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Abstract. In this article, we study some inequalities for the h -Fourier cosine-Laplace discrete
generalized convolution on the time scale T0

h and establish some norm estimations for this dis-
crete generalized convolution on some function spaces. We present some sufficient conditions
for the existence of the h -Fourier cosine-Laplace discrete generalized convolution. A Young-
type inequality, a Saitoh-type inequality and a reverse Saitoh-type inequality for this discrete
generalized convolution are obtained. As applications, we apply some of these inequalities to es-
timate the solutions of a class of equations of the h -Fourier cosine-Laplace discrete generalized
convolution type.

1. Introduction

The subject of time scales was first introduced by Stefan Hilger in 1988. From
time scales analysis, we can do away the discrepancy between continuous and discrete
analysis. Let h be a fixed positive real number. In this article, we are interested in the
discrete time scale T0

h = hN0, where N0 = N∪{0}. Here,

N = {1, 2, 3, 4, . . .} is the set of all positive integers.

For the time scale T
0
h, the concept of the h -Laplace transform was established by

M. Bohner and G. Sh. Guseinov in [2, p. 78] as follows: For a function x : T0
h → C, its

h -Laplace transform is given by

L {x}(u) =
h

1+hu




n=0

x(nh)
(1+hu)n , u ∈ C and u �= −1

h
,

for those values of u such that this series converges.

For a function x : T0
h →C in which




n=0
|x(nh)| is finite, its h -Fourier cosine trans-

form is defined by (see [6, p. 914], [7, p. 267] and [13, p. 208])

Fc{x}(u) = hx(0)+2h



n=1

x(nh)cos(unh), u ∈ R. (1)
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When we consider the Fourier integral transform on the time scale R, we have
some fundamental results about the Fourier convolution inequalities such as the Young’s
inequality (we refer to the books [11] and [1]), the Saitoh’s inequality in [8] and the re-
verse Saitoh inequality in [9].

For the Fourier cosine integral transform and the Laplace integral transform, a
Young’s type theorem, a Saitoh’s type inequality and a reverse Saitoh-type inequality
for the Fourier cosine-Laplace generalized convolution with a weight function  were
investigated in [12], where the weight function  can be rewritten in the following form:
(u) = e−u (here,  > 0).

For the time scale T0
h, some inequalities were established in [15] for the h -Fourier

cosine-Laplace discrete generalized convolution with a weight function (we will denote
this weight function in here by ̂1 ), which include a Young’s type inequality, a Saitoh’s
type inequality and a reverse Saitoh’s type inequality, where the weight function is given
by ̂1(u) = (1+hu)−, u∈ [0,h−1

]
(here,  ∈N). However, as far as we know, prior

to this article, for p > 1, there is no research published on the �p -norm estimate for
the h -Fourier cosine-Laplace discrete generalized convolution. The estimate (3.25) for
the h -Fourier cosine-Laplace generalized convolution of two functions x : T0

h → R and

y : T0
h → R in which




n=0
|x(nh)|< and




n=0
|y(nh)|< was given in [14, p. 26]. The

�1 -norm estimate (3.8) for the h -Fourier sine-Laplace discrete generalized convolution
was given in [17, p. 448].

In this article, we derive some inequalities for the h -Fourier cosine-Laplace dis-
crete generalized convolution on some function spaces. The article is structured as
follows. In Section 2, we give some sufficient conditions for the existence of the h -
Fourier cosine-Laplace discrete generalized convolution. In Section 3, we investigate
a Young-type inequality for the h -Fourier cosine-Laplace discrete generalized convo-
lution. In Section 4, we establish a Saitoh-type inequality and a reverse Saitoh-type
inequality for this discrete generalized convolution. In the final section, we apply some
of these inequalities to estimate the solutions of a class of equations of the h -Fourier
cosine-Laplace discrete generalized convolution type.

2. Some sufficient conditions for the existence of the h -Fourier
cosine-Laplace discrete generalized convolution

For m, n ∈ N0, we put ([14, p. 22])

I(n,m) :=
∫ 

0

cos(nu)
(1+u)m+1 du. (2)

We define the function  : N0×N0×N0 → R as follows ([14, p. 22]):

 (k,n,m) := I(n+ k,m)+ I
(|n− k|,m), k, n,m ∈ N0. (3)
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DEFINITION 1. [14] The h -Fourier cosine-Laplace discrete generalized convolu-

tion of two functions x̃, ỹ : T0
h → R in which




n=0

(|x̃(nh)|+ |ỹ(nh)|) <  on the time

scale T0
h is defined as:

(x̃∗ỹ)(kh) := x̃(0)
[
G̃1{ỹ}(k)

]
+

h





n=1




m=0

x̃(nh)ỹ(mh) (k,n,m), k ∈ N0, (4)

where the function  is given by (3), and the function G̃1{ỹ} : N0 → R is given by

G̃1{ỹ}( j) =
h
2




m=0

ỹ(mh) ( j,0,m), j ∈ N0.

Assume that x̂, ŷ : T0
h →C are two functions in which at least one of the following

three statements is false: x̂ : T0
h →R, ŷ : T0

h →R, and



n=0

(|x̂(nh)|+ |ŷ(nh)|)<. In a

way similar to Definition 3.1 in [14], the h -Fourier cosine-Laplace discrete generalized
convolution of x̂ and ŷ on the time scale T0

h is defined as follows: For k ∈ N0,

(x̂∗ŷ)(kh) :=
h
2

x̂(0)
( 


m=0

ŷ(mh) (k,0,m)
)

+
h





n=1




m=0

x̂(nh)ŷ(mh) (k,n,m), (5)

where the function  is given by (3), provided that the right hand side of (5) converges
for all k ∈ N0.

For the time scale T0
h, the h -Laplace discrete convolution was defined in [2, p.

