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BOUNDS AND MONOTONICITY OF THE NIELSEN BETA FUNCTION

K. JYOTHI, B. RAVI ∗ AND A. VENKATA LAKSHMI

(Communicated by S. Varošanec)

Abstract. In this paper, we establish bounds and prove the complete monotonicity of functions
involving the Nielsen beta function. We derive a novel integral representation for the Dirichlet
eta function. As an application, we construct several bounded Bernstein functions associated
with the Nielsen beta function.

1. Introduction

The Nielsen  -function  (x) , first introduced in [10], can be represented through
several equivalent froms

 (x) =
∫ 1

0

tx−1

1+ t
dt =

∫ 

0

e−xt

1+ e−t dt, x > 0, (1)

 (x) =



n=0

(−1)n

n+ x
=

1
2

{

(

x+1
2

)
−

( x
2

)}
, x > 0, (2)

where (x) = d
dx ln(x) is the psi or digamma function and (x) is the Euler gamma

function. It is well-known that the  (x) function satisfies the following functional
relations (see [7], [10]):

 (x+1) =
1
x
− (x), (3)

 (x)+ (1− x) =


sinx
, 0 < x < 1. (4)

For additional properties and inequalities on the function refer to [2], [3], [6], [7], [8],
[9], [14], and [15] and, in general, by successive differentiation of (1) and (2), we have

 (n)(x) =
∫ 1

0

(ln t)ntx−1

1+ t
dt = (−1)n

∫ 

0

tne−xt

1+ e−t dt, (5)

= (−1)nn!



k=0

(−1)k

(k+ x)n+1 =
1

2n+1

{
(n)

(
x+1

2

)
−(n)

( x
2

)}
, x > 0.
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Recall from [11, equation 25.5.3 and 25.5.4] that, the integral representations of zeta
( ) function are given by

 (s) =
1

(1−21−s)(s)

∫ 

0

xs−1

ex +1
dx s > 1 (6)

and

 (s) =
1

(1−21−s)(s+1)

∫ 

0

exxs

(ex +1)2 dx s > 1, (7)

where, (s) is the classical Euler’s gamma function. The Dirichlet eta () function is
defined by

(x) =



n=1

(−1)n−1

nx (8)

and the relation between  and  functions is given in [1, Equation 23.2.19] by

(x) = (1−21−x) (x), x > 0. (9)

A function f is said to be completely monotonic on the interval (a,b) , where − �
a < b �  , if f has derivatives of all orders on (a,b) and satisfies the inequality:

(−1)n f (n)(x) � 0, for all x ∈ (a,b) and n ∈ {0}∪N, (10)

see [13]. The famous Bernstein’s theorem [13, p.161, Theorem 12b]: A function f (x)
is completely monotonic on (0,) if and only if

f (x) =
∫ 

0
e−xtd(t),x ∈ (0,), (11)

where () is non decreasing and the integral in (11) converges for x ∈ (0,), and if
a function f (x) is completely monotonic, then the function

(−1)m f (m)(x) (12)

is also completely monotonic for all m ∈ N .
A function f : (0,) → (0,) is called a Bernstein function if f is infinitely

differentiable and whose derivative is completely monotonic on (0,) , that is

(−1)n f (n+1)(x) � 0 for all x > 0 and n = 0,1,2, . . .

These functions play a vital role in the theory of convolution semigroups of measures
supported on (0,) and related functional calculus, see [12].
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2. Main results

In this section, we establish the complete monotonicity of functions involving
Nielsen’s beta function and derive certain bounds.

THEOREM 1. (1) The function f1(x) = x (x)− 1
2 is completely monotonic on

(0,) .
(2) The function f2(x) = x (2n)(x) + 2n (2n−1)(x) is completely monotonic on

(0,) and maps (0,) onto (0,(2n+1)(2n)) for all n ∈ N .
(3) The negative of the function f3(x) = x (2n−1)(x)+(2n−1) (2n−2)(x) is com-

pletely monotonic on (0,) and maps (0,) onto (−(2n)(2n−1),0) for all n∈N .

Proof. Using the integral representation (1), we derive:

x (x) =
∫ 

0

xe−xt

1+ e−t dt = −
∫ 

0

1
1+ e−t

d
dt

(
e−xt) dt

=
(
− e−xt

1+ e−t

)∣∣∣t→+

t→0
+
∫ 

0

(
1

1+ e−t

)′
e−xt dt

=
1
2

+
∫ 

0

et

(1+ et)2 e−xt dt.

