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Abstract. We provide a new approach to the proofs of some existing bilateral inequalities for
fusion frames in Hilbert spaces from the perspective of function theory, which greatly simplifies
the proving process and shows that the parameter involving in four of the results mentioned can
take values from larger ranges. We also present an improvement to two results on this topic. At
the end of the paper we establish several new bilateral inequalities for fusion frames in Hilbert
spaces, following the approaches of which corresponding bilateral inequalities for some other
generalized frames with new types of structures can be naturally obtained.

1. Introduction

Throughout the paper, the notations R , I and N are used to denote, respectively,
the set of real numbers, a countable index set and a Hilbert space. For a closed subspace
W of N , we denote by W the orthogonal projection onto W .

Frames put forward in the paper [12], as a brand-new and powerful tool, were
originally used to process some profound problems deriving in nonharmonic Fourier
series, which were brought back to people’s vision by Daubechies et al. [11] owing to
their groundbreakingwork on wavelets. Thanks to some of their nice properties, frames
have already been applied to many research fields (see [3, 10, 19, 21] for example). We
refer also to [9] for more details about frame theory.

The notion of fusion frames (called also frames of subspaces), as a generalization
of frames, was introduced independently by Casazza and Kutyniok in [6] and Fornasier
in [13], when dedicating their effort to examine some large systems. Because of the
complicated structure, fusion frames do admit some new behaviors compared to frames,
which makes the study of them interesting. The reader can consult, for example, the
papers [4, 5, 7, 8] for applications of fusion frames.

Suppose Mi is a closed subspace of N for any i ∈ I , and {i}i∈I is a sequence
of weights (each i > 0). The family M = {(Mi,i)}i∈I is said to be a fusion frame
for N , if there are numbers 0 < CM � DM <  so that the bilateral inequality

CM‖x‖2 �
i∈I

 2
i ‖Mi(x)‖2 � DM‖x‖2 (1)
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holds for any x ∈ N . We call M = {(Mi,i)}i∈I a Bessel fusion sequence if only the
inequality on the right hand side of (1) is assumed to be satisfied.

Given a fusion frame M = {(Mi,i)}i∈I for N , we can define a linear bounded
operator UM , called the analysis operator of M , in the following way

UM : N →
(

i∈I

⊕
Mi

)
�2

, UMx = {iMi(x)}i∈I, (2)

where (i∈I⊕Mi)�2 is the Hilbert space defined by
(

i∈I

⊕
Mi

)
�2

=
{
{gi}i∈I

∣∣gi ∈Mi, ‖{gi}i∈I‖2
2 =

i∈I

‖gi‖2 < 
}

.

Further, a self-adjoint and invertible operator SM , namely the fusion frame operator of
M , can be obtained if we take a compositional operation on U∗

M and UM :

SM : N →N , SMx = U∗
MUMx =

i∈I

 2
i Mi(x), ∀x ∈ N , (3)

which thereby leads to the so-called reconstruction formula:

x =
i∈I

 2
i S−1

MMi(x) =
i∈I

 2
i Mi(S

−1
Mx), ∀x ∈ N . (4)

Recall also that the family M′ = {(S−1
MMi,i)}i∈I is still a fusion frame for N (see

[16]), which is called the dual fusion frame of M .
For each  ⊂ I , there are two self-adjoint operators related to  , and c , the

complementary set of  , and the fusion frame M = {(Mi,i)}i∈I for N , given below

SM,S
c

M : N →N , SMx =
i∈

 2
i Mi(x), S

c

Mx = 
i∈c

 2
i Mi(x). (5)

It is clear that SM +S
c

M = SM .
Let M = {(Mi,i)}i∈I and P = {(Pi,i)}i∈I be respectively a fusion frame and

a Bessel fusion sequence for N . One calls P an alternate dual fusion frame of M , if
for each x ∈ N we have

x =
i∈I

iiPiS
−1
MMi(x). (6)

Suppose M = {(Mi,i)}i∈I is a fusion frame for N and P = {(Pi,i)}i∈I is
an alternate dual fusion frame of M . Then associated with any  ⊂ I and the pair
(M,P) , there are two linear bounded operators W  ,W c

