Hilbert space on  with kernel

K : ×→ R, K(, ) := 〈K ,K〉 = K (), ∀, ∈.

Then {K}∈ is a continuous Parseval frame for L 2(,) . Let 1 be a measurable
subset of  such that the family {K}∈1 is bounded below on 1 . Then {K}∈1

is a continuous Bessel family for L 2(,) . Let 1 be the diagonal of 1 ×1 .
Inequality (4) then gives

sup
 ,∈1, �=

〈K ,K 〉 � −(× )(1)
(× )((1×1)\1)

.



CONTINUOUS RANKIN BOUND FOR HILBERT AND BANACH SPACES 303

A remarkable feature of Inequality (4) is that it allows to derive Inequality (5). We
can not do this by using first order continuous Welch bound [11].

Given a measure space (,) with measurable diagonal and a normalized contin-
uous Bessel family {}∈ for a real Hilbert space H , we define

M ({}∈) := sup
 ,∈, �=

〈 , 〉

and

N ({}∈) := inf
 ,∈, �=

‖ − ‖2.

Similar to the problem of Grassmannian frames (see [14]), we propose following prob-
lem.

QUESTION 1. Given a measure space (,) with measurable diagonal and a real
Hilbert space H , find normalized continuous Bessel family {}∈ for H , such
that

M ({}∈) = inf{M ({}∈) : {}∈ is a normalized continuous

Bessel family for H }. (6)

Equivalently, find normalized continuous Bessel family {}∈ for H , such that

N ({}∈) = sup{N ({}∈) : {}∈ is a normalized continuous

Bessel family for H }.
Further, for which measure spaces (,) and real Hilbert spaces H , solution to (6)
exists?

3. Continuous Rankin bound for Banach spaces

In this section, we derive continuous Rankin bound for Banach spaces. First we
need a notion.

DEFINITION 2. [10] Let (,) be a measure space and p∈ [1,) . Let {}∈
be a collection in a Banach space X and { f}∈ be a collection in X ∗ . The pair
({ f}∈,{}∈) is said to be a continuous p-Bessel family for X if the following
conditions are satisfied.

(i) For each x ∈ X , the map  �  �→ f(x) ∈ K is measurable.

(ii) For each u ∈ L p(,) , the map  �  �→ u() ∈ X is measurable.

(iii) The map (continuous analysis operator)

 f : X � x �→  f ∈ L p(,);  f x :  �  �→ ( f x)() := f (x) ∈ K

is a well-defined bounded linear operator.
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(iv) The map (continuous synthesis operator)

 : L p(,) � u �→ u :=
∫


u() d() ∈ X

is a well-defined bounded linear operator.

THEOREM 3. (Functional Continuous Rankin Bound) Let (,) be a finite mea-
sure space and ({ f}∈,{}∈) be a continuous p-approximate Bessel family for
a real Banach space X satisfying the following.

(i) f( ) = 1 for all  ∈ .

(ii) ‖ f‖ � 1 , ‖‖ � 1 for all 1 �  ∈ .

(iii)  f � 0 .

If the diagonal  := {(,) :  ∈} is measurable in the measure space × , then

sup
 ,∈, �=

f ( ) � −(× )()
(× )((×)\)

.

Proof. Since () <  , we have∫
(×)\

| f ( )|d(× )(, ) �
∫

(×)\
‖ f‖‖‖d(× )(, )

� (× )((×)\) < .

Now by using Fubini’s theorem, we get

0 �
∫


( f )()d() =
∫


f ()d()

=
∫


f

⎛
⎝∫



( ) d( )

⎞
⎠ d() =

∫


f

⎛
⎝∫



 d( )

⎞
⎠ d()

=
∫


∫


f ( )d( )d() =
∫

×
f ( )d(× )(, )

=
∫


f ( )d(× )(, )+
∫

(×)\
f( )d(× )(, )

=
∫


f ( )d(× )(, )+
∫

(×)\
f ( )d(× )(, )

= (× )()+
∫

(×)\
f ( )d(× )(, )

� (× )()+

(
sup

 ,∈, �=
f ( )

)
(× )((×)\). �
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COROLLARY 2. Let { j}n
j=1 be a collection in a real Banach space X and

{ f j}n
j=1 be a collection in X ∗ satisfying the following.

(i) f j( j) = 1 for all 1 � j � n.

(ii) ‖ f j‖ � 1 , ‖ j‖ � 1 for all 1 � j � n.

(iii) 1� j,k�n f j(k) � 0 .

Then

max
1� j,k�n, j �=k

f j(k) � −1
n−1

.
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