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A LOGARITHMIC WEIGHTED ADAMS–TYPE INEQUALITY

IN THE WHOLE OF R
N WITH AN APPLICATION

SAMI BARAKET ∗ AND RACHED JAIDANE

(Communicated by S. Varošanec)

Abstract. In this paper, we will establish a logarithmic weighted Adams inequality in a loga-
rithmic weighted second order Sobolev space in the whole set of RN . Using this result, we
delve into the analysis of a weighted fourth-order equation in RN . We assume that the non-
linearity of the equation exhibits either critical or subcritical exponential growth, consistent with
the Adams-type inequalities previously established. By applying the Mountain Pass Theorem,
we demonstrate the existence of a weak solution to this problem. The primary challenge lies in
the lack of compactness in the energy caused by the critical exponential growth of the non-linear
term f .

1. Introduction

We start by providing an overviewof Trudinger-Moser inequalities within classical
first-order Sobolev spaces. Additionally, we’ll explore Adams’ inequalities in second-
order Sobolev spaces. Subsequently, we’ll extend these concepts to weighted Sobolev
spaces. Moreover, we’ll reference relevant works associated with these concepts.

In dimension N � 2 and for bounded domain Ω ⊂ RN , the critical exponential
growth is given by the well known Trudinger-Moser inequality [45, 47]

sup∫
Ω |∇u|N�1

∫
Ω

eα |u|
N

N−1 dx < +∞ if and only if α � αN , (1)

where αN = Nω
1

N−1
N−1 with ωN−1 is the area of the unit sphere SN−1 in RN . Later, the

Trudinger-Moser inequality was improved to weighted inequalities [10, 12].
Equation (1) has been utilized to address elliptic problems that encompass nonlin-

earities exhibiting exponential growth. For instance, we refer to the following problems
in dimensions where N � 2

−ΔNu = −div(|∇u|N−2∇u) = f (x,u) in Ω ⊂ R
N ,
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which have been studied considerably by Adimurthi [3, 4], Figueiredo et al. [31], Lam
and Lu [36–39], Miyagaki and Souto [44] and Zhang and Chen [52].

Considerable focus has been directed toward weighted inequalities in weighted
Sobolev spaces, notably known in mathematical literature as the weighted Trudinger-
Moser inequality [10, 12]. The majority of studies have centered on radial functions
owing to the radial nature of the weights involved. This quality enhances the maximum
growth of integrability. When the weight is of logarithmic type, Calanchi and Ruf [11]
extend the Trudinger-Moser inequality and proved the following results in the weighted
Sobolev space, W 1,N

0,rad(B,ρ) = closure{u ∈C∞
0,rad(B) | ∫

B |∇u|Nρ(x)dx < ∞}, where

B denote the unit ball of RN .

THEOREM 1. [11]

(i) Let β ∈ [0,1) and let ρ given by ρ(x) =
(
log 1

|x|
)β

, then

∫
B
e|u|

γ
dx < +∞, ∀ u ∈W 1,N

0,rad(B,ρ),

if and only if

γ � γN,β =
N

(N−1)(1−β )
=

N′

1−β
and

sup
u∈W1,N

0,rad(B,ρ)∫
B |∇u|Nw(x)dx�1

∫
B

eα |u|γN,β
dx < +∞ ⇔ α � αN,β = N[ω

1
N−1
N−1(1−β )]

1
1−β

where ωN−1 is the area of the unit sphere SN−1 in RN and N′ is the Hölder
conjugate of N .

(ii) Let ρ given by ρ(x) =
(
log e

|x|
)N−1

, then

∫
B
exp{e|u|

N
N−1 }dx < +∞, ∀ u ∈W 1,N

0,rad(B,ρ)

and

sup
u∈W 1,N

0,rad(B,ρ)
‖u‖ρ�1

∫
B
exp{βeω

1
N−1
N−1 |u|

N
N−1 }dx < +∞ ⇔ β � N,

where ωN−1 is the area of the unit sphere SN−1 in RN and N′ is the Hölder
conjugate of N .