Thus, we obtain:

f1(x) = x (x)− 1
2

=
∫ 

0

et

(1+ et)2 e−xt dt. (13)

This expression shows that the function x (x)− 1
2 is completely monotonic on (0,) ,

and by (12), the function

f2(x) =
(

x (x)− 1
2

)(2n)

= x (2n)(x)+2n (2n−1)(x) =
∫ 

0

t2net

(1+ et)2 e−xt dt

is completely monotonic, positive and decreasing on (0,) . Therefore for 0 < x <  ,
we have

lim
x→

f2(x) < f2(x) < lim
x→0+

f2(x).

Now,

lim
x→0+

f2(x) = lim
x→0+

∫ 

0

t2net

(1+ et)2 e−xt dt

by equation (9), we derive

∫ 

0

t2net

(1+ et)2 dt = (2n+1)(2n).
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Further, lim
x→

f2(x) = 0. Thus, we conclude that

0 < x (2n)(x)+2n (2n−1)(x) < (2n+1)(2n).

This completes the proof of the second statement. Since f1(x) = x (x)− 1
2 is com-

pletely monotonic on (0,) , then by (12), we have

f3(x) =
(

x (x)− 1
2

)(2n−1)

= (x (2n−1)(x)+ (2n−1) (2n−2)(x))

= −
∫ 

0

t2n−1et

(1+ et)2 e−xt dt.

Thus, the function − f3(x) is completely monotonic, positive and decreasing on (0,) .
Therefore, for 0 < x <  , we have:

lim
x→0+

f3(x) < f3(x) < lim
x→

f3(x).

Now,

lim
x→0+

f3(x) = − lim
x→0+

∫ 

0

t2n−1et

(1+ et)2 e−xt dt

by equation (9), we find

−
∫ 

0

t2n−1et

(1+ et)2 dt = −(2n)(2n−1).

Further, lim
x→

f3(x) = 0. Thus, we conclude:

−(2n)(2n−1) < x (2n−1)(x)+ (2n−1) (2n−2)(x) < 0.

This completes the proof of the third statement. �
As a direct consequence of the above theorem we have the following corollary.

COROLLARY 1. For x ∈ (0,) , the following inequalities hold
(1) 0 < x (x)− 1

2 < 1
2

(2) − ln(2) < x ′(x)+ (x) < 0 and

(3) 0 < x ′′(x)+2 ′(x) < 2

6 .

REMARK 1. Theorem 2.1 (1) improves the result mentioned in [5, p. 292]

THEOREM 2. The function f4(x) = 1
4 + x

2 − x2 (x) is completely monotonic on
(0,), and bounded by

0 <
1
4

+
x
2
− x2 (x) <

1
4
. (14)
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Proof. Using equation (13), we obtain

x2 (x)− x
2

= −
∫ 

0

et

(1+ et)2

d
dt

(e−xt)dt

= −
(

et

(1+ et)2 e−xt
)

0
+
∫ 

0

(
et

(1+ et)2

)′
e−xt dt

=
1
4
−
∫ 

0

et(et −1)
(1+ et)3 e−xt dt.

Thus, the function

f4(x) =
1
4

+
x
2
− x2 (x) =

∫ 

0

et(et −1)
(1+ et)3 e−xt dt (15)

is completely monotonic on (0,) . Since the function f4(x) = 1
4 + x

2 − x2 (x) is
completely monotonic, it implies that f4(x) is decreasing on (0,) . Therefore, for
0 < x <  , we have lim

x→
f4(x) < f4(x) < lim

x→0+
f4(x) . Now,

lim
x→0+

f4(x) = lim
x→0+

∫ 

0

et(et −1)
(1+ et)3 e−xt dt

=
∫ 

0

et(et −1)
(1+ et)3 dt.

Using the substitution u = 1+ et , the above integral reduces to∫ 

2

u−2
u3 du =

1
4
.

Furthermore, lim
x→

f4(x) = 0. Thus, we have 0 < 1
4 + x

2 − x2 (x) < 1
4 . �

THEOREM 3. The following limits hold

(1) lim
x→0+

( x
2
− x2 (x)

)
= 0 ,

(2) lim
x→

(
x2 (x)− x

2

)
=

1
4

, and

(3) The function (−1)n f (n)
4 (x) is completely monotonic on (0,) for all n ∈ N

with the limit lim
x→0+

(−1)n f (n)
4 (x) = (n+1)(n−1).

