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Abstract. It is well known that the classical Euler gamma function (z) has had very extensive
applications in mathematical sciences, including physics and engineering, in the past centuries.
In this study, the authors introduce the normalized remainder T2n+1[( )] of the Maclaurin
expansion of the function ( ) = 1− 

tan + ln 
sin for  ∈ (−,) , which is contained in an

integral representation of the reciprocal 1
(z) . In light of the increasing property of two sequences

involving the ratio of two non-zero Bernoulli numbers and with the aid of the monotonicity rule
for the ratio of two Maclaurin series, they present the logarithmic convexity of the normalized
remainder T2n+1[( )] for n ∈ N0 = {0,1,2, . . .} in  ∈ (−,) and discuss the monotonicity

of the ratio T2n+3 [( )]
T2n+1 [( )] for n ∈ N0 in  ∈ (−,0)∪ (0,) .

1. A short survey on normalized remainders and motivations

We start out by recalling the following definition of normalized remainders of the
Maclaurin expansions of functions, which has been created since April 2023 and can
be found in [2, Section 5], [16, Section 1], [18, Sections 1.9 and 1.10], [25, Remarks 2
and 4], and [31, Section 1].

DEFINITION 1. Let G be a real infinitely differentiable function on an interval
I ⊆ R such that the origin 0 is an interior point of I . If G(n+1)(0) �= 0 for some
n ∈ N0 = {0}∪N = {0,1,2, . . .} , then we call the function

Tn[G(u)] =

⎧⎪⎨
⎪⎩

1

G(n+1)(0)
(n+1)!
un+1

[
G(u)−

n


j=0

G( j)(0)
u j

j!

]
, u �= 0

1, u = 0

(1)

for u ∈ I the n th normalized remainder or the n th normalized tail of the Maclaurin
expansion of the function G .
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The notion of normalized remainders Tn[G(u)] is an intrinsic modification of
the Lagrange remainders, the Cauchy remainders, the Schlömilch remainders, and the
Rouché remainders stated in [4, p. 19]. For G(u) = sinu in (1), the normalized remain-
der T2n[sinu] was considered in [6, Remark 7] and [10, 12, 26, 33]. For G(u) = cosu ,
the normalized remainder T2n−1[cosu] was studied in [6, Remark 7] and [7, 12, 24, 33].
For

G(u) = lnT1[cosu] =

⎧⎨
⎩ln

2(1− cosu)
u2 , 0 < |u| < 2

0, u = 0

in (1), the normalized remainder T2n−1[lnT1[cosu]] was explored in [13]. For the
case G(u) = eu in (1), the normalized remainder Tn[eu] was investigated in [2, 8, 16,
30]. For G(u) = tanu , G(u) = tan2 u , and G(u) = sec2 u , three normalized remain-
ders T2n[tanu] , T2n−1

[
tan2 u

]
, and T2n−1

[
sec2 u

]
were explored in [9, 19, 31]. For

G(u) = u
eu−1 , the normalized remainder T2n−1

[
u

eu−1

]
= T2n−1

[
1

T0[eu]

]
was examined

in [32]. For G(u) = lnsecu , equivalently G(u) = lncosu , the normalized remainder
T2n−1[lnsecu] was studied in [29]. In [16, Section 1], [18, Section 1], and [31, Sec-
tion 1], from several different angles, the second author and his coworkers reviewed,
surveyed, described, depicted, and retrospected their motivations, ideas, and thoughts
to introduce and invent the notion of normalized remainders Tn[G(u)] in details.

In the above-mentioned papers, the second author and his coworkers mainly ex-
plored the following properties of the normalized remainder Tn[G(u)] :

1. Positivity of the normalized remainder Tn[G(u)] ; see [6, Remark 7], [18, Sec-
tion 1], and [12, 16, 32, 33].

2. Monotonicity of the normalized remainder Tn[G(u)] ; see [2, 12, 24, 32, 33], [6,
Remark 7], and [18, Section 1].

3. Convexity of the normalized remainder Tn[G(u)] ; see [6, Remark 7], [18, Sec-
tion 1], [32, Remark 5], and [33].

4. Logarithmic convexity of the normalized remainder Tn[G(u)] ; see [2, 24, 31], [6,
Remark 7], and [18, Sections 1 and 5].