The theorem 1 has enabled the exploration of second-order weighted elliptic prob-
lems in dimensions where N � 2. As a result, Calanchi et al. [13] established the
existence of a non-trivial radial solution for an elliptic problem defined on the unit ball
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in R2 , where the nonlinearities exhibit double exponential growth at infinity. Following
this, Deng et al. investigated the subsequent problem{−div(σ(x)|∇u(x)|N−2∇u(x)) = f (x,u) in B

u = 0 on ∂B,
(2)

where B is the unit ball in RN , N � 2 and the nonlinearity f (x,u) is continuous in
B×R and has critical growth in the sense of Theorem 1. The authors have proved that
there is a non-trivial solution to this problem, using the mountain pass Theorem. Similar
results are proven by Chetouane and Jaidane [24], Dridi [28] and Zhang [51]. Further-
more, problem (2), involving a potential, has been studied by Baraket and Jaidane [8].
Moreover, we mention that Abid et al. [1] have proved the existence of a positive ground
state solution for a weighted second-order elliptic problem of Kirchhoff type, with non-
linearities having a double exponential growth at infinity, using minimax techniques
combined with Trudinger-Moser inequality.

We should notice the work of J. Li et al. [40] in the n-dimensional Heisenberg
group Hn = Cn ×R where they extend the well-known concentration-compactness
principle on finite domains in the Euclidean spaces of Lions [43] to the setting of the
Heisenberg group. Their results improve the sharp Trudinger-Moser inequality on do-
mains of finite measure in Hn by Cohn and Lu. As an application of the concentration-
compactness principle, the authors establish the existence of ground state solutions for
a class of Q- Laplacian subelliptic equations on Hn :

−div

(∣∣∇Hu
∣∣Q−2∇Hu

)
+V(ζ )|u|Q−2u =

f (u)
ρ(ζ )β , Q = 2n+2

with nonlinear terms f of maximal exponential growth exp
(
t

Q
Q−1

)
as t → +∞ . Also,

the same authors in [41], established the concentration-compactness principle of Tru-
dinger-Moser type on any compact Riemannian manifolds as well as on the entire com-
plete noncompact Riemannian manifolds with Ricci curvature lower bound.

Let’s also note that several recent works [34,49,52,54] have studied the existence
of solutions for elliptic operators involving nonlinearities with exponential growth with
respect to Trudinguer or Adams-type inequalities.

In recent years, Aouaoui and Jlel [7] have extended the work of Calanchi and Ruf
to the whole R2 space, by considering the following weight

ρβ (x) =

⎧⎨
⎩
(
log

(
e
|x|
))β

if |x| < 1,

χ(|x|) if |x| � 1,
(3)

where, 0 < β � 1 and χ : [1,+∞[→]0,+∞[ is a continuous function such that χ(1) = 1
and inft∈[1,+∞[ χ(t) > 0. The authors consider the space Eβ as the space of all radial
functions of the completion of C∞

0

(
R2

)
with respect to the norm

‖u‖2
Eβ

=
∫

R2
|∇u|2ρβ (x)dx+

∫
R2

u2dx = |∇u|2
L2(R2,ρβ ) + |u|2

L2(R2).

The authors proved the following result:
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THEOREM 2. Let β ∈ (0,1) and ρβ be defined by (3). For all u ∈ Eβ , we have

∫
R2

(
e|u|

2
1−β −1

)
dx < +∞.

Moreover, if α < τβ , then

sup
u∈Eβ ,‖u‖Eβ �1

∫
R2

(
eα |u|

2
1−β −1

)
dx < +∞ (4)

where τβ = 2
[
2π(1−β )

]
1

1−β .
If α > τβ , then

sup
u∈Eβ ,‖u‖Eβ �1

∫
R2

(
eα |u|

2
1−β −1

)
dx = +∞.