80], the h -Fourier cosine discrete convolution of two functions x, y : T0
h → R in which




n=0

(|x(nh)|+ |y(nh)|)<  was studied in [13] and the h -Fourier cosine-Laplace dis-

crete generalized convolutionwith the weight function ̂1 was introduced in [15], where
the weight function ̂1 is given by ̂1(u) = (1+hu)−, u ∈ [0,h−1

]
(here,  ∈ N).

Suppose that p is a real number satisfying 1 � p < . The following function
spaces and norms are used in this article:

�p(T0
h) :=

{
x : T

0
h → C

∣∣∣ 


n=0

|x(nh)|p < 
}

,

�(T0
h) :=

{
y : T

0
h → C

∣∣∣ sup
n∈N0

|y(nh)| < 
}
,

‖x‖p := h
( 


n=0

|x(nh)|p
) 1

p
, x ∈ �p(T0

h), (6)

‖x‖(1)
p := h

(
|x(0)|p +2p




n=1

|x(nh)|p
) 1

p
, x ∈ �p(T0

h), and (7)

‖y‖ := h sup
n∈N0

|y(nh)|, y ∈ �(T0
h). (8)
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Assume that  is a function from T0
h to (0,), where (0,) =

{
 ∈ R |  > 0

}
is the

set of all positive real numbers.
We set the following weighted function space and norms:

�p(T0
h,) :=

{
x : T

0
h → C

∣∣∣ 


n=0

|x(nh)|p(nh) < 
}

,

‖x‖�p(T0
h, ) := h

( 


n=0

|x(nh)|p(nh)
) 1

p
, x ∈ �p(T0

h,), and (9)

‖x‖(2)
�p(T0

h, )
:= h

( |x(0)|p(0)
2

+



n=1

|x(nh)|p(nh)
) 1

p

, x ∈ �p(T0
h,). (10)

For each function x from T0
h to C, we determine a function H1{x} from T0

h to C

by ([15, p. 323])

(
H1{x}

)
(0) :=

x(0)
2

and
(
H1{x}

)
(nh) := x(nh) for n ∈ N. (11)

From [15, p. 323], (6) and (7), if x ∈ �p(T0
h), then H1{x} ∈ �p(T0

h),

∥∥H1{x}
∥∥

p =
‖x‖(1)

p

2
and




n=0

∣∣H1{x}(nh)
∣∣p =

(‖x‖(1)
p

2h

)p

. (12)

For two functions 1,2 : T0
h → C , the product function 12 : T0

h → C is taken
to be the pointwise product function as (12)(nh) = 1(nh)2(nh), n ∈ N0. For a
function  from T0

h to C, we write  ≡ 0 if and only if (nh) = 0 for all n ∈ N0. For
a function  : T

0
h → C, we write  �≡ 0 if and only if there exists  ∈ N0 such that

(h) �= 0.
In this article, let  be a fixed real number satisfying  > 0 and let  be a

function from T0
h to (0,) given by

(nh) = (1+n) , n ∈ N0. (13)

We define two functions C0 and C from (1,) to (0,) as follows:

C0(q) := ln(1+)+



m=1

1

m(m+1)


q−1

(
1− 1

(1+)m

)
, q ∈ (1,), and (14)

C(q) :=
1

[
C0(q)

]1− 1
q
[
 + ln(1+)

]1
q , q ∈ (1,), (15)

where (1,) =
{
 ∈ R |  > 1

}
.

For j ∈ N and m ∈ N0, using (2), we recall the following identity ([14, p. 22])

I( j,m) =
1
m!

∫ 

0

tm+1e−t

j2 + t2

[
1− (−1) je−t

]
dt. (16)
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From the results in [14, pp. 22, 26], for j,m ∈ N0 and k ∈ N, we have

0 < I( j,m) � I(0,0) = ln(1+), I( j,k) � I(0,k) =
1
k

(
1− 1

(1+)k

)
, (17)

and

 ( j,m,0) � 2ln(1+). (18)

By doing the same arguments or similar arguments to the proof of Theorem 3.1 in
[14], we can prove the following lemma.

LEMMA 1. Suppose that x, y∈ �1(T0
h) and at least one of the following two state-

ments is false: (a) x : T0
h → R and (b) y : T0

h → R. Then the generalized convolution
x∗y is well defined and belongs to the space �1(T0

h). Additionally,

‖x∗y‖(1)
1 �

(
2+

ln(1+)


)
‖x‖(1)

1 ‖y‖(1)
1 .

Furthermore, we have the following factorization identity:

Fc{x∗y}(u) = Fc{x}(u)L {y}(u), ∀u ∈
[
0,

h

]
.

LEMMA 2. If two functions x and y belong to the space �1(T0
h), then

‖x∗y‖1 �
(

1+
ln(1+)



)
‖x‖(1)

1 ‖y‖1. (19)

The equality in (19) is attained if and only if x ≡ 0 or y ≡ 0.

Proof. From [15, p. 325], [17, p. 448], (3) and (17), we have

 (k,n,m) > 0, ∀k, n,m ∈ N0.

We set x1 := H1{x}, where H1{x} is given by (11).
Using (4), (5), (11) and x1 = H1{x}, we then get




k=0

|(x∗y)(kh)| � h





n=0

|x1(nh)|



m=0

|y(mh)|



k=0

 (k,n,m). (20)

For m ∈ N0, the following inequality holds ([14, p. 26])




j=1

I( j,m) <  . (21)

From [15, p. 325] and (3), we find that




k=0

 (k,n,m) = I(n,m)+ I(0,m)+2



j=1

I( j,m), ∀m, n ∈ N0. (22)
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According to [15, p. 325], (22), (21) and (17), for n,m ∈ N0, we obtain




k=0

 (k,n,m) < 2
[
 + ln(1+)

]
. (23)

By virtue of (20), (23), x1 = H1{x}, (12) and (6), we see that




k=0

|(x∗y)(kh)| � 2h

[
+ ln(1+)

] 


n=0

|x1(nh)|



m=0

|y(mh)|

= 2h

(
1+

ln(1+)


)‖x‖(1)
1

2h
‖y‖1

h
. (24)

Multiplying both sides of (24) by h and using (6), we derive the inequality (19). The
equality holds if and only if x ≡ 0 or y ≡ 0. This completes the proof. �

THEOREM 1. Let p, q∈ (0,) be such that p � 1, q > 1 and p−1 +q−1 � 1. Let
 be the weight function defined by (13). Then for x ∈ �p(T0

h) and y ∈ �q(T0
h,), the

generalized convolution x∗y is well defined and belongs to �(T0
h). Moreover, we get

the following estimate:

‖x∗y‖ � C(q)‖x‖(1)
p ‖y‖�q(T0

h,),

where the constant C(q) is given by (15).

