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A GROUP–THEORETICAL APPROACH TO EXTENDING THE

SCHRÖDINGER–ROBERTSON UNCERTAINTY INEQUALITY

WANNISA SUDPRAKHON AND KENG WIBOONTON ∗

(Communicated by S. Varošanec)

Abstract. We provide a sufficient condition for expanding the domain in the Schrödinger-Robertson
uncertainty inequality for infinitesimal operators derived from a unitary representation of a Lie
group.

1. Introduction

The well-known uncertainty principle inequality (UPI) for Hilbert spaces states
that if A and B are densely defined and are self-adjoint or skew-adjoint operators on a
Hilbert space H , with domains D(A) and D(B) , and if a,b ∈ C , then

1
2
|〈[A,B]x,x〉| � ‖(A−aI)x‖‖(B−bI)x‖

for all x ∈ D([A,B]) . Here, as usual, the commutator [A,B] is defined as [A,B] :=
AB−BA on the domain D([A,B]) = D(AB)∩D(BA) where the domain of the product
AB is defined by D(AB)= {x∈D(B) | Bx∈D(A)} , and similarly for D(BA) . Observe
that D([A,B]) ⊆ D(A)∩D(B) .

If [A,B] is closable, then in general, it is invalid that the preceding inequality
holds for all x ∈ D(A)∩D(B)∩D([A,B]) . However, in 1967, K. Kraus [8] proved
that the inequality holds if A,B and [A,B] are infinitesimal generators determined by a
unitary representation of a Lie group of dimension less than four. Later, in 1997, G. B.
Folland and A. Sitaram [5] improved Kraus’s result to obtain the following statement:
if (π ,H ) is a unitary representation of a connected Lie group G with Lie algebra g ,
then for X ,Y ∈ g such that the linear span of X ,Y, and [X ,Y ] is an ideal in g , then the
inequality

1
2

∣∣∣〈[π(X),π(Y)]x,x〉
∣∣∣� ‖π(X)x‖‖π(Y )x‖

holds for all x ∈ D(π(X))∩D(π(Y ))∩D([π(X),π(Y )]) . One notable application of
this result arises when one consider the Schrödinger representation of the (2n + 1)-
dimensional Heisenberg group Hn and this formulation leads to the n -dimensional
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UPI for functions in L2(Rn) , see [5]. In 2004, using a crucial tool given by I. E. Segal
in [11], J. G. Christensen [2] made improvements to the above result by omitting the
hypothesis that X ,Y and [X ,Y ] span an ideal in g . Additionally, J. G. Christensen
and H. Schlichtkrull [3] employed the principal series representation of the Euclidean
group E(2) to establish the UPI for functions on the unit circle S

1 , which was initially
introduced by E. Breiterberger in [1]. As a result, it is natural that one may apply this
group theoretical technique to obtain the UPI for functions on the n -sphere S

n. In this
paper, we use this group theoretical method to obtain a weaker version of the UPI for
functions on S

2 , as originally proposed by F. J. Narcowick and J. D. Ward in [9] and
later extended to S

n by S. S. Goh and N. T. Goodman [6].

A well-known inequality stronger than the UPI is the following Schrödinger-
Robertson uncertainty inequality (SRUI): if A and B are densely defined and are self-
adjoint or skew-adjoint operators on a Hilbert space H , then

1
2

(
|〈[A,B]x,x〉|2 + |〈{A,B}x,x〉|2

)1/2
� ‖Ax‖‖Bx‖

for all x ∈D([A,B]) . Here the anticommutator {A,B} is defined as {A,B} := AB+BA
on the domain D({A,B}) = D(AB)∩D(BA) = D([A,B]) . Detailed discussions and
examples related to this inequality can be found in [4] and [10]. If [A,B] and {A,B} are
closable, then in general, the SRUI does not hold for all x∈D(A)∩D(B)∩D([A,B])∩
D({A,B}) . Therefore, an analogous question, as in the case of the UPI we discussed
above, arises: can the SRUI hold on the extended domain when the operators involved
come from a unitary representation of a Lie group? This leads us to investigate this
question in a certain aspect. In this paper, we engage a group-theoretical framework
in order to expand the domain of the infinitesimal operators, derived from a unitary
representation of a Lie group, in the SRUI.

This paper is organized as follows. We review the notations and preliminary re-
sults, including the UPI from a group perspective, in Section 2. Additionally, by apply-
ing the result in [2] to a unitary representation of the Euclidean group E(3) , we obtain a
weaker version of UPI for functions on the sphere S

2 . In Section 3, we employ a result
of I. E. Segal in [11] to obtain a sufficient condition for the SRUI to hold on a larger
domain of infinitesimal operators induced by a unitary representation of a Lie group.
This is the main result of our paper.