: N →N defined by

W x =
i∈

iiPiS
−1
MMi(x), W c

x = 
i∈c

iiPiS
−1
MMi(x), ∀x ∈ N . (7)

Inequalities for frames were first studied by Balan et al. in [2], where an interesting
inequality for Parseval frames was presented (see [2, Proposition 4.1]). Assisted by the
corresponding canonical dual frames and alternate dual frames, Găvruţa later extended
the inequality to the case of general frames (see [15, Theorems 2.2 and 3.2]).
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In recent years, much attention has been paid to the generalization of the frame
inequalities and particulary, Poria [20] provided us with a new type of inequalities for
Hilbert-Schmidt frames, which are related to a parameter taking values from intervals
(see [20, Theorems 3.5 and 3.7]). In the light of the idea of Poria, Li et al. in [17]
showed us several more general inequalities (bilateral inequalities associated with a
parameter  ) for fusion frames (proved by means of the idea offered in [20]).

THEOREM 1. (see [17, Theorem 3]) Suppose M = {(Mi,i)}i∈I is a fusion
frame for N with the fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the
dual fusion frame of M . Then for all  ∈ [0,2] , for any  ⊂ I and any x∈N , we have


i∈I

 2
i ‖Mi(x)‖2 � 

i∈c
 2

i ‖Mi(x)‖2 +
i∈I

 2
i ‖MiS

−1
MSM(x)‖2

=
i∈

 2
i ‖Mi(x)‖2 +

i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2

�
(
 −  2

4

)

i∈

 2
i ‖Mi(x)‖2 +

(
1−  2

4

)

i∈c

 2
i ‖Mi(x)‖2.

(8)

THEOREM 2. (see [17, Theorem 5]) Suppose M = {(Mi,i)}i∈I is a fusion
frame for N with the fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the
dual fusion frame of M . Then for all  ∈ [1,2] , for any  ⊂ I and any x∈N , we have

0 �
i∈

 2
i ‖Mi(x)‖2−

i∈I

 2
i ‖MiS

−1
MSM(x)‖2

� ( −1) 
i∈c

 2
i ‖Mi(x)‖2 +

(
1− 

2

)2


i∈I

 2
i ‖Mi(x)‖2.

(9)

THEOREM 3. (see [17, Theorem 6]) Suppose M = {(Mi,i)}i∈I is a fusion
frame for N with the fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the
dual fusion frame of M . Then for all  ∈ [1,2] , for any  ⊂ I and any x∈N , we have

(
2 −  2

2
−1

)

i∈

 2
i ‖Mi(x)‖2 +

(
1−  2

2

)

i∈c

 2
i ‖Mi(x)‖2

�
i∈I

 2
i ‖MiS

−1
MSM(x)‖2 +

i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2

� 
i∈I

 2
i ‖Mi(x)‖2.

(10)

Bilateral inequalities for some other frame versions also emerged (see for example,
the papers [14, 18, 24]), which, however, share the same structures as the ones in [17].
Given this, the authors in [22] explored bilateral inequalities possessing new structures
for fusion frames, and the main results obtained are as follows.

THEOREM 4. (see [22, Theorem 1]) Suppose M = {(Mi,i)}i∈I is a fusion
frame for N with the fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the
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dual fusion frame of M . Then for every  ∈ [1,+) , for any  ⊂ I and any x ∈ N ,
we have


i∈

 2
i ‖Mi(x)‖2 − 

i∈c
 2

i ‖Mi(x)‖2

�
i∈I

 2
i ‖MiS

−1
MSM(x)‖2 −

i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2 (11)

� ( 3 − 2 +1)
i∈

 2
i ‖Mi(x)‖2 +( 3−3 2 +2 −1)

i∈c
 2

i ‖Mi(x)‖2.

THEOREM 5. (see [22, Theorem 2]) Suppose M = {(Mi,i)}i∈I is a fusion
frame for N with the fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the
dual fusion frame of M . Then for every  ∈ [ 1

2 ,+) , for any  ⊂ I and any x ∈ N ,
we have

(4 −1)
i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2 +(1− 2)
i∈I

 2
i ‖Mi(x)‖2

�
i∈

 2
i ‖Mi(x)‖2 +(1+2 )

i∈c
 2

i ‖Mi(x)‖2

�
i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2 +(1+ 2)
i∈I

 2
i ‖Mi(x)‖2.