Proof. We put r := q(q−1)−1 and  := (q−1)−1. We have r > 1,  > 0 and
q−1 + r−1 = 1 � q−1 + p−1. Hence, r � p.

Since x ∈ �p(T0
h) and r � p, it follows that x ∈ �r(T0

h) and ‖x‖(1)
r � ‖x‖(1)

p .
We denote x1 := H1{x}, where H1{x} is determined by (11). We define

Ak :=



n=0




m=0

|x1(nh)|r (k,n,m)(m+1)− , k ∈ N0, and (25)

Bk :=



n=0




m=0

|y(mh)|q (k,n,m)(m+1) (q−1), k ∈ N0. (26)

Using (4), (5), (11), x1 = H1{x}, (25), (26), the equality r−1 + q−1 = 1 and Hölder’s
inequality, we deduce that

|(x∗y)(kh)| � h





n=0




m=0

|x1(nh)||y(mh)| (k,n,m)

=
h





n=0




m=0

[
|x1(nh)| (k,n,m)

1
r (m+1)

(
1
q−1
)][

|y(mh)| (k,n,m)
1
q (m+1)

(q−1)
q

]
� h


(
Ak
) 1

r
(
Bk
) 1

q , ∀k ∈ N0. (27)
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It follows from (3) and (17) that

 (k,n,m) � 2
m

(
1− 1

(1+)m

)
, ∀k, n ∈ N0 and ∀m ∈ N. (28)

Because  =


q−1
, for k, n ∈ N0, combining (18), (28) and (14), we recognize that




m=0

 (k,n,m)
(m+1)

� 2ln(1+)+



m=1

2

m(m+1)

(
1− 1

(1+)m

)
= 2C0(q). (29)

From (25), (29), x1 = H1{x} and (12), we obtain

0 � Ak � 2C0(q)



n=0

|x1(nh)|r = 2C0(q)
(‖x‖(1)

r

2h

)r

, ∀k ∈ N0. (30)

By virtue of [15, p. 329] and (3), we get

 (k,n,m) =  (n,k,m), ∀k, n,m ∈ N0.

Therefore, according to [15, p. 329] and (23), we attain




n=0

 (k,n,m) =



n=0

 (n,k,m) < 2
[
 + ln(1+)

]
, ∀k,m ∈ N0. (31)

Since  = (q−1)−1, from (26), (31), the definition of the function  in (13) and the
definition of the weighted norm (9), we have

0 � Bk

2
[
 + ln(1+)

] �



m=0

|y(mh)|q(m+1)

=

(‖y‖�q(T0
h,)

h

)q

, ∀k ∈ N0. (32)

For k ∈ N0, due to (27), (30), (32) and the equality r−1 +q−1 = 1, we find that

|(x∗y)(kh)| � 1
2h

[
2C0(q)

] 1
r
{

2
[
 + ln(1+)

]} 1
q ‖x‖(1)

r ‖y‖�q(T0
h,)

=
1

2h
[
2C0(q)

]1− 1
q
{

2
[
 + ln(1+)

]} 1
q ‖x‖(1)

r ‖y‖�q(T0
h,) < . (33)

From (33), we then get that x∗y is well defined and belongs to �(T0
h). Moreover,

thanks to (8), (33), (15) and the inequality ‖x‖(1)
r � ‖x‖(1)

p , we observe that

‖x∗y‖ � 1
2
[
2C0(q)

]1− 1
q
{

2
[
 + ln(1+)

]} 1
q ‖x‖(1)

r ‖y‖�q(T0
h,)

= C(q)‖x‖(1)
r ‖y‖�q(T0

h,) � C(q)‖x‖(1)
p ‖y‖�q(T0

h,),

where the constant C(q) is given by (15). The theorem is proved. �
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3. A Young-type inequality

THEOREM 2. (A Young-type theorem). Let p, q and r be three positive real
numbers such that

p > 1, q > 1, r > 1 and p−1 +q−1 + r−1 = 2. (34)

Let  be the weight function defined by the formula (13). If x ∈ �p(T0
h), y ∈ �q(T0

h,)
and z ∈ �r(T0

h), then x∗y is well defined and belongs to �(T0
h) . Furthermore,∣∣∣ 


k=0

(x∗y)(kh)z(kh)
∣∣∣� C(q)

h2 ‖x‖(1)
p ‖y‖�q(T0

h,)‖z‖r, (35)

where the constant C(q) is given by (15). The equality holds if and only if x ≡ 0 or
y ≡ 0 or z ≡ 0.

Proof. From r > 1 and
1
p

+
1
q

+
1
r

= 2, we obtain p−1 +q−1 > 1.

Since x ∈ �p(T0
h), y ∈ �q(T0

h,), p > 1, q > 1 and p−1 + q−1 > 1, applying
Theorem 1, we get that x∗y is well defined and belongs to �(T0

h).
If x ≡ 0 or y ≡ 0 or z ≡ 0, then we can easily see that (35) becomes an equality.
Assume that x �≡ 0, y �≡ 0 and z �≡ 0, we will prove (35) with strict inequality.
Let p1, q1 and r1 respectively be the conjugate exponents of p, q and r, i.e.