2. Notation and auxiliary results

We recall basic results on unitary representations of Lie groups. These materials
can be found in standard references such as in [7], [13] and [14]. Throughout this
paper, we let G be a Lie group with its Lie algebra g , and let (π ,H ) be a unitary
representation of G . A vector x in H is smooth for G if the map a 	→ π(a)x is
smooth from G to H . Let H ∞

π be the set of all smooth vectors for G . Then H ∞
π is

a subspace of H . For each X ∈ g , we define the infinitesimal generator π(X) , with
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the domain D(π(X)) = H ∞
π , as the limit

π(X)x := lim
t→0

π(exptX)x− x
t

for x ∈ H ∞
π . Then π(X)(H ∞

π ) ⊆ H ∞
π for all X ∈ g and π is a representation of g

on H ∞
π . Let da be a left Haar measure on G and C∞

c (G) be the set of all infinitely
differentiable functions with compact supports in G . The Gårding subspace of H ,
denoted by G (π) , is the vector space of elements π( f )x which are of the form

π( f )x :=
∫

G
f (a)π(a)xda

where f ∈ C∞
c (G) , x ∈ H . Then the Gårding subspace G (π) is dense in H . Since

G (π) ⊆ D(π(X)) , it follows that π(X) is densely defined for all X ∈ g . Moreover, it
can be shown that π(X) is skew-symmetric on H ∞

π . Now π(X) is closable and we
denote the closure of π(X) as π(X) . Moreover, the closed operator π(X) is skew-
adjoint, see [11]. For X ∈ g , one can define a left- and a right- invariant differential
operators, respectively, on C∞(G) by

(XX
L f )(a) :=

d
dt

∣∣∣
t=0

f (a · exptX), (XX
R f )(a) :=

d
dt

∣∣∣
t=0

f (exptX ·a)

for a ∈ G . Next, we state the following proposition which will be used later in this
paper.

PROPOSITION 1. (Taylor, [14]) Let X ∈ g , f ∈C∞
c (G) and let Δ be the modular

function on G.

(i) For x ∈ H , π(X)π( f )x = −π(XX
R f )x .

(ii) For x ∈ D(π(X)) ,

π( f )π(X)x = −π(XX
L f )x+ Δ(X)π( f )x

where Δ(X) :=
d
dt

∣∣∣
t=0

Δ(exptX) .

After employing the above proposition and the results of I. E. Segal in [11], J. G.
Christensen [2] eliminated the condition that “X ,Y and [X ,Y ] span an ideal of g” in
the hypothesis of the result in [5], and proved the following theorem.

THEOREM 2. (Christensen, [2]) Let G be a Lie group with its Lie algebra g , and
let (π ,H ) be a unitary representation of G. Suppose X ,Y ∈ g . Then the inequality

1
2
|〈π[X ,Y ]x,x〉| � ‖(π(X)−aI)x‖‖(π(Y )−bI)x‖

holds for all x ∈ D(π(X))∩D(π(Y ))∩D(π ([X ,Y ])) , and a,b ∈ C .
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REMARK 1. Since π is a representation of g on H ∞
π , [π(X),π(Y )] = π([X ,Y ])

on H ∞
π and hence [π(X),π(Y )] = π([X ,Y ]) . Since π(X) = π(X) and π(Y ) = π(Y ) on

H ∞
π , [π(X),π(Y )] |H ∞

π
= [π(X),π(Y )] . It follows that [π(X),π(Y )] = [π(X),π(Y)] =

π([X ,Y ]) . Therefore,

D(π(X))∩D(π(Y ))∩D([π(X),π(Y )]) = D(π(X))∩D(π(Y ))∩D(π ([X ,Y ])).

In [3], J. G. Christensen and H. Schlichtkrull applied Theorem 2 to the principal
series representation of the Euclidean motion group E(2) in order to formulate the UPI
for functions on the unit circle. Then it is natural that one can employ this method to the
motion group E(n) to get the UPI for functions on the sphere S

n−1 . In the following
example, we apply Theorem 2 to the Euclidean motion group E(3) .

EXAMPLE 1. Let E(3) be the Euclidean motion group on R
3 . One can realize

E(3) as

E(3) =
{

(A,x) :=
(

A x
0 1

)∣∣∣∣A ∈ SO(3), x ∈ R
3
}

,

and its Lie algebra e(3) is given by

e(3) =
{(

Z x
0 0

)∣∣∣∣Z ∈ so(3),x ∈ R
3
}

.

Define a unitary representation π : E(3) →U(L2(S2)) as follows:

(π(g) f )(s) := eix·s f (A−1s)

where g = (A,x) ∈ E(3) , f ∈ L2(S2) , s ∈ S
2 and x · s denotes the dot product in

R
3 . For each s ∈ S

2 , we can express its spherical coordinates as s = (s1,s2,s3) =
(sinθ cosϕ ,sinθ sinϕ ,cosθ ) , where 0 � θ � π and 0 � ϕ � 2π . Then we can identify
functions in L2(S2) with functions in L2([0,π ]× [0,2π ]) . The standard basis of e(3)
is given by

X1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ , X2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , X3 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Y1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , Y2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , Y3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ .

The commutation relations are

[Xi,Xj] = εi jkXk, [Xi,Yj] = εi jkYk, [Yi,Yj] = 0,
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where εi jk is the Levi-Civita symbol, and their corresponding differential operators are

π(X1) = s3
∂

∂ s2
− s2

∂
∂ s3

= sinϕ
∂

∂θ
+ cotθ cosϕ

∂
∂ϕ

π(X2) = s1
∂

∂ s3
− s3

∂
∂ s1

= −cosϕ
∂

∂θ
+ cotθ sinϕ

∂
∂ϕ

π(X3) = s2
∂

∂ s1
− s1

∂
∂ s2

= − ∂
∂ϕ

and
(π(Y1) f )(s) = is1 f (s) = isinθ cosϕ f (s),

(π(Y2) f )(s) = is2 f (s) = isinθ sinϕ f (s),

(π(Y3) f )(s) = is3 f (s) = icosθ f (s)

where for j = 1,2,3, D(π(Yj)) = L2(S2) and

D(π(Xj)) =
{

f ∈ L2(S2) : f is separately absolutely continuous and

∂ f
∂θ

,
∂ f
∂ϕ

∈ L2(S2)
}

.

When we apply Theorem 2 to the commutation relations [X1,Y2] = Y3 , [X2,Y3] = Y1

and [X3,Y1] = Y2 , we obtain

1
2
|〈π(Y3) f , f 〉| � ‖π(X1) f −〈π(X1) f , f 〉 f‖ ‖π(Y2) f −〈π(Y2) f , f 〉 f‖ ,

1
2
|〈π(Y1) f , f 〉| � ‖π(X2) f −〈π(X2) f , f 〉 f‖ ‖π(Y3) f −〈π(Y3) f , f 〉 f‖ ,

1
2
|〈π(Y2) f , f 〉| � ‖π(X3) f −〈π(X3) f , f 〉 f‖ ‖π(Y1) f −〈π(Y1) f , f 〉 f‖

for all f ∈ ∩3
j=1D(π(Xj)) with ‖ f‖2 = 1. Let dσ denote the surface measure on S

2 .

Then for f ∈ ∩3
j=1D(π(Xj)) with ‖ f‖2 = 1,∥∥∥∥

∫
S2

s| f (s)|2dσ
∥∥∥∥

2

R3

=
3

∑
j=1

∣∣∣∣
∫

S2
s j| f (s)|2dσ

∣∣∣∣
2

= |〈π(Y1) f , f 〉|2 + |〈π(Y2) f , f 〉|2 + |〈π(Y3) f , f 〉|2

= |〈π([X2,Y3]) f , f 〉|2 + |〈π([X3,Y1]) f , f 〉|2 + |〈π([X1,Y2]) f , f 〉|2
UPI
� 4

(
‖π(X2) f −〈π(X2) f , f 〉 f‖2 ‖π(Y3) f −〈π(Y3) f , f 〉 f‖2

+‖π(X3) f −〈π(X3) f , f 〉 f‖2 ‖π(Y1) f −〈π(Y1) f , f 〉 f‖2

+‖π(X1) f −〈π(X1) f , f 〉 f‖2 ‖π(Y2) f −〈π(Y2) f , f 〉 f‖2
)
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= 4
3

∑
k=1

‖π(Xk) f −〈π(Xk) f , f 〉 f‖2
3

∑
k=1

‖π(Yk) f −〈π(Yk) f , f 〉 f‖2

−4‖π(X1) f −〈π(X1) f , f 〉 f‖2 ‖π(Y1) f −〈π(Y1) f , f 〉 f‖2

−4‖π(X1) f −〈π(X1) f , f 〉 f‖2 ‖π(Y3) f −〈π(Y3) f , f 〉 f‖2

−4‖π(X2) f −〈π(X2) f , f 〉 f‖2 ‖π(Y1) f −〈π(Y1) f , f 〉 f‖2

−4‖π(X2) f −〈π(X2) f , f 〉 f‖2 ‖π(Y2) f −〈π(Y2) f , f 〉 f‖2

−4‖π(X3) f −〈π(X3) f , f 〉 f‖2 ‖π(Y2) f −〈π(Y2) f , f 〉 f‖2

−4‖π(X3) f −〈π(X3) f , f 〉 f‖2 ‖π(Y3) f −〈π(Y3) f , f 〉 f‖2

UPI
� 4

( 3

∑
k=1

‖π(Xk) f −〈π(Xk) f , f 〉 f‖2
)( 3

∑
k=1

‖π(Yk) f −〈π(Yk) f , f 〉 f‖2
)