5. Absolute monotonicity of the normalized remainder Tn[G(u)] ; see [16], [18, Sec-
tion 1], and [25, Remarks 2 and 4].

6. Maclaurin series of the logarithm lnTn[G(u)] ; see [2, 7, 9, 10, 24, 26, 31], [6,
Remark 7], and [18, Sections 1 and 7].

7. Monotonicity of the ratio Tn+1[G(u)]
Tn[G(u)] ; see [11, 12, 16, 32] and [18, Section 1].

8. Monotonicity of the ratio lnTn+1[G(u)]
lnTn[G(u)] ; see [2, 7, 10, 24, 26], [6, Remark 7],

and [18, Section 1].

9. Connections between the normalized remainder Tn[G(u)] with hypergeometric
functions; see [6, Remark 7], [18, Section 1], and [12, 26, 33].
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10. Inequalities for the function G(u) and related ones; see [2, 11, 12, 16, 25, 32, 33]
and [18, Sections 1 and 5].

11. General properties of the normalized remainder Tn[G(u)] ; see [18, Section 1.10].

In [8, Section 1] and [25, Remark 2], the normalized remainder Tn[eu] considered in [2,
8, 16, 30, 32] was applied to unify the generating functions of the Bernoulli numbers
and polynomials, the Stirling numbers of the second kind, and the Carlitz–Howard
numbers and polynomials.

The classical Euler gamma function (z) can be defined [23, Chapter 3] by

(z) = lim
n→

n!nz

n
k=0(z+ k)

, z ∈ C\ {0,−1,−2, . . .}.

It is general knowledge for scientists that the gamma function (z) has had very exten-
sive applications in mathematical sciences, including physics and engineering, in the
past centuries. In [23, p. 71, Eq. (3.38)], we find the integral representation

1
(z)

=
ez z1−z



∫ 

0
e−z() d , (z) � 0, (2)

where

( ) = 1− 
tan

+ ln


sin

=



j=1

2 j +1
2 j

|B2 j| (2 )2 j

(2 j)!

=
1
2
 2 +

1
36

 4 +
1

405
 6 +

1
4200

 8 +
1

42525
 10 + . . .

(3)

for | | <  and B2 j stands for the classical Bernoulli numbers which are generated
in [23, p. 3] by

1
T0[e ]

=


e −1
=




j=0

Bj
 j

j!
= 1− 

2
+




j=1

B2 j
 2 j

(2 j)!
, | | < 2 .

As stated in [23, p. 71], the integral representation (2) is very useful when one wants to
evaluate the gamma function (z) by means of a simple quadrature rule.

In this paper, we concentrate our attention on the normalized remainder

T2n+1[( )] =

⎧⎪⎨
⎪⎩

2n+2
2n+3

1
|B2n+2|

(2n+2)!
(2 )2n+2

[
( )−

n


j=1

2 j +1
2 j

|B2 j| (2 )2 j

(2 j)!

]
,  �= 0

1,  = 0

for n ∈ N0 and  ∈ (− ,) , which is obviously an even function of  ∈ (− ,) .
It is clear that

T2n+1[( )] =
2n+2
2n+3

(2n+2)!
|B2n+2|




j=0

2 j +2n+3
2 j +2n+2

|B2 j+2n+2|
(2 j +2n+2)!

(2 )2 j (4)
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for n ∈ N0 and | | <  . Hence, it is easy to see that the normalized remainder
T2n+1[( )] for n ∈ N0 is positive in  ∈ (− ,) , decreasing in  ∈ (− ,0) , and
increasing in  ∈ (0,) .