(12)

THEOREM 6. (see [22, Theorem 3]) Suppose M = {(Mi,i)}i∈I is a fusion
frame for N with the fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the
dual fusion frame of M . Then for every  ∈ R , for any  ⊂ I and any x ∈N , we have

(1+2 )
i∈c

 2
i ‖Mi(x)‖2 − (1+ 2)

i∈I

 2
i ‖Mi(x)‖2

�
i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2 −
i∈

 2
i ‖Mi(x)‖2

� (3−2 )
i∈c

 2
i ‖Mi(x)‖2 +( 2−1)

i∈I

 2
i ‖Mi(x)‖2.

(13)

THEOREM 7. (see [22, Theorem 4]) Let M = {(Mi,i)}i∈I be a fusion frame
for N and P = {(Pi,i)}i∈I be an alternate dual fusion frame of M . Then for each
 ∈ [0,1] , for any  ⊂ I and any x ∈ N , we have

( − 2)
∥∥∥∥

i∈I

iiPiS
−1
MMi(x)

∥∥∥∥
2

−Re 
i∈c

ii〈S−1
MMi(x),Pi(x)〉

�
∥∥∥∥

i∈
iiPiS

−1
MMi(x)

∥∥∥∥
2

−Re
i∈

ii〈S−1
MMi(x),Pi(x)〉

�  (‖W  −W c‖2−1)+4(1− )‖W‖2

4
‖x‖2.

(14)
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THEOREM 8. (see [22, Theorem 5]) Let M = {(Mi,i)}i∈I be a fusion frame
for N and P = {(Pi,i)}i∈I be an alternate dual fusion frame of M . Then for each
 ∈ [0, 1

2 ] , for any  ⊂ I and any x ∈ N , we have

(2 − 2)
∥∥∥∥

i∈I

iiPiS
−1
MMi(x)

∥∥∥∥
2

�
∥∥∥∥

i∈
iiPiS

−1
MMi(x)

∥∥∥∥
2

+2Re 
i∈c

ii〈S−1
MMi(x),Pi(x)〉

� 3 +2(1−2 )‖W‖2 +‖W −W c‖2

2
‖x‖2.

(15)

After a careful examination of above results, we found the following facts:
(1) The proofs of Theorems 1–6 are entirely dependent on results about linear

bounded operators (i.e. [17, Lemmas 1 and 3] and [22, Lemma 1]), as well as the
relationship of operators related to the fusion frames, making the process lengthy.

(2) As for Theorems 7 and 8, we found that the two inequalities on the left hold
for any parameter belonging to R , meaning that the involved intervals [0,1] and [0, 1

2 ]
are redundant conditions for them.

Given this, in this paper we present a new approach to the proofs of Theorems 1–6
from the perspective of function theory, which can greatly simplify the proving process.
And particularly, our proof method shows that the involving parameter in Theorems 1,
2, 3 and 5 can take values from larger ranges. We also provide new expressions for
Theorems 7 and 8, so that the left-hand inequalities in them can be truly determined by
the intervals where the parameter is taken from, and that the intervals [0,1] and [0, 1

2 ]
in those two theorems can be extended to larger ones. Moreover, we establish several
new bilateral inequalities for fusion frames in Hilbert spaces.

2. New proofs

We need to explain some symbols first. Given a fusion frame M = {(Mi,i)}i∈I

for N with analysis operators UM and fusion frame operator SM respectively, let us
denote Q = UMS−1

MU∗
M . Then, as in the classical case, Q is the orthogonal projection

from (i∈I⊕Mi)�2 onto Range(UM) . For any  ⊂ I , we denote by P the orthogonal
projection on (i∈I⊕Mi)�2 given by

P({yi}i∈I) = {zi}i∈I, where

{
zi = yi if i ∈  ,
zi = 0 if i ∈ c.

With the help of P , the notations SM and S
c

M in (5) now can be expressed respectively
as SM = U∗

MPUM and S
c

M = U∗
MP⊥

 UM .