−|〈π([X1,Y3]) f , f 〉|2−|〈π([X2,Y1]) f , f 〉|2 −|〈π([X3,Y2]) f , f 〉|2

= 4
3

∑
k=1

‖π(Xk) f −〈π(Xk) f , f 〉 f‖2
3

∑
k=1

‖π(Yk) f −〈π(Yk) f , f 〉 f‖2−
3

∑
k=1

|〈π(Yk) f , f 〉|2

= 4
3

∑
k=1

‖π(Xk) f −〈π(Xk) f , f 〉 f‖2
3

∑
k=1

‖π(Yk) f −〈π(Yk) f , f 〉 f‖2−
∥∥∥∥
∫

S2
s| f (s)|2dσ

∥∥∥∥
2

R3
.

Hence, for f ∈ ∩3
j=1D(π(Xj)) with ‖ f‖2 = 1,

2

∥∥∥∥
∫

S2
s| f (s)|2dσ

∥∥∥∥
2

R3
� 4

3

∑
k=1

‖π(Xk) f −〈π(Xk) f , f 〉 f‖2
3

∑
k=1

‖π(Yk) f −〈π(Yk) f , f 〉 f‖2

= 4

(∫
S2
|Ω f −a( f ) f |2 dσ

)(
1−
∥∥∥∥
∫

S2
s| f (s)|2dσ

∥∥∥∥
2

R3

)

where Ω f (x) := −ix×∇ f (x) and a( f ) :=
∫

S2
(Ω f ) f dσ . The last equation is obtained

due to the fact that

−x×∇ = −
⎛
⎝ i j k

s1 s2 s3

∂1 ∂2 ∂3

⎞
⎠=

⎛
⎝s3∂2− s2∂3

s1∂3− s3∂1

s2∂1− s1∂2

⎞
⎠=

⎛
⎝π(X1)

π(X2)
π(X3)

⎞
⎠ , a( f ) =

⎛
⎝〈iπ(X1) f , f 〉
〈iπ(X2) f , f 〉
〈iπ(X3) f , f 〉

⎞
⎠ .

Consequently, we derive an uncertainty inequality for functions on the sphere S2 :

1
2

∥∥∥∥
∫

S2
s| f (s)|2dσ

∥∥∥∥
2

R3
�
(∫

S2
|Ω f −a( f ) f |2 dσ

)(
1−
∥∥∥∥
∫

S2
s| f (s)|2dσ

∥∥∥∥
2

R3

)

for f ∈ ∩3
j=1D(π(Xj)) with ‖ f‖2 = 1.

Although using the above group theoretical approach yields a UPI for functions
on S

2 as demonstrated in the previous example, it turns out that the lower bound on
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the left-hand side of our inequality is only half of the one appeared in the results in [6]
and [9]. So our inequality is a weaker version of the one in [6] and [9]. Nevertheless,
our inequality is consistent with the one derived in [12]. We emphasize that in [12], the
inequality holds for f ∈D(∩3

i=1π(Xi)) , while in our result, the inequality holds for f ∈
D(∩3

i=1π(Xi)) , which is a bigger set. As our inequality above is not the sharpest one,
it suggests that the Euclidean group E(3) is not the right group to gain the inequality
in [6] and [9]. Therefore, this generates the following question: how can one determine
a suitable pair of a Lie group and a corresponding unitary representation that would
establish the UPI for functions on a sphere as given in [6] and [9]? Finding such pair
would be a future work.

3. Schrödinger-Robertson uncertainty inequality

Let A,B be densely defined operators in a Hilbert space H with domains D(A)
and D(B) , respectively. Recall that the anticommutator {A,B} is defined by

{A,B} := AB+BA

on the domain D({A,B}) = D(AB) ∩D(BA) , where D(AB) = {x ∈ D(B) : Bx ∈
D(A)} and vice versa for D(BA) . The Schrödinger-Robertson uncertainty inequal-
ity (SRUI) states that if A,B are (skew) self-adjoint operators in a Hilbert space H ,
then

1
2

(
|〈[A,B]x,x〉|2 + |〈{A,B}x,x〉|2

)1/2
� ‖Ax‖‖Bx‖

for x∈D([A,B]) . It can be seen that, in general, the domains D([A,B]) and D({A,B})
may not be even densely defined. However, if [A,B] and {A,B} are closable along
with some additional convergence conditions, we attain the following straightforward
extension of the SRUI.

PROPOSITION 3. Let A,B be densely defined operators in a Hilbert space H
with the following properties:

(i) A and B are (skew) self-adjoint operators,

(ii) [A,B] and {A,B} are closable, and

(iii) for each x ∈ D(A)∩D(B)∩D([A,B])∩D({A,B}) , there is a sequence xn ∈
D([A,B]) such that xn → x , Axn → Ax, Bxn → Bx, and [A,B]xn and {A,B}xn

converge in H .