Differentiating twice gains

T ′′
2n+1[( )] =

n+1
2n+3

(2n+2)!
|B2n+2|




j=0

2 j +2n+5
j +n+2

|B2 j+2n+4|
(2 j +2n+4)!

22 j+3( j+1)(2 j+1) 2 j.

Therefore, the normalized remainder T2n+1[( )] for n∈N0 is convex in  ∈ (− ,) .
From the series representation (4), it is not difficult to see that the normalized re-

mainder T2n+1[( )] for n∈ N0 is an absolutely monotonic function in  ∈ (0,) and
a completely monotonic function in  ∈ (− ,0) . For information on absolutely (com-
pletely) monotonic functions, please refer to the paper [16] and the monograph [21].

In this work, we aim to present the logarithmic convexity of the normalized re-
mainder T2n+1[( )] for n ∈ N0 in  ∈ (− ,) and aim to discuss the monotonicity

of the ratio T2n+3[()]
T2n+1[()] for n ∈ N0 in  ∈ (− ,0)∪ (0,) .

2. Lemmas

For smoothly proceeding, we recall and establish the following lemmas.

LEMMA 1. ([13, Lemma 2]) The sequence

j
( j +1)2(2 j +1)

∣∣∣∣B2 j+2

B2 j

∣∣∣∣
is increasing in j � 0 .

LEMMA 2. ([3, 27]) Let  j and  j for j ∈N0 be real sequences and the Maclau-
rin power series

P() =



j=0

 j j and Q() =



j=0

 j j

converge on (− ,) for some scalar  > 0 . If  j > 0 and the sequence
 j
 j

increases

in j � 0 , then the function  	→ P( )
Q( ) increases on (0,) .

LEMMA 3. The sequence

j(2 j +3)
( j +1)2(2 j +1)2

∣∣∣∣B2 j+2

B2 j

∣∣∣∣
is increasing in j ∈ N0 .
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Proof. In the proof of [22, Theorem 1.1], the relation∣∣∣∣B2 j+2

B2 j

∣∣∣∣= 1
22

[
(2 j +1)( j +1)

 (2 j +2)
 (2 j)

]
(5)

for j ∈ N was derived, where the Riemann zeta function  (z) can be defined by the
series  (z) = 

n=1
1
nz under the condition (z) > 1 and by analytic continuation else-

where. Utilizing the relation (5) yields

j(2 j +3)
( j +1)2(2 j +1)2

∣∣∣∣B2 j+2

B2 j

∣∣∣∣= 1
22

j(2 j +3)
( j +1)(2 j +1)

 (2 j +2)
 (2 j)

for j ∈ N . Basing on the proof of [13, Lemma 2] (that is, Lemma 1 above-mentioned),
we see that the positive sequence  (2 j+2)

 (2 j) is increasing in j ∈ N . Meanwhile, the

positive sequence j(2 j+3)
( j+1)(2 j+1) is increasing in j ∈ N0 . The required result in Lemma 3

is thus proved. �

3. Logarithmic convexity of normalized remainder T2n+1[( )]

In this section, we present a nontrivial fundamental property of the normalized
remainder T2n+1[( )] : the logarithmic convexity of T2n+1[( )] for given n ∈ N0 in
 ∈ (− ,) .

THEOREM 1. For n ∈ N0 , the normalized remainder T2n+1[( )] is logarithmi-
cally convex in  ∈ (− ,) .