2.1. New proofs of Theorems 1, 2 and 3

The aim of this section is to present new proofs to Theorems 1, 2 and 3, and to show
that the intervals [0,2] , [1,2] and [1,2] involved in those theorems can be respectively
extended to R , R and [1,+) .
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2.1.1. Proof of Theorem 1

The formula (8) in Theorem 1 can be rewritten as

‖UMx‖2 � ‖P⊥
 UMx‖2 +‖QPUMx‖2

= ‖PUMx‖2 +‖QP⊥
 UMx‖2

�
(
 −  2

4

)
‖PUMx‖2 +

(
1−  2

4

)
‖P⊥

 UMx‖2

(16)

for each x ∈ N . Denote by y = UMx and normalize it to ‖y‖ = 1. Then Qy = y . The
equality in (16) follows from the fact that

‖Py‖2−‖QPy‖2 = ‖Q⊥Py‖2 = ‖Q⊥P⊥
 y‖2 = ‖P⊥

 y‖2−‖QP⊥
 y‖2. (17)

To show the inequality on the right in (16), it is equivalent to show that the quadratic
function

f ( ) = ‖P⊥
 y‖2 +‖QPy‖2−

(
 −  2

4

)
‖Py‖2−

(
1−  2

4

)
‖P⊥

 y‖2 � 0,

which is really the case for any  ∈ R , since

f ( ) = ‖QPy‖2−‖Py‖2 +
 2

4
(‖Py‖2 +‖P⊥

 y‖2)

=
 2

4
−‖Py‖2 +‖QPy‖2

=
(

2
−‖Py‖2

)2

+(‖QPy‖2−‖Py‖4),

and ‖Py‖2 = 〈QPy,y〉 � ‖QPy‖ . For the left-hand inequality in (16), we have

‖P⊥
 UMx‖2 +‖QPUMx‖2 � ‖P⊥

 UMx‖2 +‖PUMx‖2 = ‖UMx‖2

for any x ∈N . This concludes the proof of the theorem.

2.1.2. Proof of Theorem 2

Taking y =UMx and normalize it to ‖y‖= 1 for each x∈N . Then we can rewrite
the inequalities in (9) as

0 � ‖Py‖2−‖QPy‖2 � ( −1)‖P⊥
 y‖2 +

(
1− 

2

)2

. (18)
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The inequality on the left is obvious. As for the right-hand inequality in (18), it is
equivalent to show that

0 � g( ) = ( −1)‖P⊥
 y‖2 +

(
1− 

2

)2

−‖Py‖2 +‖QPy‖2

= ‖P⊥
 y‖2− (‖P⊥

 y‖2 +‖Py‖2)+
 2

4
− +1+‖QPy‖2

=
 2

4
− (1−‖P⊥

 y‖2)+‖QPy‖2

=
 2

4
−‖Py‖2 +‖QPy‖2 =

(

2
−‖Py‖2

)2

+(‖QPy‖2−‖Py‖4),

which is true for any  ∈ R , since ‖QPy‖ � ‖Py‖2 as shown in Section 2.1.1, and
we are done.

2.1.3. Proof of Theorem 3

Letting y = UMx and normalize it to ‖y‖ = 1 for all x ∈N , then the inequalities
in (10) can be rewritten as

(
2 −  2

2
−1

)
‖Py‖2 +

(
1−  2

2

)
‖P⊥

 y‖2 � ‖QPy‖2 +‖QP⊥
 y‖2 �  . (19)

Obviously, the inequality on the right holds for each  � 1, since

‖QPy‖2 +‖QP⊥
 y‖2 � ‖Py‖2 +‖P⊥

 y‖2 = ‖y‖2 = 1.

For the left-hand inequality in (19), it is equivalent to prove that

h( ) = ‖QPy‖2 +‖QP⊥
 y‖2−

(
2 −  2

2
−1

)
‖Py‖2−

(
1−  2

2

)
‖P⊥

 y‖2 � 0.