The concept of critical exponential growth was further expanded to higher order
Sobolev spaces by Adams [2]. Specifically, Adams demonstrated the following out-
come: for m ∈ N and Ω as an open bounded set in RN where m < N , there exists a
positive constant Cm,N such that

sup

u∈W
m, Nm
0 (Ω),|∇mu|N

m
�1

∫
Ω

eβ0|u|
N

N−m dx � Cm,N |Ω|, (5)

where W
m, N

m
0 (Ω) denotes the mth -order Sobolev space, ∇mu denotes the mth -order

gradient of u , namely

∇mu :=

⎧⎨
⎩Δ

m
2 u, if m is even

∇Δ
m−1

2 u, if m odd

and

β0 = β0(m,N) :=
N

ωN−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[π N
2 2mΓ(m

2 )
Γ(N−m

2 )

] N
N−m

, if m is even

[π
N
2 2mΓ(m+1

2 )
Γ(N−m+1

2 )

] N
N−m

, if m odd.

In the particular case where N = 4 and m = 2, the inequality (5) takes the form

sup
u∈W2,2

0 (Ω),|Δu|2�1

∫
Ω

e32π2u2
dx � C|Ω|. (6)

Also, for bounded domains Ω ⊂ R4 , in [2] the authors proved the following in-
equality

sup
u∈S

∫
Ω

(eαu2 −1)dx < +∞ ⇔ α � 32π2



LOGARITHMIC WEIGHTED ADAMS-TYPE INEQUALITY 423

where

S =
{

u ∈W 2,2
0 (Ω) | (∫

Ω
|Δu|2dx

) 1
2 � 1

}
.

When Ω is replaced by the whole space R4 , Ruff and Sani [38] established the corre-
sponding Adams type inequality as follows:

sup
‖u‖

W2,2�1

∫
Ω

(eαu2 −1)dx < +∞ ⇔ α � 32π2 (7)

where ‖u‖2
W2,2(R4) =

∫
R4

|
u|2dx+
∫

R4
|∇u|2dx+

∫
R4

u2dx .

In [15] Chen et al. provided a sharp critical and subcritical trace Trudinger-Moser
and Adams inequalities on the half-spaces and prove the existence of their extremals
through the method based on the Fourier rearrangement, harmonic extension and scal-
ing invariance. Also, in [14], Chen et al. established a sharp concentration-compactness
principle associated with a singular Adams inequality on the second-order Sobolev
spaces in R4 . As applications, they proved the existence of ground state solutions
to the following bi-Laplacian equation with critical nonlinearity:

Δ2u+V(x)u =
f (x,u)
|x|β ,

where V (x) has a positive lower bound and f (x,t) behaves like exp(α|t|2) as t → ∞ .
In [16–20, 22] Chen et al. studied the existence and nonexistence of extremals for
critical Adams inequalities in R4 . Also, they’ve worked on ground state of bi-harmonic
equations with critical exponential growth.

Recently, Adams’ type inequalities on the logarithmic weighted Sobolev space
W 2,2

0,rad(B1) of radial function in the unit ball B1 of R4 has been established. More
precisely, in [48] the authors proved the following result

THEOREM 3. [48] Let β ∈ (0,1) and let w = (log( e
|x| ))

β , then

sup
u∈W2,2

0,rad(B1,w)∫
B1

w(x)|Δu|2dx�1

∫
B1

eα |u|
2

1−β
dx < +∞ ⇔ α � αβ = 4[8π2(1−β )]

1
1−β .

This last result allowed the authors in [29] to study the following weighted problem{
Δ(w(x)Δu)−Δu+V(x)u = f (x,u) in B1

u = ∂u
∂n = 0 on ∂B1.

The weight w(x) is given by

w(x) =
(

log
e
|x|

)β
, β ∈ (0,1),
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B1 is the unitary disk in R4 , f (x,t) is continuous in B1×R and behaves like exp{αt
2

1−β }
as |t| →+∞ , for some α > 0 uniformly with respect to x∈ B1 . The potential V : B1 →
R is a positive continuous function and bounded away from zero in B1 . The authors
establish the existence of radial solution by variational techniques and using Adams’
inequality [48].