1
p

+
1
p1

= 1,
1
q

+
1
q1

= 1 and
1
r

+
1
r1

= 1. (36)

From (34) and (36), we deduce that

p
q1

+
p
r1

= 1,
q
p1

+
q
r1

= 1,
r
p1

+
r
q1

= 1 and
1
p1

+
1
q1

+
1
r1

= 1. (37)

We set  :=


q−1
and x1 := H1{x}, where H1{x} is given by (11).

Using (4), (5), (11) and x1 = H1{x}, we have∣∣∣ 


k=0

(x∗y)(kh)z(kh)
∣∣∣= ∣∣∣ h 


k=0




n=0




m=0

x1(nh)y(mh) (k,n,m)z(kh)
∣∣∣

� h


∣∣∣ 


k=0




n=0




m=0

|x1(nh)||y(mh)||z(kh)| (k,n,m)
∣∣∣. (38)

We define the following three functions U, V and W from N0×N0×N0 to [0,) :

U(k,n,m) := |y(mh)|
q
p1 (1+m)

(q−1)
p1 |z(kh)| r

p1
[
 (k,n,m)

] 1
p1 , k,n,m ∈ N0, (39)

V (k,n,m) := |x1(nh)|
p

q1 |z(kh)| r
q1

(
 (k,n,m)
(1+m)

) 1
q1

, k,n,m ∈ N0, (40)
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and

W (k,n,m) := |x1(nh)|
p
r1 |y(mh)|

q
r1 (1+m)

(q−1)
r1
[
 (k,n,m)

] 1
r1 , k,n,m ∈ N0, (41)

where [0,) = (0,)∪{0}.
For k,n,m ∈ N0, by virtue of (39), (40), (41) and (37), it follows that

U(k,n,m)V (k,n,m)W (k,n,m) = |x1(nh)||y(mh)||z(kh)| (k,n,m). (42)

Since  = (q−1)−1, according to (39),



n=0
 (k,n,m) < 2

[
 + ln(1 + )

]
for all

k,m ∈ N0 in (31), y �≡ 0, z �≡ 0, (13), (9) and (6), we get

S1 :=



k=0




n=0




m=0

∣∣U(k,n,m)
∣∣p1 =




k=0




n=0




m=0

|y(mh)|q(1+m) (q−1)|z(kh)|r (k,n,m)

< 2
[
 + ln(1+)

] 


m=0

|y(mh)|q(1+m)



k=0

|z(kh)|r

= 2
[
 + ln(1+)

](‖y‖�q(T0
h,)

h

)q(‖z‖r

h

)r

and S1 > 0. (43)

Combining (40), (29), x1 = H1{x}, (12), (6), x �≡ 0 and z �≡ 0, we thus deduce that

S2 :=



k=0




n=0




m=0

∣∣V (k,n,m)
∣∣q1 =




n=0

|x1(nh)|p



k=0

|z(kh)|r



m=0

 (k,n,m)
(1+m)

� 2C0(q)



n=0

|x1(nh)|p



k=0

|z(kh)|r = 2C0(q)
(‖x‖(1)

p

2h

)p(‖z‖r

h

)r

and S2 > 0.

(44)

Because  = (q−1)−1, from (41), (23), x1 = H1{x}, x �≡ 0, y �≡ 0, (12), (13) and
(9), we arrive at

S3 :=



k=0




n=0




m=0

∣∣W (k,n,m)
∣∣r1 =




n=0

|x1(nh)|p



m=0

|y(mh)|q(1+m) (q−1)



k=0

 (k,n,m)

< 2
[
 + ln(1+)

] 


n=0

|x1(nh)|p



m=0

|y(mh)|q(1+m)

= 2
[
 + ln(1+)

](‖x‖(1)
p

2h

)p(‖y‖�q(T0
h,)

h

)q

and S3 > 0. (45)

Using (38), (42), (37), (43), (44), (45) and Hölder’s inequality, we have∣∣∣ 


k=0

(x∗y)(kh)z(kh)
∣∣∣� h



∣∣∣ 


k=0




n=0




m=0

U(k,n,m)V (k,n,m)W (k,n,m)
∣∣∣

� h


(S1)
1
p1 (S2)

1
q1 (S3)

1
r1 . (46)
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Due to (46), (43), (44), (45), (37) and (36), we obtain the inequality∣∣∣ 


k=0

(x∗y)(kh)z(kh)
∣∣∣< C(q)

h2 ‖x‖(1)
p ‖y‖�q(T0

h,)‖z‖r,

where the constant C(q) is given by (15). So we complete the proof. �

COROLLARY 1. (A Young-type inequality). Let p, q and r be three positive real
numbers satisfying p > 1, q > 1, r > 1 and p−1 +q−1 = 1+ r−1. Let  be the weight
function defined by (13). If x ∈ �p(T0

h) and y ∈ �q(T0
h,), then x∗y ∈ �r(T0

h) and

‖x∗y‖r � C(q)‖x‖(1)
p ‖y‖�q(T0

h,), (47)

where the constant C(q) is given by (15). The equality in (47) is attained if and only if
x ≡ 0 or y ≡ 0.

Proof. According to x ∈ �p(T0
h), y ∈ �q(T0

h,), p > 1, q > 1 and p−1 + q−1 =
1+ r−1 > 1, applying Theorem 1, we deduce that x∗y is well defined and belongs to
the space �(T0

h).
If x ≡ 0 or y ≡ 0, then we can easily see that (47) becomes an equality.
Suppose that x �≡ 0 and y �≡ 0, we will prove (47) with strict inequality.
Let p1, q1 and r1 be the conjugate exponents of p, q and r, respectively, i.e.

1
p

+
1
p1

= 1,
1
q

+
1
q1

= 1 and
1
r

+
1
r1

= 1.

From p−1 +q−1 = 1+ r−1 and r−1 + r1
−1 = 1, it follows that

1
p

+
1
q

+
1
r1

= 2.