Since
‖Py‖2−‖P⊥

 y‖2 +‖QP⊥
 y‖2 = ‖QPy‖2,

by (17), and ‖Py‖4 � ‖QPy‖2 , it follows that

h( ) = ‖QPy‖2 +(‖QP⊥
 y‖2 +‖Py‖2−‖P⊥

 y‖2)

−2‖Py‖2 +
 2

2
(‖Py‖2 +‖P⊥

 y‖2)

=
 2

2
−2‖Py‖2 +2‖QPy‖2

= 2

(

2
−‖Py‖2

)2

+2(‖QPy‖2−‖Py‖4) � 0,

and we arrive at the conclusion.
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2.2. New proofs of Theorems 4, 5 and 6

The purpose of this section is to provide new proofs to Theorems 4, 5 and 6, and
to show that the interval [ 1

2 ,+) involved in Theorem 5 can be extended to [0,+) .

2.2.1. Proof of Theorem 4

The inequalities stated in (11) can be rewritten as

‖PUMx‖2−‖P⊥
 UMx‖2

� ‖QPUMx‖2−‖QP⊥
 UMx‖2

� ( 3 − 2 +1)‖PUMx‖2 +( 3−3 2 +2 −1)‖P⊥
 UMx‖2

(20)

for each x ∈N . Denote by y =UMx and normalize it to ‖y‖= 1. Then Qy = y . Now
the left-hand inequality in (20) follows from the equality

‖Py‖2−‖QPy‖2 = ‖Q⊥Py‖2 = ‖Q⊥P⊥
 y‖2 = ‖P⊥

 y‖2−‖QP⊥
 y‖2 (21)

for each  � 1.
For the inequality on the right in (20), we know, by combining (20) with (21), that

it is equivalent to

(1− )‖QP⊥
 y‖2 � (1− )[2‖P⊥

 y‖2− 2]. (22)

To show (22), it is equivalent to prove that, for  � 1, the quadratic function f ( ) =
 2 − 2‖P⊥

 y‖2 + ‖QP⊥
 y‖2 � 0. Since the minimizer for f ( ) is in 0 = ‖P⊥

 y‖2 ,
and ‖QP⊥

 y‖ � ‖P⊥
 y‖2 , we obtain

f ( ) � f (0) = (‖QP⊥
 y‖−‖P⊥

 y‖2)(‖QP⊥
 y‖+‖P⊥

 y‖2) � 0,

as desired.

2.2.2. Proof of Theorem 5

Letting y =UMx and normalize it to ‖y‖= 1 for any x∈N . Then we can rewrite
the inequalities in (12) as

(4 −1)‖QP⊥
 y‖2 +(1− 2) � ‖Py‖2 +(1+2 )‖P⊥

 y‖2 (23)

� ‖QP⊥
 y‖2 +(1+ 2).

It is easy to see that the inequality on the left is equivalent to prove that

g( ) =  2 +2 (‖P⊥
 y‖2−2‖QP⊥

 y‖2)+‖QP⊥
 y‖2 � 0,

which, actually, follows from the fact that

g( ) �  2 −2‖P⊥
 y‖2 +‖QP⊥

 y‖2

= ( −‖P⊥
 y‖2)2 +(‖QP⊥

 y‖2−‖P⊥
 y‖4)
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for each  ∈ [0,+) , and that ‖P⊥
 y‖2 � ‖QP⊥

 y‖ .
As for the right-hand inequality in (23), it is equivalent to show that

0 � h( ) = (1+ 2)+‖QP⊥
 y‖2−‖Py‖2− (1+2 )‖P⊥

 y‖2

=  2 −2‖P⊥
 y‖2 +(1−‖Py‖2−‖P⊥

 y‖2)+‖QP⊥
 y‖2

=  2 −2‖P⊥
 y‖2 +‖QP⊥

 y‖2,

which has already been presented in the proof of the left-hand inequality.

2.2.3. Proof of Theorem 6

For any x ∈N , taking y =UMx and normalize it to ‖y‖= 1, then the inequalities
in (13) can be rewritten as

(1+2 )‖P⊥
 y‖2− (1+ 2) � ‖QP⊥

 y‖2−‖Py‖2

� (3−2 )‖P⊥
 y‖2 +( 2−1).