Proof. Directly computing yields

d lnT2n+1[( )]
d

=
T ′
2n+1[( )]

T2n+1[( )]

=


j=1
2 j+2n+3
2 j+2n+2

|B2 j+2n+2|
(2 j+2n+2)!2

2 j(2 j) 2 j−1


j=0

2 j+2n+3
2 j+2n+2

|B2 j+2n+2|
(2 j+2n+2)!2

2 j 2 j

= 8


j=0
2 j+2n+5
j+n+2

|B2 j+2n+4|
(2 j+2n+4)!2

2 j( j +1) 2 j


j=0

2 j+2n+3
j+n+1

|B2 j+2n+2|
(2 j+2n+2)!2

2 j 2 j
,

where we used the series representation (4). Furthermore, the ratio between the corre-
sponding coefficients of the factors  2 j of two series in the last fraction is

2 j+2n+5
j+n+2

|B2 j+2n+4|
(2 j+2n+4)!2

2 j( j +1)
2 j+2n+3
j+n+1

|B2 j+2n+2|
(2 j+2n+2)!2

2 j
=

( j +1)( j +n+1)(2 j +2n+5)
2( j +n+2)2(2 j +2n+3)2

∣∣∣∣B2 j+2n+4

B2 j+2n+2

∣∣∣∣
=

( j +1)(2 j +2n+5)
2(2 j +2n+3)

j +n+1
( j +n+2)2(2 j +2n+3)

∣∣∣∣B2( j+n+2)

B2( j+n+1)

∣∣∣∣, j,n ∈ N0. (6)
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Making use of Lemma 1, we see that the sequence

j +n+1
( j +n+2)2(2 j +2n+3)

∣∣∣∣B2( j+n+2)

B2( j+n+1)

∣∣∣∣
for given n ∈ N0 is increasing in j ∈ N0 . It is not difficult to verify that the positive
sequence ( j+1)(2 j+2n+5)

2(2 j+2n+3) for given n ∈ N0 is increasing in j ∈ N0 too. Therefore, the
sequence in (6) is increasing in j ∈ N0 for given n ∈ N0 . Consequently, by virtue of
Lemma 2, we derive that the derivative

d lnT2n+1[( )]
d

=
T ′
2n+1[( )]

T2n+1[( )]

for given n ∈ N0 is increasing in  ∈ (0,) . This means that the second derivative

d2 lnT2n+1[( )]
d 2 =

d
d

(
T ′
2n+1[( )]

T2n+1[( )]

)

for given n ∈ N0 is positive in  ∈ (0,) . As a result, the normalized remainder
T2n+1[( )] for given n ∈ N0 is logarithmically convex in  ∈ (0,) . Considering the
evenness of T2n+1[( )] for n ∈ N0 in  ∈ (− ,) , we conclude that the normalized
remainder T2n+1[( )] for given n∈N0 is logarithmically convex in  ∈ (− ,) too.
Theorem 1 is thus proved. �

COROLLARY 1. For n ∈ N0 and  ∈ (− ,) , the inequality

T ′
2n+1[( )]

T2n+1[( )]
� 4

(n+1)(2n+5)
(n+2)2(2n+3)2

∣∣∣∣B2n+4

B2n+2

∣∣∣∣ (7)

is sound. The equality in (7) is valid if and only if  = 0 .

Proof. From the proof of Theorem 1, we deduce that the even function

1
8

T ′
2n+1[( )]

T2n+1[( )]
=


j=0

2 j+2n+5
j+n+2

|B2 j+2n+4|
(2 j+2n+4)!2

2 j( j +1) 2 j


j=0

2 j+2n+3
j+n+1

|B2 j+2n+2|
(2 j+2n+2)!2

2 j 2 j

is increasing in  ∈ (0,) for given n ∈ N0 . Hence, we acquire the inequality

1
8

T ′
2n+1[( )]

T2n+1[( )]
> lim

→0


j=0

2 j+2n+5
j+n+2

|B2 j+2n+4|
(2 j+2n+4)!2

2 j( j +1) 2 j


j=0

2 j+2n+3
j+n+1

|B2 j+2n+2|
(2 j+2n+2)!2

2 j 2 j

=
(n+1)(2n+5)

2(n+2)2(2n+3)2

∣∣∣∣B2n+4

B2n+2

∣∣∣∣
for n ∈ N0 and  ∈ (− ,0)∪ (0,) . The proof of Corollary 1 is complete. �
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4. Monotonicity of the ratio T2n+3[()]
T2n+1[()]

In this section, we discuss another nontrivial fundamental property of the normal-
ized remainder T2n+1[( )] : the monotonicity of the ratio T2n+3[()]

T2n+1[()] for given n ∈ N0

in  ∈ (− ,0)∪ (0,) .