We set Ak :=
[
(x∗y)(kh)

]r
, k ∈ N0. Let N be an arbitrary positive integer.

For v∈C , we denote its complex conjugate by v . We define a function z : T0
h →C

by

z(kh) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hr
[
(x∗y)(kh)

]r−1 Ak

|Ak| , if 0 � k � N and (x∗y)(kh) �= 0,

0, if 0 � k � N and (x∗y)(kh) = 0,

0, if k > N,

for k ∈ N0. It is straightforward that z ∈ �r1(T
0
h). Using the inequality (35), where we

use r1 instead of r, we then get

SN := hr
N


k=0

|(x∗y)(kh)|r � C(q)
h2 ‖x‖(1)

p ‖y‖�q(T0
h,)‖z‖r1 . (48)

Because
1
r

+
1
r1

= 1, we have rr1 = r+ r1. Hence, it is easy to see that SN � 0 and

(‖z‖r1

h

)r1

= hrr1
N


k=0

|(x∗y)(kh)|r1(r−1) = hr1hr
N


k=0

|(x∗y)(kh)|r = hr1SN .
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This shows that ‖z‖r1 = h2(SN)
1
r1 . Plugging this equality into (48) and using the equal-

ity
1
r

+
1
r1

= 1, we deduce that

(SN)
1
r � C(q)‖x‖(1)

p ‖y‖�q(T0
h,) < . (49)

Since N is an arbitrary positive integer, letting N →  in (49), we attain that the func-
tion x∗y belongs to the space �r(T0

h) and the inequality (47) holds.
Assume that there exists x0 ∈ �p(T0

h) and y0 ∈ �q(T0
h,) such that

x0 �≡ 0, y0 �≡ 0 and ‖x0∗y0‖r = C(q)‖x0‖(1)
p ‖y0‖�q(T0

h,). (50)

We put Bk :=
[
(x0∗y0)(kh)

]r
, k ∈ N0. We define a function z0 : T0

h → C by

z0(kh) :=

⎧⎨⎩hr
[
(x0∗y0)(kh)

]r−1 Bk

|Bk| , if (x0∗y0)(kh) �= 0,

0, if (x0∗y0)(kh) = 0,

for k ∈ N0. By virtue of ‖x0∗y0‖r = C(q)‖x0‖(1)
p ‖y0‖�q(T0

h,) �= 0, we obtain z0 �≡ 0.

Using some similar arguments or the same arguments as in the first part of this proof
with x0, y0 and z0 instead of x, y and z, respectively, we get

‖x0∗y0‖r < C(q)‖x0‖(1)
p ‖y0‖�q(T0

h,),

which is a contradiction with (50). The proof is completed. �

4. A Saitoh-type inequality and a reverse Saitoh-type inequality

In this section, let p and q be two positive real numbers satisfying

p > 1, q > 1 and p−1 +q−1 = 1.

We suppose that 1, 2 : T0
h → R are two given functions in �1(T0

h) such that

1(nh) > 0 and 2(nh) > 0, ∀n ∈ N0.

THEOREM 3. (A Saitoh-type inequality). Let F1 be a function in the space
�p(T0

h,1) and let F2 be a function in the space �p(T0
h,2). Then we have

F11, F22 ∈ �1(T0
h) and

(
(F11)∗(F22)

)
(1∗2)

1
p−1 ∈ �p(T0

h).

Moreover, the following inequality for the h-Fourier cosine-Laplace discrete general-
ized convolution holds∥∥∥((F11)∗(F22)

)
(1∗2)

1
p−1
∥∥∥

p
� C‖F1‖(2)

�p(T0
h,1)

‖F2‖�p(T0
h,2)

, (51)

where C = h
1−p

p

(
2+

2ln(1+)


) 1
p

. The inequality in (51) becomes an equality if and

only if F1 ≡ 0 or F2 ≡ 0.
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Proof. For j = 1, 2, since  j : T0
h → (0,), Fj ∈ �p(T0

h, j) and  j ∈ �1(T0
h), we

derive that Fj
(
 j
) 1

p ∈ �p(T0
h) and

(
 j
) 1

q ∈ �q(T0
h). Hence, using p−1 +q−1 = 1, p > 1

and q > 1, we observe that

Fj j = Fj
(
 j
) 1

p
(
 j
) 1

q ∈ �1(T0
h) for j = 1, 2.

Because 1, 2, F11 and F22 belong to the space �1(T0
h), applying Theorem

3.1 in [14, p. 26] and Lemma 1, we deduce that (F11)∗(F22) and 1∗2 are well
defined.

If F1 ≡ 0 or F2 ≡ 0, then we can easily see that (51) becomes an equality.
Assume that F1 �≡ 0 and F2 �≡ 0, we will prove (51) with strict inequality.
We denote ̂1 := H1{1}, where the function H1{1} : T0

h → C is given by ([15,
p. 323])

(
H1{1}

)
(0) =

1(0)
2

and
(
H1{1}

)
(nh) = 1(nh) for n ∈ N.

Let N be an arbitrary positive integer. We define

S1(N) := hp
N


k=0

∣∣((F11)∗(F22)
)
(kh)

∣∣p∣∣(1∗2)(kh)
∣∣1−p

and (52)

S2(k) :=



n=0




m=0

̂1(nh)2(mh) (k,n,m) =

h

(1∗2)(kh), k ∈ N0. (53)

By virtue of (52) and (53), we find that

S1(N) =
h

1−p

N


k=0

∣∣((F11)∗(F22)
)
(kh)

∣∣p[S2(k)]1−p. (54)

Using (4), (5), ̂1 = H1{1}, the equality p−1 +q−1 = 1, (53) and Hölder’s inequality,
we obtain


h

∣∣((F11)∗(F22)
)
(kh)

∣∣� 


n=0




m=0

|F1(nh)|̂1(nh)|F2(mh)|2(mh) (k,n,m)