(24)

The left-hand inequality in (24) follows from the following calculation

(1+ 2)+‖QP⊥
 y‖2−‖Py‖2− (1+2 )‖P⊥

 y‖2

=  2 +‖QP⊥
 y‖2 +‖P⊥

 y‖2− (1+2 )‖P⊥
 y‖2

=  2−2‖P⊥
 y‖2 +‖QP⊥

 y‖2

= ( −‖P⊥
 y‖2)2 +(‖QP⊥

 y‖2−‖P⊥
 y‖4) � 0

for any  ∈ R .
For the inequality on the right in (24), it is equivalent to show that

h( ) = (3−2 )‖P⊥
 y‖2 +( 2−1)+‖Py‖2−‖QP⊥

 y‖2 � 0,

which is indeed true, since

h( ) =  2 +(3−2 )‖P⊥
 y‖2−‖P⊥

 y‖2−‖QP⊥
 y‖2

=  2 +2(1− )‖P⊥
 y‖2−‖QP⊥

 y‖2

= ( −‖P⊥
 y‖2)2 +(‖P⊥

 y‖2−‖P⊥
 y‖4)+ (‖P⊥

 y‖2−‖QP⊥
 y‖2).

3. Improved results

The following two results make an improvement to Theorems 7 and 8 respectively,
which enables the inequalities on the left to be truly determined by the involved intervals
and allows the parameter to take values from larger ranges.

THEOREM 9. Suppose M = {(Mi,i)}i∈I is a fusion frame for N , and P =
{(Pi,i)}i∈I is an alternate dual fusion frame of M . Then for each  ∈ [0,2] , for any
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 ⊂ I and any x ∈N , we have

(1− − (2− )‖W‖2)‖x‖2

�
∥∥∥∥

i∈
iiPiS

−1
MMi(x)

∥∥∥∥
2

−Re
i∈

ii〈S−1
MMi(x),Pi(x)〉

� (2− )‖W‖2 + (‖W c‖2−1)
2

‖x‖2.

Proof. Since W  +W c
= IdN , the identity operator on N , we have, for each

 ∈ [0,2] , for any x ∈N and any  ⊂ I , that
∥∥∥∥

i∈
iiPiS

−1
MMi(x)

∥∥∥∥
2

−Re
i∈

ii〈S−1
MMi(x),Pi(x)〉

= ‖W x‖2−Re〈W x,x〉

= ‖W x‖2 +
‖x−Wx‖2−‖W x‖2−‖x‖2

2

=
2‖W x‖2 +‖W c

x‖2−‖W x‖2−‖x‖2

2

� (2− )‖W‖2 + (‖W c‖2−1)
2

‖x‖2.

On the other hand, we obtain
∥∥∥∥

i∈
iiPiS

−1
MMi(x)

∥∥∥∥
2

−Re
i∈

ii〈S−1
MMi(x),Pi(x)〉

= ‖W x‖2−Re〈W x,x〉
= ‖x‖2 +‖W c

x‖2−2Re〈W c
x,x〉− (‖x‖2−Re〈W c

x,x〉)
= (1− )‖x‖2 +‖W c

x‖2− (2− )Re〈W c
x,x〉

� (1− )‖x‖2− (2− )‖Wc‖‖x‖2

= (1− − (2− )‖Wc‖)‖x‖2

for each  ∈ [0,2] , for any x ∈ N and any  ⊂ I , and the proof is finished. �

THEOREM 10. Suppose M = {(Mi,i)}i∈I is a fusion frame for N , and P =
{(Pi,i)}i∈I is an alternate dual fusion frame of M . Then for each  ∈ [0,1] , for any
 ⊂ I and any x ∈N , we have

(1−2(1− )‖Wc‖)‖x‖2

�
∥∥∥∥

i∈
iiPiS

−1
MMi(x)

∥∥∥∥
2

+2Re 
i∈c

ii〈S−1
MMi(x),Pi(x)〉

�
(
(1− )‖W‖2 + (1+‖Wc‖2)

)‖x‖2.