Then
1
2

(∣∣∣〈[A,B]x,x〉
∣∣∣2 +

∣∣∣〈{A,B}x,x〉
∣∣∣2)1/2

� ‖Ax‖‖Bx‖

for all x ∈ D(A)∩D(B)∩D([A,B])∩D({A,B}) .
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Proof. Let x∈D(A)∩D(B)∩D([A,B])∩D({A,B}) . By (iii), there is a sequence
xn ∈D([A,B]) such that xn → x , Axn →Ax , Bxn →Bx , [A,B]xn and {A,B}xn converge
in H . Since [A,B]x := lim

n→∞
[A,B]xn and {A,B}x := lim

n→∞
{A,B}xn , it follows that

|〈[A,B]xn,xn〉|2 + |〈{A,B}xn,xn〉|2 � 4‖Axn‖‖Bxn‖ .

Taking n → ∞ , one get∣∣∣〈[A,B]x,x〉
∣∣∣2 +

∣∣∣〈{A,B}x,x〉
∣∣∣2 � 4‖Ax‖‖Bx‖ . �

We note that if the operators A and B are generated by a unitary representation of
a Lie group G , namely A = π(X),B = π(Y ) for some X ,Y ∈ g , then it is guaranteed
that the domains of [A,B] and {A,B} are densely defined and closable. Therefore, to
apply the above proposition in order to obtain an extended version of the SRUI in this
case, we need the convergence condition (iii) to hold. To achieve this condition, we
employ the following result of I. E. Segal in [11].

LEMMA 1. (Segal, [11]) Let Un be a sequence of neighborhoods of the identity
e ∈ G such that ∩nUn = {e} . Suppose that ( fn) ⊆ L1(G) is a sequence of real-valued

functions such that supp fn ⊆Un , ‖ fn‖1 is bounded and
∫

G
fn(a)da−→ λ ∈R . If φ(a)

is a bounded continuous function from G to a Banach space B , then
∫

G
fn(a)φ(a)da

converges to λ φ(e) as n → ∞ .

Next, we derive some useful equations. Let f ∈ C∞
c (G) , a ∈ G and t ∈ R . By

Taylor’s theorem, there exists t ′a ∈ R such that |t ′a| < |t| and

f (exp tX ·a)− f (a)
t

= (XX
R f )(a)+

t
2
g(a,t ′a)

where g(b,u) :=
d2

ds2

∣∣∣
s=u

f (expsX ·b) for b ∈ G,u ∈ R . This implies

∣∣∣∣
∫

K

f (exp tX ·a)− f (a)
t

da−
∫
K
(XX

R f )(a)da

∣∣∣∣=
∣∣∣∣ t2
∫

K
g(a,t ′a)da

∣∣∣∣
where K is a compact support of f . Since g(·, ·) is continuous on a compact set
K× [−1,1] , it follows that∫

K
(XX

R f )(a)da = lim
t→0

∫
K

f (exptX ·a)− f (a)
t

da = 0 (1)

where the last equality holds since da is left-invariant. Similarly, we have∫
K
(XX

L f )(a)da = lim
t→0

∫
K

f (a · exptX)− f (a)
t

da = −Δ(X)
∫

G
f (a)da.

This observation allows us for interchanging the limit and the integral sign and will be
used in the proof of the succeeding lemma.
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LEMMA 2. Let (Un) be a sequence of neighborhoods of e such that ∩nUn = {e} .
Suppose that for each X ,Y ∈ g , there is a sequence of real-valued functions ( fn) in
C∞

c (G) satisfying the following properties:

(P1) supp fn ⊆Un for each n ∈ N , the sequence (‖ fn‖1) is bounded and
∫

G
fn(a)da

converges to λ ∈ R , and

(P2) the sequence (∥∥XX
RXY

R fn −XY
LXX

L fn + Δ(Y )XX
L fn + Δ(X)XY

L fn
∥∥

1

)
is bounded.

Then, for each u ∈ H ,

π
(
XX

RXY
R fn
)
u−π

(
XY

LXX
L fn
)
u+ Δ(Y)π(XX

L fn)u+ Δ(X)π(XY
L fn)u−Δ(X)Δ(Y)π( fn)u

converges to −4λ Δ(X)Δ(Y)u as n → ∞ .

Proof. Let X ,Y ∈ g . Then there is a sequence ( fn) having the properties (P1) and
(P2). Let u ∈ H . We have

π
(
XX

RXY
R fn
)
u−π

(
XY

LXX
L fn
)
u+ Δ(Y)π(XX

L fn)u+ Δ(X)π(XY
L fn)u−Δ(X)Δ(Y)π( fn)u

=
∫

G

(
XX

RXY
R fn −XY

LXX
L fn + Δ(Y )XX

L fn + Δ(X)XY
L fn −Δ(X)Δ(Y) fn

)
(a)π(a)uda.