THEOREM 2. For n ∈ N0 , the ratio T2n+3[()]
T2n+1[()] is decreasing in  ∈ (− ,0) and

increasing in  ∈ (0,) . Consequently, the normalized remainders T2n+1[( )] for
n ∈ N0 satisfy the inequality

T2n+3[( )] > T2n+1[( )],  ∈ (− ,0)∪ (0,). (8)

Proof. In view of the series representation (4), we obtain

T2n+3[( )]
T2n+1[( )]

=
2n+4
2n+5

(2n+4)!
|B2n+4| 


j=0

2 j+2n+5
2 j+2n+4

|B2 j+2n+4|
(2 j+2n+4)!(2 )2 j

2n+2
2n+3

(2n+2)!
|B2n+2| 


j=0

2 j+2n+3
2 j+2n+2

|B2 j+2n+2|
(2 j+2n+2)!(2 )2 j

. (9)

The ratio between the corresponding coefficients of the terms (2 )2 j of two series in
the last fraction is

2 j+2n+5
2 j+2n+4

|B2 j+2n+4|
(2 j+2n+4)!

2 j+2n+3
2 j+2n+2

|B2 j+2n+2|
(2 j+2n+2)!

=
( j +n+1)(2 j +2n+5)

2( j +n+2)2(2 j +2n+3)2

∣∣∣∣B2 j+2n+4

B2 j+2n+2

∣∣∣∣
=

1
2

2 j +2n+5
2 j +2n+3

j +n+1
( j +n+2)2(2 j +2n+3)

∣∣∣∣B2 j+2n+4

B2 j+2n+2

∣∣∣∣
(10)

for j,n ∈ N0 . Replacing j +n+1 by k in the last sequence gives

1
2

k(2k+3)
(k+1)2(2k+1)2

∣∣∣∣B2k+2

B2k

∣∣∣∣, k ∈ N0.

In light of Lemma 3, we are sure that the sequence in (10) for given n∈N0 is increasing
in j ∈ N0 . By virtue of Lemma 2, we derive that the ratio in (9) for given n ∈ N0 is
increasing in  ∈ (0,) . Due to that the ratio in (9) for given n ∈ N0 is even in  ∈
(− ,) , we deduce that the ratio in (9) for given n ∈ N0 is decreasing in  ∈ (− ,0) .

The inequality (8) follows from the monotonicity of the ratio T2n+3[()]
T2n+1[()] and the

value of the ratio T2n+3[()]
T2n+1[()] at  = 0 is equal to 1. The proof of Theorem 2 is com-

plete. �
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5. Remarks

In this section, we list several remarks as follows.

REMARK 1. In [4, p. 55, Entry 1.518], we find the Maclaurin expansion

lnsin = ln +



j=1

(−1) j22 j−1

j
B2 j

 2 j

(2 j)!
, 0 <  <  . (11)

The power series expansion (11) is equivalent to

ln


sin
=




j=1

(−1) j−1 22 j−1

j
B2 j

 2 j

(2 j)!
, 0 < | | <  . (12)

In [1, p. 75, Entry 4.3.70], we find the Laurent series expansion

cot =
1

−




j=1

(−1) j−122 jB2 j
 2 j−1

(2 j)!
, 0 < | | <  . (13)

The series expansion (13) can also be derived from differentiating on both sides of (11).
Conversely, the series expansion (11) can also be derived from integrating on both sides
of (13). Therefore, we obtain

( ) = 1−

[
1

−




j=1

(−1) j−122 jB2 j
 2 j−1

(2 j)!