(25)
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Proof. For each  ∈ [0,1] , for any x ∈ N and any  ⊂ I , we can obtain the left-
hand inequality in (25) by the following computation

∥∥∥∥
i∈

iiPiS
−1
MMi(x)

∥∥∥∥
2

+2Re
i∈c

ii〈S−1
MMi(x),Pi(x)〉

= ‖W x‖2 +2Re〈W c
x,x〉

= ‖x‖2 +‖Wc
x‖2−2Re〈W c

x,x〉+2Re〈W c
x,x〉

= ‖x‖2 +‖Wc
x‖2−2(1− )Re〈W c

x,x〉
� ‖x‖2−2(1− )‖Wc‖‖x‖2

= (1−2(1− )‖Wc‖)‖x‖2.

For the inequality on the right hand side, we compute that

∥∥∥∥
i∈

iiPiS
−1
MMi(x)

∥∥∥∥
2

+2Re 
i∈c

ii〈S−1
MMi(x),Pi(x)〉

= ‖W x‖2 +2Re〈W c
x,x〉

= ‖W x‖2 +2‖x‖2−2Re〈W x,x〉
= ‖W x‖2 +2‖x‖2− (‖x‖2 +‖W x‖2−‖x−Wx‖2)

= (1− )‖Wx‖2 +‖x‖2 +‖W c
x‖2

� ((1− )‖W‖2 + (1+‖Wc‖2))‖x‖2

for each  ∈ [0,1] , for any x ∈ N and any  ⊂ I , and we have the result. �

4. New inequalities

In this section, we give several new bilateral inequalities for fusion frames and,
following the approaches of the results, one can easily establish corresponding bilateral
inequalities for some other generalized frames such as K -frames, continuous fusion
frames, Hilbert-Schmidt frames, K -g-frames and continuous g-frames etc, which admit
new types of structures compared with the ones given in [1, 18, 20, 23, 24].

THEOREM 11. Suppose M = {(Mi,i)}i∈I is a fusion frame for N with the
fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the dual fusion frame of
M . Then for each  � 0 , for any  ⊂ I and any x ∈ N , we have

(1− 3)
i∈I

 2
i ‖Mi(x)‖2 +(2 2−2 −1) 

i∈c
 2

i ‖Mi(x)‖2

�
i∈

 2
i ‖Mi(x)‖2 −

i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2

� (1+ 3)
i∈I

 2
i ‖Mi(x)‖2− (1+2 2) 

i∈c
 2

i ‖Mi(x)‖2.

(26)
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Proof. For any x ∈ N , taking y = UMx and normalize it to ‖y‖ = 1. Then the
inequalities in (26) can be rewritten as

(1− 3)+ (2 2−2 −1)‖P⊥
 y‖2 � ‖Py‖2−‖QP⊥

 y‖2

� (1+ 3)− (1+2 2)‖P⊥
 y‖2.

(27)

Since

f ( ) = ‖Py‖2−‖QP⊥
 y‖2− (1− 3)− (2 2−2 −1)‖P⊥

 y‖2

=  3− (2 2−2 )‖P⊥
 y‖2 +(‖Py‖2 +‖P⊥

 y‖2−1)−‖QP⊥
 y‖2

=  3−2 2‖P⊥
 y‖2 +2‖P⊥

 y‖2−‖QP⊥
 y‖2

=  ( 2−2‖P⊥
 y‖2 +2‖P⊥

 y‖2−‖QP⊥
 y‖2)

= 
(
( −‖P⊥

 y‖2)2 +(‖P⊥
 y‖2−‖P⊥

 y‖4)+ (‖P⊥
 y‖2−‖QP⊥

 y‖2)
)

� 0

for each  � 0, meaning that the left-hand inequality in (27) holds. As for the inequality
on the right, it is equivalent to show that

g( ) = (1+ 3)− (1+2 2)‖P⊥
 y‖2−‖Py‖2 +‖QP⊥

 y‖2 � 0

for each  � 0, which is obvious since

g( ) =  3−2 2‖P⊥
 y‖2− (‖P⊥

 y‖2 +‖Py‖2−1)+‖QP⊥
 y‖2

=  3−2 2‖P⊥
 y‖2 +‖QP⊥

 y‖2

= 
(
( −‖P⊥

 y‖2)2 +(‖QP⊥
 y‖2−‖P⊥

 y‖4)
)
. �

THEOREM 12. Suppose M = {(Mi,i)}i∈I is a fusion frame for N with the
fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the dual fusion frame of
M . Then for each  ∈ R , for any  ⊂ I and any x ∈ N , we have

 
i∈

 2
i ‖Mi(x)‖2 +( − 2)

i∈I

 2
i ‖Mi(x)‖2

�
i∈I

 2
i ‖MiS

−1
MSM(x)‖2 + 

i∈c
 2

i ‖Mi(x)‖2

� (2−3 )
i∈

 2
i ‖Mi(x)‖2 +( 2 + )

i∈I

 2
i ‖Mi(x)‖2.