Since a 	→ π(a)u is continuous and bounded for every u ∈ H and ( fn) serves the
properties (P1) and (P2), by Lemma 1, it suffices to show that∫

G
(XX

RXY
R fn −XY

LXX
L fn + Δ(Y)XX

L fn + Δ(X)XY
L fn −Δ(X)Δ(Y ) fn)(a)da

is convergent. The integral of the first term vanishes by the equation (1). We recall that
for all f ∈C∞

c (G) and all Z ∈ g ,∫
G
(XZ

L f )(a)da = Δ(−Z)
∫

G
f (a)da.

This implies that ∫
G

XY
LXX

L fn(a)da =
∫

G
Δ(−Y )Δ(−X) fn(a)da.

Now, we have∫
G
(XX

RXY
R fn −XY

LXX
L fn + Δ(Y )XX

L fn + Δ(X)XY
L fn −Δ(X)Δ(Y) fn)(a)da

= −4Δ(X)Δ(Y )
∫

G
fn(a)da
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which converges to −4λ Δ(X)Δ(Y ) as n → ∞ . Therefore,

π
(
XX

RXY
R fn
)
u−π

(
XY

LXX
L fn
)
u+ Δ(Y)π(XX

L fn)u+ Δ(X)π(XY
L fn)u−Δ(X)Δ(Y)π( fn)u

converges to −4λ Δ(X)Δ(Y)u as n → ∞ . This completes the proof. �
We recall that a family of real-valued functions { fn} in C∞

c (G) is said to be an
approximate identity for L1(G) if there exists a sequence of neighborhoods Un of e
such that ∩nUn = {e} along with the following properties:

(i) supp fn ⊆Un and there is c > 0 such that ‖ fn‖L1(G) < c for all n ∈ N ,

(ii)
∫

G
fn(a)da = 1 for all n ∈ N .

Let x ∈ G (π) and fn ∈ C∞
c (G) be an approximate identity. Following the idea

presented in [2], in order to establish on our main theorem, we consider the convergence
of {π(X),π(Y )}π( fn)x . For f ∈C∞

c (G) and X ,Y ∈ g , by Proposition 1, we have

π(X)π(Y )π( f )x = π(X)π(−XY
R f )x = π(XX

RXY
R f )x. (2)

and

π( f )π(X)π(Y )x =
(−π(XX

L f )+ Δ(X)π( f )
)

π(Y )x

= −π(XX
L f )π(Y )x+ Δ(X)π( f )π(Y )x

= π(XY
LXX

L f )x−Δ(Y )π(XX
L f )x−Δ(X)π(XY

L f )x
+ Δ(X)Δ(Y)π( f )x. (3)

Now using the above lemma and the equations (2) and (3), we are able to give a
sufficient condition for expanding the domain in the SRUI. This is our main result.

THEOREM 4. Let π be a unitary representation of a Lie group G on a Hilbert
space H and g be the corresponding Lie algebra. Suppose that for each X ,Y ∈ g ,
there exists an approximate identity ( fn) ⊆C∞

c (G) such that the sequence(∥∥XX
RXY

R fn −XY
LXX

L fn + Δ(Y )XX
L ( fn)+ Δ(X)XY

L fn
∥∥

1

)
(4)

is bounded. Then, for each X ,Y ∈ g ,

1
2

(
|〈π([X ,Y ])x,x〉|2 +

∣∣∣〈{π(X),π(Y )}x,x〉
∣∣∣2)1/2

� ‖π(X)x‖‖π(Y )x‖

where x ∈ D(π(X))∩D(π(Y ))∩D(π([X ,Y ]))∩D({π(X),π(Y )}) =: D .

Proof. Let X ,Y ∈ g . Since

G (π) ⊆ D([π(X),π(Y )]) = D({π(X),π(Y )}),
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we have D([π(X),π(Y )]) and D({π(X),π(Y )}) are dense in H . We have seen that
[π(X),π(Y )] is closable and [π(X),π(Y )] = π([X ,Y ]) . To show that {π(X),π(Y )} is
closable, it suffices to prove that D({π(X),π(Y )}∗) is dense in H . We observe that

(π(X)π(Y )+ π(Y )π(X))∗ ⊇ (π(X)π(Y ))∗ +(π(Y )π(X))∗

⊇ π(Y )∗π(X)∗ + π(X)∗π(Y )∗

= π(Y )π(X)+ π(X)π(Y)
= {π(X),π(Y)}.

The first two superset relationships above hold since the domains D(π(X)π(Y)) and
D(π(Y )π(X)) contain the Gårding subspace, which is dense in H . Now, we have that
D({π(X),π(Y )}∗) is dense in H . Therefore, {π(X),π(Y )} is closable.