It should be noted that several works concerning weighted elliptic equations of
Kirchhoff type with critical nonlinearities in the sense of Theorem 1 or Theorem 3 have
been studied (see [1, 32, 33]).

The result of Theorem 3 has been generalised by H. Zhao and M. Zhu to the unit
ball of RN . More precisely they proved the following result:

THEOREM 4. [55] Let N � 4 , β ∈ (0,1) and wβ =
(
log

(
e
|x|
))β ( N

2 −1)
. Then

sup

u∈W
2, N2
0,rad(B,w)∫

B w(x)|Δu|N2 dx�1

∫
B

eα |u|
N

(N−2)(1−β)
dx < +∞

⇔ α � αβ = N[(N−2)NVN ]
2

(N−2)(1−β) (1−β )
1

(1−β) , (8)

where VN is the volume of the unit ball B in RN and the subspace of radial functions

W
2, N

2
0,rad(B,wβ ) is defined as

W
2, N

2
0,rad(B,wβ ) = closure

{
u ∈C∞

0,rad(B) |
∫

B

(
log

( e
|x|

))β ( N
2 −1)|Δu|N

2 dx < ∞
}

,

(9)

endowed with the norm ‖u‖wβ =
(∫

B

(
log

( e
|x|

))β ( N
2 −1)|Δu|N

2 dx
) 2

N
.

Denote by E as the space of all radial functions of the completion of C∞
0 (RN) with

respect to the norm

‖u‖ N
2 =

∫
RN

|
u|N
2 wβ (x)dx+

∫
RN

|∇u|N
2 dx+

∫
RN

|u|N
2 dx,

where the weight wβ (x) is given by

wβ (x) =

⎧⎪⎨
⎪⎩
(

log

(
e
|x|

))β ( N
2 −1)

if |x| < 1,

χ(|x|) if |x| � 1,

(10)

where, N2−4N+2
N(N−2) < β < 1, N � 4 and χ : [1,+∞[→ [1,+∞[ is a continuous function

such that χ(1) = 1 and inft∈[1,+∞[ χ(t) � 1. Also, we suppose that there exists a posi-
tive constant M > 0 such that

1

r
N2
2

(∫ r

1
tN−1χ(t)dt

)(∫ r

1

tN−1

χ(t)
dt

)N
2 −1

� M, ∀r � 1, (11)
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1

r
N2
2

(∫ r

1
tN−1χ(t)dt

)
� M, ∀r � 1, (12)

and
maxr�t�4r χ(t)
minr�t�4r χ(t)

� M, ∀r � 1. (13)

Inspired by the examples given in [7], we can take the following examples of functions
χ : [1,+∞[→ [1,+∞[ satisfying the conditions (11), (12) and (13):

• Any continuous function χ such that χ(1) = 1 and

1 � inf
t�1

χ(t) � sup
t�1

χ(t) < +∞.

• χ(t) = tδ , 0 < δ < N2

2 −N.
• χ(t) = 1+ logσ t , σ > 1.
Following S. Aouaoui’s proof [7], we prove that wβ belongs to the Muckenhoupt’s

class AN
2

and therefore C∞
0

(
RN

)
is dense in the space E (see Lemma 1). It follows

that the space E can be seen as

E =
{

u ∈ L
N
2
rad

(
R

N) ,

∫
RN

(|
u|N
2 wβ (x)+ |∇u|N

2
)
dx < +∞

}
,

endowed with the norm

‖u‖ N
2 =

∫
RN

|
u|N
2 wβ (x)dx+

∫
RN

|∇u|N
2 dx+

∫
RN

|u|N
2 dx.