=



n=0




m=0

|F1(nh)||F2(mh)|[̂1(nh)2(mh) (k,n,m)
] 1

p
[
̂1(nh)2(mh) (k,n,m)

] 1
q

�
[ 


n=0




m=0

|F1(nh)|p̂1(nh)|F2(mh)|p2(mh) (k,n,m)
] 1

p [
S2(k)

] 1
q , ∀k ∈ N0. (55)

Due to (55), for k ∈ N0, we attain∣∣(F11)∗(F22)(kh)
∣∣p

�
(

h


)p[
S2(k)

] p
q




n=0




m=0

|F1(nh)|p̂1(nh)|F2(mh)|p2(mh) (k,n,m). (56)
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According to (54), (56) and the equality
p
q

+1− p= 0, we have the following estimate

S1(N) � h
1−p

(
h


)p N


k=0




n=0




m=0

|F1(nh)|p̂1(nh)|F2(mh)|p2(mh) (k,n,m). (57)

From (57), taking the limit of (57) as N →  and using (23), ̂1 = H1{1}, (10) and
(9), it follows that

lim
N→

S1(N) � h
1−p

(
h


)p 


n=0

|F1(nh)|p̂1(nh)|



m=0

F2(mh)|p2(mh)



k=0

 (k,n,m)

<
2h1+p

[
 + ln(1+)

]





n=0




m=0

|F1(nh)|p̂1(nh)|F2(mh)|p2(mh)

=
2h1+p

[
 + ln(1+)

]


(‖F1‖(2)
�p(T0

h,1)

h

)p(‖F2‖�p(T0
h,2)

h

)p

< . (58)

Combining (58), (52) and (6), we deduce that
(
(F11)∗(F22)

)
(1∗2)

1
p−1 ∈ �p(T0

h)
and the following inequality holds∥∥∥((F11)∗(F22)

)
(1∗2)

1
p−1
∥∥∥

p
< C‖F1‖(2)

�p(T0
h,1)

‖F2‖�p(T0
h,2)

,

where C = h
1−p

p

(
2+

2ln(1+)


) 1
p

. The theorem is proved. �

For the remaining part of this section, we will investigate a reverse Saitoh-type
inequality for the h -Fourier cosine-Laplace discrete generalized convolution.

DEFINITION 2. [5, 10, 16] The Specht’s ratio is determined by

S(t) =
t

1
t−1

e ln
(
t

1
t−1

) , t ∈ R, t > 0 and t �= 1. (59)

Here, the function ln : (0,) → R is the natural logarithm function and the number e

is the constant e = lim
n→

(
1+

1
n

)n

.

The value of the Specht’s ratio S(.) at the point 1 is ([16])

S(1) = 1. (60)

LEMMA 3. [16] The function S(t) is strictly decreasing for 0 < t < 1 and strictly
increasing for t > 1. Furthermore, the following equations hold

lim
u→1

ln
[
S(u)

]
= 0 and S(t) = S

(
1
t

)
for all t > 0.
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The following corollary is a consequence of [4, Corollary 3.17] and Lemma 3.

COROLLARY 2. Let a and b be two functions from N0×N0 to (0,) satisfying

B =



n=0




m=0

b(n,m) <  and 0 < M1 � a(n,m)
b(n,m)

� M2 < , ∀n,m ∈ N0.

Then A =



n=0




m=0
a(n,m) <  and




n=0




m=0

[
a(n,m)

] 1
p
[
b(n,m)

] 1
q < . In addition,

S

(
M1

M2

) 


n=0




m=0

[
a(n,m)

] 1
p
[
b(n,m)

] 1
q � A

1
p B

1
q .

The following inequality was given in [15, p. 332] without proof, we will give a
proof of this inequality.

LEMMA 4. [15] For m ∈ N and n ∈ N0, it holds an inequality




k=0

 (k,n,m) >

2
− 1

m(1+)m . (61)

Proof. We call A the left hand side of (61). Using the identity (16), it is easily
proven that




j=0

I(2 j +1,m) >
1
m!

∫ 

0
tm+1e−t




j=0

1
(2 j +1)2 + t2

dt. (62)

For t > 0, we have




j=0

1
(2 j +1)2 + t2

>
1
2




j=1

1
j2 + t2

>
1
2




j=1

∫ j+1

j

dx
x2 + t2

=
1
2

∫ 

1

dx
x2 + t2

=
1
2

(
1
t

arctan
x
t

)∣∣∣∣
1

=
1
2t

(

2
− arctan

1
t

)
>

1
2t

(

2
− 1

t

)
. (63)

From (62) and (63), using the gamma function, we deduce that




j=0

I(2 j +1,m) >

4

1
m!

∫ 

0
tme−t dt− 1

2
1
m!

∫ 

0
tm−1e−t dt =


4
− 1

2m
. (64)

Due to (22), (64), I(0,m) =
1
m

(
1− 1

(1+)m

)
and (17), it follows that

A >
1
m

(
1− 1

(1+)m

)
+2

(

4
− 1

2m

)
=


2
− 1

m(1+)m .

The proof is completed. �
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For n ∈ N0, it is easy to see that




k=0

 (k,n,0) >  (n,n,0) > I(0,0) = ln(1+) >

2
− 1

1+
. (65)

Combining (4.14) in [15, p. 332] and (65), we arrive at




k=0

 (k,n,m) >

2
− 1

1+
, ∀m, n ∈ N0. (66)

THEOREM 4. (A reverse Saitoh-type inequality). If F1 and F2 are two functions
from T

0
h to (0,) satisfying

0 < M
1
p
1 � F1(nh) � M

1
p
2 <  and 0 < M

1
p
3 � F2(nh) � M

1
p
4 < , ∀n ∈ N0, (67)

then for j = 1, 2, we have Fj j ∈ �1(T0
h) and Fj ∈ �p(T0

h, j). Additionally,(
(F11)∗(F22)

)
(1∗2)

1
p−1 ∈ �p(T0

h).