]
+




j=1

(−1) j−1 22 j−1

j
B2 j

 2 j

(2 j)!

=



j=1

(−1) j−122 jB2 j
 2 j

(2 j)!
+




j=1

(−1) j−1 22 j−1

j
B2 j

 2 j

(2 j)!

=



j=1

2 j +1
2 j

|B2 j| (2 )2 j

(2 j)!
, | | <  .

This gives an alternative proof of the Maclaurin expansion (3).
In the paper [17, Remark 13] and [20], the Maclaurin expansion (12) was discussed

and generalized.

REMARK 2. ( [5, p. 11] and [17, Theorem 15]) If  > 0, the Maclaurin expan-
sion

cos z =



k=0

(−1)k

[
2k


�=0

(−)�
�!

�


m=0

(−1)m

2m

(
�

m

) m


q=0

(
m
q

)(
m
2
−q

)2k
]

(2z)2k

(2k)!
(14)

converges for z ∈ C ; if  < 0, the series expansion (14) converges for |z| < 
2 . See

also the answer at the website https://math.stackexchange.com/a/4976672 (ac-
cessed on 26 September 2024).

https://math.stackexchange.com/a/4976672
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REMARK 3. Since

j(2 j +3)
( j +1)2(2 j +1)2

∣∣∣∣B2 j+2

B2 j

∣∣∣∣= 2 j +3
2 j +1

j
( j +1)2(2 j +1)

∣∣∣∣B2 j+2

B2 j

∣∣∣∣, j ∈ N0

and the sequence 2 j+3
2 j+1 is decreasing in j ∈ N0 , Lemma 3 is stronger than Lemma 1.

REMARK 4. Taking n = 0,1,2 in (7) gives the inequalities

9

(


sin

)2

− ( 2 +18
)
ln


sin

+ 2 
tan

> 9+ 2,

45

(


sin

)2

−4
(
2 2 +45

)
ln


sin

+2
(
4 2 +45

) 
tan

> 135−37 2−4 4,

and

5040

(


sin

)2

−108
(
9 2 +280

)
ln


sin

+36
(
27 2 +560

) 
tan

> 25200−9108 2−766 4−27 6

for  ∈ (− ,0)∪ (0,) .

REMARK 5. We guess that the ratio T2n+3[()]
T2n+1[()] for n∈N0 should be convex, even

logarithmically convex, in  ∈ (− ,) .
For example, when n = 0, we have

T3[( )]
T1[( )]

= 9

[
2
 2 − 1

( )

]

= 9

(
2
 2 − 1

2

2 + 4

36 + 6

405 + 8

4200 + 10

42525 + . . .

)

=
18
 2

(
1− 1

1+ 2

18 + 24

405 + 6

2100 + 28

42525 + . . .

)

= 1+
 2

30
+

101 4

56700
+

109 6

1020600
+

15979 8

2357586000
+ . . .

for  ∈ (− ,) , where we used the Maclaurin expansion in (3). This implies that the

ratio T3[()]
T1[()] is possibly convex in  ∈ (− ,) .
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6. Conclusions

In this work, we mainly established two conclusions:

1. For n ∈ N0 , the normalized remainder T2n+1[( )] is a logarithmically convex
function in  ∈ (− ,) ; see Theorem 1.

2. For n ∈ N0 , the ratio T2n+3[()]
T2n+1[()] is a decreasing function in  ∈ (− ,0) and an

increasing function in  ∈ (0,) ; see Theorem 2.

The inequality (7) was deduced as a by-product of Theorem 1.
The increasing property of two sequences in Lemmas 1 and 3 are interesting, be-

cause these two sequences contain the ratios between two nonzero Bernoulli numbers.
For more information and generalizations of the ratios between two nonzero Bernoulli
numbers and polynomials, please refer to the papers [14, 15, 22], [32, Proposition 1],
and the arXiv preprint [28].

To consider and solve the guess in Remark 5 is much interesting.
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