Proof. The first two statements follow directly from Theorem (2). We now pro-
ceed to prove the third statement. Since the function

1
4

+
x
2
− x2 (x)

is completely monotonic on (0,) , it follows that

(−1)n
(

1
4

+
x
2
− x2 (x)

)(n)

=
∫ 

0

et(et −1)tn

(1+ et)3 e−xt dt.
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Thus, the function (−1)n f (n)
4 (x) is completely monotonic on (0,) . Now, taking the

limit as x → 0+ , we have:

lim
x→0+

(−1)n
(

1
4

+
x
2
− x2 (x)

)(n)

= lim
x→0+

∫ 

0

et(et −1)tn

(1+ et)3 e−xt dt

=
∫ 

0

et(et −1)tn

(1+ et)3 dt.

Next, we consider:

∫ 

0

et(et −1)tn

(1+ et)3 dt =
∫ 

0

e2ttn

(1+ et)3 dt−
∫ 

0

ettn

(1+ et)3 dt.

Using integration by parts, we obtain:

=
[
tn
(
− 1

1+ et +
1

2(1+ et)2

)]
0
−
∫ 

0
ntn−1

(
− 1

1+ et +
1

2(1+ et)2

)
dt

+
[
− tn

2(1+ et)2

]
0
−
∫ 

0

ntn−1

2(1+ et)2 dt

= n
∫ 

0

tn−1

1+ et dt−n
∫ 

0

tn−1

(1+ et)2 dt. (16)

From equation (6) and [4, Lemma 3.1], the expression in (16) simplifies to:

∫ 

0

et(et −1)tn

(1+ et)3 dt = (n+1)(n)−n(n)((n)−(n−1)) = (n+1)(n−1).

Thus, the proof of the theorem is complete. �

REMARK 2. Let n = x + 1 > 0 in the above theorem. The novel integral repre-
sentation for the Dirichlet eta function (x) is given by:

(x) =
1

(x+2)

∫ 

0

et(et −1)tx+1

(1+ et)3 dt. (17)

THEOREM 4. The function f5(x) =  (x+ 1
2 )

 (x) is monotonically increasing on (0,)
and maps (0,) onto (0,1) .

Proof. Differentiating f5(x) with respect to x , we obtain

f ′5(x) =
 (x) ′(x+ 1

2 )− (x+ 1
2) ′(x)

 2(x)
. (18)

It is sufficient to show that the numerator in (18) is positive. Let

N1(x) =  (x) ′(x+
1
2
)− (x+

1
2
) ′(x).
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By equation 2 of Corollary 2.2 we have

− ′(x) >
 (x)

x
(19)

Multiplying equation (19) by  (x+ 1
2) and adding  (x) ′(x+ 1

2 ) , we obtain

N1(x) >  (x)
(

1
x
 (x+

1
2
)+ ′(x+

1
2
)
)

= N2(x) (x),

where

N2(x) =
1
x
 (x+

1
2
)+ ′(x+

1
2
).

Using the integral representation and the convolution property of the Laplace transform,
we have

N2(x) =
∫ 

0
e−xt

(∫ 

0

e−u/2e−xt

1+ e−u du− te−t/2e−xt

1+ e−t

)
dt

=
∫ 

0

(∫ t

0

e−u/2

1+ e−u du− te−t/2

1+ e−t

)
e−xt dt.

Define

(t) =
∫ t

0

e−u/2

1+ e−u du− te−t/2

1+ e−t . (20)

We have (0) = 0, and

 ′(t) =
te−t/2

1+ e−t

(
1
2
− 1

et +1

)
> 0 for all t > 0,

which implies that (t) is increasing on (0,) . Therefore, for t > 0, we have (t) >
0. Thus, N2(x) > 0 for all x ∈ (0,) , which implies that f ′5(x) = N2(x) (x) > 0 for
all x ∈ (0,) . Consequently, f ′5(x) is increasing on (0,) . For 0 < x <  , we have

f5(0) < f5(x) < f5().

By the asymptotic formula [1]

(n)(x) ∼ (−1)n+1n!
xn+1 , x → 0+ (21)

we derive

 (n) ∼ (−1)n+1n!
2

(
1

(x+1)n −
1
xn

)
,x → 0+. (22)

Using equation (22), we obtain

lim
x→0+

f5(x) = 0 and lim
x→

f5(x) = 1.