In this paper, we prove a weighted Adams’ inequality analogous to (7) in the whole
of RN that is:

THEOREM 5. Let γ :=
N

(N−2)(1−β )
, β ∈ (N2−4N+2

N(N−2) ,1) and wβ given by (10),

then

(i) ∫
RN

(
e|u|

γ −1
)
dx < +∞, ∀u ∈ E (14)

(ii)

sup
u∈E
‖u‖�1

∫
RN

(eα |u|γ −1)dx < +∞ ⇔ α � αβ (15)

with αβ =N[(N−2)NVN ]
2

(N−2)(1−β) (1−β )
1

(1−β) and VN is the volume of the unit sphere.

As an application of this last result, we study the following weighted problem

L(u) := Δ(w(x)|Δu|N
2 −2Δu)−div(|∇u|N

2 −2∇u)+ |u|N
2 −2u = f (u) in R

N , (16)
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where the weight is given by (10), N � 4. The non linearity f (t) is continuous in R

and behaves like exp{αt
N

(N−2)(1−β) } as |t| → +∞ , for some α > 0.
In view of inequality (15), we say that f has critical growth at +∞ if there exists

some α0 > 0,

lim
|s|→+∞

| f (s)|
eαsγ = 0, ∀ α such that α > α0 and lim

|s|→+∞

| f (s)|
eαsγ = +∞, ∀ α < α0.

(17)
In view of inequality (14), we say that f has subcritical growth at +∞ if

lim
|s|→+∞

| f (s)|
eαsγ = 0, ∀ α > 0.

Let us now state our results. In this paper, we always assume that the nonlinearities
f (t) has critical growth with α0 > 0 or f (t) has subcritical growth and satisfies these
conditions:

(H1) The non-linearity f : R → R is continuous.

(H2) There exists θ > N, such that 0 < θF(t) = θ
∫ t

0
f (s)ds � t f (t), ∀t ∈ R\ {0}.

(H3) lim
t→0

f (t)

t
N
2 −1

= 0.

(H4) There exist t0, M0 > 0 such that

0 < F(t) � M0| f (t)| for all |t| � t0.

(H5) The asymptotic condition

lim
t→∞

f (t)t
eα0tγ � γ0 with γ0 >

(
αβ
α0

)
N
2γ

VNeN(1−log(2e)) .

We say that u is a solution to the problem (16), if u is a weak solution in the
following sense.

DEFINITION 1. A function u is called a solution to (16) if u ∈ E and∫
RN

(
wβ (x) |Δu|N

2 −2 Δu Δϕ + |∇u|N
2 −2∇u.∇ϕ + |u|N

2 −2uϕ
)
dx =

∫
RN

f (u) ϕ dx, (18)

for all ϕ ∈ E .

It is easy to see that seeking weak solutions of the problem (16) is equivalent to
find nonzero critical points of the following functional on E :

J (u) =
2
N

(∫
RN

wβ (x)|Δu|N
2 + |∇u|N

2 + |u|N
2 dx

)
−

∫
RN

F(x,u)dx, (19)
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where F(u) =
∫ u

0
f (t)dt .

In the critical case, we prove the following Theorem.

THEOREM 6. Assume that the function f has a critical growth at +∞ and sat-
isfies the conditions (H1) , (H2) , (H3) , (H4) and (H5) . Then the problem (16) has a
nontrivial solution.

In the subcritical case, we prove the following Theorem.

THEOREM 7. Assume that the function f has subcritical growth at +∞ and satis-
fies the conditions (H1) , (H2) , (H3) , and (H4) . Then the problem (16) has a nontrivial
solution.

In general the study of fourth order partial differential equations is considered
an interesting topic. The interest in studying such equations was stimulated by their
applications in micro-electro-mechanical systems, phase field models of multi-phase
systems, thin film theory, surface diffusion on solids, interface dynamics, flow in Hele-
Shaw cells, see [25,30]. However many applications are generated by elliptic problems,
such as the study of traveling waves in suspension bridges, radar imaging (see, for
example [6, 37]).