Moreover, the following inequality holds∥∥∥((F11)∗(F22)
)
(1∗2)

1
p−1
∥∥∥

p
> C‖F1‖(2)

�p(T0
h,1)

‖F2‖�p(T0
h,2)

, (68)

where

C =
(
2 +−2
2(1+)

) 1
p
[
S

(
M1M3

M2M4

)]−1

h
1−p

p .

Here, the Specht’s ratio S(.) is determined by (59) and (60).

Proof. From (67) and 1, 2 ∈ �1(T0
h), for j = 1, 2, we have

Fj j ∈ �1(T0
h) and Fj ∈ �p(T0

h, j).

Since F1 ∈ �p(T0
h,1) and F2 ∈ �p(T0

h,2), applying Theorem 3, we get(
(F11)∗(F22)

)
(1∗2)

1
p−1 ∈ �p(T0

h).

We set ̂1 := H1{1}, where H1{1} : T0
h → C is defined by ([15, p. 323])

(
H1{1}

)
(0) =

1(0)
2

and
(
H1{1}

)
(nh) = 1(nh) for n ∈ N.

We denote

S1 :=
∥∥∥((F11)∗(F22)

)
(1∗2)

1
p−1
∥∥∥

p
and (69)

S2(k) :=



n=0




m=0

̂1(nh)2(mh) (k,n,m) =

h

(1∗2)(kh), k ∈ N0. (70)
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Combining (69), (6) and (70), we obtain

Sp
1 =

h
1−p




k=0

∣∣((F11)∗(F22)
)
(kh)

∣∣p[S2(k)]1−p. (71)

For each k∈N0, we define two functions ak and bk from N0×N0 to (0,) as follows:

ak(n,m) :=
[
F1(nh)F2(mh)

]p̂1(nh)2(mh) (k,n,m), n,m ∈ N0, and (72)

bk(n,m) := ̂1(nh)2(mh) (k,n,m), n,m ∈ N0. (73)

From (67), (72) and (73), for n,m, k ∈ N0, we deduce that

0 < M1M3 � ak(n,m)
bk(n,m)

� M2M4 < . (74)

According to (4), (5), ̂1 = H1{1}, (72), (73) and the equality p−1 +q−1 = 1, we find
that


h

∣∣((F11)∗(F22)
)
(kh)

∣∣= 


n=0




m=0

[
ak(n,m)

] 1
p
[
bk(n,m)

] 1
q , ∀k ∈ N0. (75)

For each k ∈ N0, due to (75), (73) and (74), applying Corollary 2 for the two functions
ak and bk from N0 ×N0 to (0,), we attain


h

∣∣((F11)∗(F22)
)
(kh)

∣∣� [S(M1M3

M2M4

)]−1[
A(k)

] 1
p
[
B(k)

] 1
q , (76)

where

A(k) =



n=0




m=0

ak(n,m) and (77)

B(k) =



n=0




m=0

bk(n,m) =



n=0




m=0

̂1(nh)2(mh) (k,n,m) = S2(k). (78)

Using (71), (76) and (78), it follows that

Sp
1 � h

1−p




k=0

(
h


)p[
S

(
M1M3

M2M4

)]−p

A(k)[S2(k)]
p
q +1−p. (79)

Since p−1 +q−1 = 1, we have
p
q

+1− p = 0.

By virtue of (79), (77), (72),
p
q

+1− p = 0 and (66), we observe that

Sp
1 � h1+p



[
S

(
M1M3

M2M4

)]−p 


n=0

[
F1(nh)

]p̂1(nh)



m=0

[
F2(mh)

]p2(mh)



k=0

 (k,n,m)

>
h1+p



(

2
− 1

1+

)[
S

(
M1M3

M2M4

)]−p 


n=0

[
F1(nh)

]p̂1(nh)



m=0

[
F2(mh)

]p2(mh)

=
(
2 +−2
2(1+)

)
h1+p

[
S

(
M1M3

M2M4

)]−p 


n=0

[
F1(nh)

]p̂1(nh)



m=0

[
F2(mh)

]p2(mh).

(80)
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From (80), (69), ̂1 = H1{1}, (10) and (9), we obtain the inequality (68).
The proof of Theorem 4 is completed. �

5. Applications

Let M be a given number in N and let p, k (k = 0, 1, . . . , M) be given complex

numbers satisfying p ∈ R, p > 1 and
M


k=1

|k|2 > 0. Assume that  and  are two

given functions in �1(T0
h) such that  : T0

h → R and (nh) > 0, ∀n ∈ N0.

We define a function f :
[
0,

h

]
→ C by

f (u) := Fc{}(u), u ∈
[
0,

h

]
. (81)

DEFINITION 3. [13] The h -Fourier cosine convolution on the time scale T0
h of

two functions x̃, z̃ ∈ �1(T0
h) in which x̃, z̃ : T0

h → R is defined as

(x̃∗
1
z̃)(t) := h

{
G̃2(x̃, z̃,t)+ x̃(0)z̃(t)

}
, t ∈ T

0
h,

where

G̃2(x̃, z̃,t) =



n=1

x̃(nh)
[
z̃(|t −nh|)+ z̃(t +nh)

]
, t ∈ T

0
h.

Suppose that x̂ and ẑ are two functions in �1(T0
h) such that at least one of the

following two conditions is false: (a) x̂ : T0
h → R and (b) ẑ : T0

h → R. In a manner
analogous to Definition 1 in [13], the h -Fourier cosine convolution on the time scale
T0

h of x̂ and ẑ is given by

(x̂∗
1
ẑ)(t) := h

{( 


n=1

x̂(nh)
[
ẑ(|t−nh|)+ ẑ(t +nh)

])
+ x̂(0)ẑ(t)

}
, t ∈ T

0
h.