Therefore, we have 0 <
 (x+ 1

2 )
 (x) < 1. �
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THEOREM 5. The function f6(x) =  ′(x+ 1
2 )

 ′(x) is monotonically increasing on (0,)
and maps (0,) onto (0,1) .

Proof. Differentiating f6(x) with respect to x , we obtain

f ′6(x) =
 ′(x) ′′(x+ 1

2 )− ′(x+ 1
2) ′′(x)

( ′(x))2 . (23)

It is sufficient to show that the numerator in (23) is positive. Let

N3(x) =  ′(x) ′′(x+
1
2
)− ′(x+

1
2
) ′′(x).

By equation 3 of Corollary 2.2 we have 2 ′(x) + x ′′(x) > 0 for al x ∈ (0,) , and
multiplying this with  ′(x+ 1

2 ) and adding  ′(x) ′′(x+ 1
2) , we obtain

N3(x) >  ′(x)
(

2
x
 ′(x+

1
2
)+ ′′(x+

1
2
)
)

= N4(x) ′(x),

where

N4(x) =
2
x
 ′(x+

1
2
)+ ′′(x+

1
2
).

Using the integral representation of  ′(x+ 1
2 ) ,  ′′(x+ 1

2 ) and the convolution property
of the Laplace transform, we obtain

N4(x) = 2
∫ 

0
e−xt

(∫ 

0

−te−t/2e−xt

1+ e−t dt

)
+
∫ 

0

t2e−t/2e−xt

1+ e−t dt

=
∫ 

0

(
−2
∫ t

0

ue−u/2

1+ e−u du+
t2e−t/2

1+ e−t

)
e−xt dt.

Define

1(t) = −2
∫ t

0

ue−u/2

1+ e−u du+
t2e−t/2

1+ e−t . (24)

We have 1(0) = 0, and

 ′
1(t) = − t2e−t/2

1+ e−t

(
1
2
− 1

et +1

)
< 0 for all t > 0,

which implies that 1(t) is decreasing on (0,) . Therefore, for t > 0, we have 1(t) <
0. Thus, N4(x) < 0 for all x ∈ (0,) , which implies that f ′6(x) = N4(x) ′(x) > 0 for
all x ∈ (0,) . Consequently, f ′6(x) is increasing on (0,) . For 0 < x <  , we have

f6(0) < f6(x) < f6().

Using equation (22), we obtain

lim
x→0

f6(x) = 0 and lim
x→

f6(x) = 1.

Therefore, we have 0 < f6(x) < 1 which is equivalent to 0 <
 ′(x+ 1

2 )
 ′(x) < 1. �
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3. Bernstein functions involving Nielsen beta function

In this section, we establish several bounded Bernstein functions involving the
Nielsen beta function. To achieve this, we make use of the following key proposition,
which provides a standard method for constructing bounded Bernstein functions from
completely monotonic functions.

Proposition. [5, Proposition 4, p. 291] If g is a completely monotonic function on
(0,) with g(0+) < , then the function f (x) := g(0+)−g(x) is a bounded Bernstein
function on (0,) .

COROLLARY 2. (1) The function f1(x) = x (x)− 1
2 is completely monotonic on

(0,) , and limx→0+ f1(x) = 1
2 . Then, by the above proposition, the function 1− x (x)

is a bounded Bernstein function on (0,) .
(2) The function f2(x) =

(
x (x)− 1

2

)(2n)
is completely monotonic on (0,) , and

limx→0+ f2(x) = (2n+1)(2n). Then, by the above proposition, the function (2n+
1)(2n)− (x (x)− 1

2

)(2n)
is a bounded Bernstein function on (0,) for all n ∈ N .

(3) The function f3(x) = −(x (x)− 1
2

)(2n−1)
is completely monotonic on (0,) ,

and limx→0+ f3(x) = −(2n)(2n− 1). Then, by the above proposition, the function

(2n)(2n−1)+
(
x (x)− 1

2

)(2n−1)
is a bounded Bernstein function on (0,) for all

n ∈ N .
(4) The function f4(x) = 1

4 + x
2 − x2 (x) is completely monotonic on (0,) , and

limx→0+ f4(x)= 1
4 . Then, by the above proposition, the function x2 (x)− x

2 is a bounded
Bernstein function on (0,) .
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