Let x ∈ D . We will find a sequence (xn) in D([π(X),π(Y )]) such that xn → x
and

(I) π(X)xn → π(X)x , π(Y )xn → π(Y )x ,

(II) [π(X),π(Y )]xn → [π(X),π(Y )]x and

(III) {π(X),π(Y )}xn →{π(X),π(Y )}x .

If we can find such a sequence (xn) in D([π(X),π(Y )]) , then by Lemma 3, we
obtain our desired inequality and we are done. So it remains to construct the sequence
(xn) in D([π(X),π(Y )]) satisfying property (I), (II) and (III) above.

By the assumption, there exists a sequence ( fn) such that the sequence in (4) is
bounded. For each n , let xn := π( fn)x . We must verify (I)–(III). Recall that {π( fn)x}⊆
G (π) ⊆ D . To demonstrate (III), we observe that

{π(X),π(Y )}π( fn)x = π(X)π(Y )π( fn)x+ π(Y )π(X)π( fn)x

= −π(X)π(XY
R fn)x−π(Y )π(XX

R fn)x

= π(XX
RXY

R fn)x+ π(XY
RXX

R fn)x

=
∫

G
XX

RXY
R fn(a)π(a)xda+

∫
G

XY
RXX

R fn(a)π(a)xda

=
∫

G

(
XX

RXY
R fn(a)π(a)x+XY

RXX
R fn(a)

)
π(a)xda

=
∫

G

(
XX

RXY
R fn(a)+XY

RXX
R fn(a)

)
π(a)xda,

the second and third equalities are due to the equation (2). We next deal with the
sequence

{π(X),π(Y )}π( fn)u−π( fn){π(X),π(Y )}u
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for u ∈ G (π) . From the equations (2) and (3), we have

{π(X),π(Y )}π( fn)u−π( fn){π(X),π(Y )}u
= π

(
XX

RXY
R fn
)
u−π

(
XY

LXX
L fn
)
u+ Δ(Y)π(XX

L fn)u+ Δ(X)π(XY
L fn)u

+ π
(
XY

RXX
R fn
)
u−π

(
XX

L XY
L fn
)
u+ Δ(X)π(XY

L fn)u+ Δ(Y)π(XX
L fn)u

−Δ(X)Δ(Y)π( fn)u−Δ(Y)Δ(X)π( fn)u

=
∫

G
(XX

RXY
R fn −XY

LXX
L fn + Δ(Y )XX

L fn + Δ(X)XY
R fn −Δ(X)Δ(Y) fn)(a)π(a)uda

+
∫
G
(XY

RXX
R fn −XX

LXY
L fn + Δ(X)XY

L fn + Δ(Y )XX
R fn −Δ(Y )Δ(X) fn)(a)π(a)uda.

The assumption implies that the sequence∥∥∥∥XX
RXY

R fn −XY
LXX

L fn + Δ(Y)XX
L ( fn)+ Δ(X)XY

R fn

+XY
RXX

R fn −XX
LXY

L fn + Δ(X)XY
L( fn)+ Δ(Y)XX

R fn

∥∥∥∥
1

is bounded. Therefore, by Lemma 3,

{π(X),π(Y )}π( fn)u−π( fn){π(X),π(Y )}u

converges to −4Δ(X)Δ(Y)u . As ( fn) is an approximate identity,

π( fn){π(X),π(Y )}u → {π(X),π(Y )}u.

This means that {π(X),π(Y )}π( fn)u also converges in H . This result holds not only
for all u ∈ G (π) , but is also applicable to all elements in H , since the Gårding sub-
space G (π) is dense in H . Therefore,

{π(X),π(Y )}π( fn)x → {π(X),π(Y )}x,

obtaining (III). Now, since ( fn) is an approximate identity in C∞
c (G) , we have that (I)

and (II) are accomplished immediately because of the proof of the main theorem in [2].
This completes the proof. �

Our theorem relies significantly on the presence of required approximate identi-
ties. It is still an open problem: for each X ,Y ∈ g , can one find a suitable approximate
identity with the property (P2)? Finding such an approximate identity would not be
an easy task. On the other hand, showing that there is no approximate identity satis-
fying the property (P2) seems to be nontrivial. Therefore, these two issues should be
investigated in future work.

Analogous to [3], we apply the principal series representation of the Euclidean
motion group E(2) to Theorem 4 in order to formulate an SRUI for functions on the
unit circle. The following example demonstrate this formulation.



SCHRÖDINGER-ROBERTSON UNCERTAINTY INEQUALITY 415

EXAMPLE 2. Let E(2) be the Euclidean motion group on R
2 with its Lie algebra

g . One can realize G as

E(2) =
{

(r,z) :=
(

eir z
0 1

)∣∣∣∣r ∈ R, z ∈ C

}
,

and then the Lie algebra of E(2) , e(2) , is given by

e(2) =
{(

ir z
0 0

)∣∣∣∣r ∈ R, z ∈ C

}
.