(28)

Proof. For all x ∈N , we let y =UMx and normalize it to ‖y‖= 1. Then, we can
rewrite the inequalities in (28) as follows:

‖Py‖2 + − 2 � ‖QPy‖2 +‖P⊥
 y‖2 � (2−3 )‖Py‖2 + 2 + , (29)

which, actually, follow from the computations

f ( ) =  2 + +(2−3 )‖Py‖2−‖P⊥
 y‖2−‖QPy‖2

=  2 +(2−3 )‖Py‖2 +‖Py‖2−‖QPy‖2

=  2 −2‖Py‖2 +2‖Py‖2−‖QPy‖2

= ( −‖Py‖2)2 +(‖Py‖2−‖Py‖4)+ (‖Py‖2−‖QPy‖2) � 0,
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and

g( ) = ‖QPy‖2 +‖P⊥
 y‖2−‖Py‖2 + 2−

=  2 + (‖P⊥
 y‖2−1)−‖Py‖2 +‖QPy‖2

=  2−2‖Py‖2 +‖QPy‖2

= ( −‖Py‖2)2 +(‖QPy‖2−‖Py‖4) � 0. �

THEOREM 13. Suppose M = {(Mi,i)}i∈I is a fusion frame for N with the
fusion frame operator SM , and M′ = {(S−1

MMi,i)}i∈I is the dual fusion frame of
M . Then for each  � 2 , for any  ⊂ I and any x ∈ N , we have

(1− 2)
i∈I

 2
i ‖Mi(x)‖2 +( −2)

i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2

�
i∈

 2
i ‖Mi(x)‖2 − 

i∈c
 2

i ‖Mi(x)‖2

� (1+ 3)
i∈I

 2
i ‖Mi(x)‖2− (1+2 2)

i∈I

 2
i ‖MiS

−1
MS

c

M(x)‖2.

(30)

Proof. The inequalities in (30) can be rewritten as

1− 2 +( −2)‖QP⊥
 y‖2 � ‖Py‖2−‖P⊥

 y‖2 � 1+ 3− (1+2 2)‖QP⊥
 y‖2, (31)

if we take y =UMx and normalize it to ‖y‖= 1 for each x∈N . To prove the inequality
to the left, it is sufficient to show that

f ( ) = ‖Py‖2−‖P⊥
 y‖2− (1− 2)− ( −2)‖QP⊥

 y‖2 � 0

for any  � 2, which is obvious, since a simple calculation gives

f ( ) =  2− (1−‖Py‖2)−‖P⊥
 y‖2− ( −2)‖QP⊥

 y‖2

=  2−‖P⊥
 y‖2−‖P⊥

 y‖2− ( −2)‖QP⊥
 y‖2

�  2−‖P⊥
 y‖2−‖P⊥

 y‖2− ( −2)‖P⊥
 y‖2

=  2−2‖P⊥
 y‖2 +‖P⊥

 y‖2

= ( −‖P⊥
 y‖2)2 +(‖P⊥

 y‖2−‖P⊥
 y‖4).

Additionally, observe that

g( ) = 1+ 3− (1+2 2)‖QP⊥
 y‖2−‖Py‖2 +‖P⊥

 y‖2

=  3 −2 2‖QP⊥
 y‖2 +‖P⊥

 y‖2 +‖P⊥
 y‖2−‖QP⊥

 y‖2

=  ( −‖QP⊥
 y‖2)2 +(‖P⊥

 y‖2−‖QP⊥
 y‖2)+ (‖P⊥

 y‖2−‖QP⊥
 y‖4) � 0,

implying that the right-hand inequality in (31) is satisfied. �
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