By performing the same arguments or some analogous arguments as in the proof
of Theorem 4 in [13], we have x̂∗

1
ẑ ∈ �1(T0

h) and

Fc{x̂∗
1
ẑ}(u) = Fc{x̂}(u)Fc{ẑ}(u), ∀u ∈

[
0,

h

]
. (82)

We define an operator P : �1(T0
h) → �1(T0

h) by P(z) := z∗
1
 for z ∈ �1(T0

h).

We consider the following equation

0x+
( M


k=1

kP
k
)
(x) = y , (83)
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where y is a given function in �p(T0
h,) and x ∈ �1(T0

h) is an unknown function. Here,
for z ∈ �1(T0

h), P1(z) := P(z) and

P j(z) := P j−1(P(z)
)
, j ∈ N and j � 2.

For u ∈
[
0,

h

]
and z ∈ �1(T0

h), from [13, p. 210], (82) and (81), we get

Fc
{
P(z)

}
(u) = Fc

{
z∗

1

}
(u) = Fc{z}(u)Fc{}(u) = f (u)Fc{z}(u) and

Fc
{
P j(z)

}
(u) =

[
f (u)

] j
Fc{z}(u), ∀ j ∈ N. (84)

THEOREM 5. Let  : T0
h → R be a given function in �1(T0

h) such that (nh) > 0,
∀n ∈ N0. Assume that there exists a function Q in the space �p(T0

h,) satisfying

L {Q}(u) =
1

0 +
M


k=1

k
[
f (u)

]k , ∀u ∈
[
0,

h

]
. (85)

Then the equation (83) has a unique solution in �1(T0
h) and the solution is given by

x = (y)∗(Q). Furthermore, the following estimate holds

∥∥∥x(∗)
1
p−1
∥∥∥

p
� h

1−p
p

(
2+

2ln(1+)


) 1
p

‖y‖(2)
�p(T0

h,)
‖Q‖�p(T0

h,). (86)

The equality in (86) is attained if and only if y ≡ 0.

Proof. Since  ,  : T0
h → (0,),  , ∈ �1(T0

h), y∈ �p(T0
h,) and Q∈ �p(T0

h,),
using Theorem 3 with  ,  , y and Q instead of 1, 2, F1 and F2, respectively, we have
y , Q ∈ �1(T0

h). Applying the h -Fourier cosine transform to both sides of (83) and
using (84), we see that(

0 +
M


k=1

k
[
f (u)

]k)
Fc{x}(u) = Fc{y}(u), ∀u ∈

[
0,

h

]
. (87)

By virtue of (87) and (85), we arrive at

Fc{x}(u) = Fc{y}(u)L {Q}(u), ∀u ∈
[
0,

h

]
.

Therefore, x = (y)∗(Q). According to Theorem 3, we obtain the estimate (86). The
equality is attained if and only if y ≡ 0. This completes the proof. �

REMARK 1. In Theorem 5, if the function y satisfies the condition

0 < M
1
p
1 � y(nh) � M

1
p
2 <, ∀n ∈ N0,
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and the function Q satisfies the condition

0 < M
1
p
3 � Q(nh) � M

1
p
4 < , ∀n ∈ N0,

then by using Theorem 4, we have the following estimate

∥∥∥x(∗)
1
p−1
∥∥∥

p
>

(
2 +−2
2(1+)

) 1
p
[
S

(
M1M3

M2M4

)]−1

h
1−p

p ‖y‖(2)
�p(T0

h,)
‖Q‖�p(T0

h,).

REMARK 2. Let 0 be the function defined on the time scale T0
h by

0(0) :=
−2

3h3 and 0(nh) :=
2(−1)n+1

h3n2 for n ∈ N.

Since



n=1

1
n2 <  , we derive that the function 0 belongs to the space �1(T0

h).

From the definition of the h -Fourier cosine transform (1), we have

Fc{0}(u) =
−2

3h2 +
4
h2




n=1

(−1)n+1

n2 cos(unh), ∀u ∈ R. (88)

Using the following Fourier cosine series of the function g(t) = t2 on the interval
[− , ] ([3, p. 99])

t2 =
2

3
+4




n=1

(−1)n cos(nt)
n2 , ∀t ∈ [− , ],

we then get (uh)2 =
2

3
+4




n=1
(−1)n cos(unh)

n2 , ∀u ∈
[
0,

h

]
.

Combining the above identity with (88) yields

Fc{0}(u) = −u2, ∀u ∈
[
0,

h

]
. (89)

Let us define the operator P0 : �1(T0
h)→ �1(T0

h) by P0(z) := z∗
1
0 for z∈ �1(T0

h).

It is easily proven that the operator P0 in here is the same as the operator K in [15,
p. 338]. The formula (5.18) was given in [15, p. 338] without proof, we will prove this

formula. From [13, p. 210], (82) and (89), for u ∈
[
0,

h

]
and z ∈ �1(T0

h), we deduce

that

Fc
{
P0(z)

}
(u) = Fc

{
z∗

1
0
}
(u) = Fc{z}(u)Fc{0}(u) = −u2Fc{z}(u).

Hence, the formula (5.18) in [15, p. 338] is proved.
Let M0 be a given number in N and let  , p0, wk (k = 0, 1, . . . , M0) be given

complex numbers satisfying  ∈ N, p0 ∈ R, p0 > 1 and w0 = 1. Suppose that 0, 0 :
T

0
h → R are two given functions in �1(T0

h) such that 0(nh) > 0 and 0(nh) > 0 for
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all n ∈ N0. In Lemma 5.1 in [15, p. 338], the authors studied the equation that can be
rewritten in the form

w0 +
( M0


k=1

(−1)kwkP
k
0

)
() = y00,

where y0 ∈ �p0(T
0
h,0) is a given function and  is an unknown function in �1(T0

h),
assuming that the following condition is satisfied: There exists a function Q0 in the
weighted function space �p0(T

0
h,0) such that

L {Q00}(u) =
(1+hu)

w0 +
M0


k=1

wku2k

, ∀u ∈
[
0,

h

]
.
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