The principal series representation is a unitary representation π : E(2) →U
(
L2(T)

)
given by

(π(r,z) f )(s) := eiRe(zs) f (se−ir)

for f ∈ L2(T) and s ∈ T := {s ∈ C : |s| = 1} . Let X ,Y1, and Y2 be

X =
(

i 0
0 0

)
, Y1 =

(
0 1
0 0

)
and Y2 =

(
0 i
0 0

)
.

Then, writing s = eiθ , we have

(π(X) f )(s) = − f ′(s), (π(Y1)g)(s) = (icosθ )g(s), (π(Y2)h)(s) = (isinθ )h(s)

for f ∈ D(π(X)) = { f ∈ L2(T) : f ∈ AC(T) and f ′ ∈ L2(T)} and g,h ∈ L2(T) =
D(π(Y1)) = D(π(Y2)) . Notice that we have the commutative relations [X ,Y1] = Y2,
[X ,Y2] = −Y1 .

Now, suppose that we can find an approximate identity { fn} on the unit circle T

such that
∥∥ f ′n
∥∥

1 is uniformly bounded. Since S
1 is abelian,

XX
RXY

R fn −XY
LXX

L fn + Δ(Y)XX
L fn + Δ(X)XY

L fn

= XX
L XY

L fn −XY
LXX

L fn +XX
L fn +XY

L fn

= [XX
L ,XY

L ] fn +XX
L fn +XY

L fn

= X
[X ,Y ]
L fn +XX

L fn +XY
L fn

Substituting Y = Y1 and Y = Y2 in the above equation, we get that∥∥∥X[X ,Y1]
L fn +XX

L fn +X
Y1
L fn

∥∥∥
1
=
∥∥(isinθ ) fn − f ′n +(icosθ ) fn

∥∥
1∥∥∥X[X ,Y2]

L fn +XX
L fn +XY2

L fn
∥∥∥

1
=
∥∥(−icosθ ) fn − f ′n +(isinθ ) fn

∥∥
1 .

Since
∥∥ f ′n
∥∥

1 is uniformly bounded,

(∥∥(isinθ ) fn − f ′n +(icosθ ) fn
∥∥

1

)
and

(∥∥(−icosθ ) fn − f ′n +(isinθ ) fn
∥∥

1

)
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are uniformly bounded. Applying Theorem 4, we have

4‖π(X) f‖2‖π(Y2) f‖2 �
∣∣∣〈{π(X),π(Y2)} f , f 〉

∣∣∣2 + |〈π([X ,Y2]) f , f 〉|2

=
∣∣∣〈{π(X),π(Y2)} f , f 〉

∣∣∣2 + |〈π(Y1) f , f 〉|2

and

4‖π(X) f‖2‖π(Y1) f‖2 �
∣∣∣〈{π(X),π(Y1)} f , f 〉

∣∣∣2 + |〈π(Y2) f , f 〉|2

for all f ∈ D(π(X)) . Let σ denote the push-forward measure on the unit circle T . By
combining the above two inequalities, we obtain

4
∥∥ f ′
∥∥2 ‖ f‖2 = 4‖π(X) f‖2 (‖π(Y2) f‖2 +‖π(Y1) f‖2)

= ‖π(X) f‖2‖π(Y2) f‖2 +4‖π(X) f‖2‖π(Y1) f‖2

� |〈π(Y1) f , f 〉|2 + |〈π(Y2) f , f 〉|2

+
∣∣∣〈{π(X),π(Y1)} f , f 〉

∣∣∣2 +
∣∣∣〈{π(X),π(Y2)} f , f 〉

∣∣∣2
=
∥∥∥∥
∫

T

s| f (s)|2dσ
∥∥∥∥

2

R2
+
∣∣∣∣
∫

T

(−2(icosθ ) f ′(s)+ (isinθ ) f (s)) dσ
∣∣∣∣
2

+
∣∣∣∣
∫

T

(−2(isinθ ) f ′(s)− (icosθ ) f (s)) dσ
∣∣∣∣
2

Therefore, assuming the existence of the required approximate identity ( fn) , we then
attain the above uncertainty inequality for all f ∈ D(π(X)) , which is sharper than the
uncertainty inequality in [3].

The result in the previous example is valid if there exists an approximate identity
fn on the unit circle such that

sup
n
‖ f ′n‖L1 < ∞.

However, verifying that a certain classical approximate identities on the unit circle sat-
isfies the above condition turns out to be a difficult task. Alternatively, one could try
to construct a new approximate identity on the unit circle so that it would satisfy the
above condition. This could be a possible future work.
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