This paper is structured as follows:
Section 2 presents essential background information on functional spaces. Section

3 establishes preliminary results crucial for our proofs. Section 4 focuses on proving
Theorem 5. Section 5 demonstrates a concentration compactness result akin to Lions’
Theorem. Section 6 verifies that the energy J adheres to two specific geometric
properties and a compactness condition, albeit under a specified level. Section 7 offers
the proof of Theorem 5. Finally, in Section 8, we conclude by proving Theorem 6 and
Theorem 7.

Through this paper, the constants C or c may change from line to another and we
sometimes index the constants in order to show how they change.

2. Weighted Lebesgue and Sobolev spaces setting

Let Ω ⊂R
N , N � 2, bounded or unbounded, possibly even equal to the whole RN

and let w ∈ L1(Ω) be a nonnegative function. In order to work with a weighted opera-
tor, it becomes necessary to introduce specific functional spaces denoted as Lp(Ω,w) ,
Wm,p(Ω,w) , and Wm,p

0 (Ω,w) . Later on, these spaces and some of their properties will
be utilized. Let S(Ω) be the set of all measurable real-valued functions defined on
Ω and two measurable functions are considered as the same element if they are equal
almost everywhere. Following Drabek et al. [27] and Kufner in [35], the weighted
Lebesgue space Lp(Ω,w) is defined as follows:

Lp(Ω,w) =
{

u : Ω → R measurable;
∫

Ω
w(x)|u|p dx < ∞

}
for any real number 1 � p < ∞ .
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This is a normed vector space equipped with the norm

‖u‖p,w =
(∫

Ω
w(x)|u|p dx

) 1
p
.

For m � 2, let w be a given family of weight functions wτ , |τ| � m, w = {wτ(x), x ∈
Ω, |τ| � m}.

In [27], the corresponding weighted Sobolev space was defined as

Wm,p(Ω,w) = {u ∈ Lp(Ω),Dτu ∈ Lp(Ω,w) ∀ 1 � |τ| � m−1,

Dτu ∈ Lp(Ω,w) ∀ |τ| = m}
endowed with the following norm:

‖u‖Wm,p(Ω,w) =
(

∑
|τ|�m−1

∫
Ω
|Dτu|pdx+ ∑

|τ|=m

∫
Ω

w(x)|Dτu|pdx

) 1
p

,

where wτ = 1 for all |τ| < k, wτ = w for all |τ| = k .
If we suppose also that w(x) ∈ L1

loc(Ω) , then C∞
0 (Ω) is a subset of Wm,p(Ω,w)

and we can introduce the space
Wm,p

0 (Ω,w)

as the closure of C∞
0 (Ω) in Wm,p(Ω,w). Moroever, the injection

Wm,p(Ω,w) ↪→Wm−1,p(Ω) is compact.

Also, (Lp(Ω,w),‖ · ‖p,w) and (Wm,p(Ω,w),‖ · ‖Wm,p(Ω,w)) are separable, reflexive Ba-

nach spaces provided that w(x)
−1
p−1 ∈ L1

loc(Ω) . Then the space

E =
{

u ∈ L
N
2
rad(R

N) |
∫

RN

(
wβ (x)|Δu|N

2 + |∇u|N
2
)
dx < +∞

}
is a Banach and reflexive space.

We have the following result.

LEMMA 1. C∞
0

(
RN

)
is dense in the space{

u ∈ L
N
2
(
R

N) ,
∫

RN

(|
u|N
2 wβ (x)+ |∇u|N

2
)
dx < +∞

}
.

Proof. It suffice to see that ωβ belongs to the Muckenhoupt’s class AN
2

(we also
say that ωβ is an AN

2
-weight), that is

sup

(
1
|B|

∫
B
wβ (x)dx

)(
1
|B|

∫
B

(
wβ (x)

)−1
dx

)N
2 −1

< +∞,

where the supremum is taken over all balls B ⊂ R
N .
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Let r > 0 and x0 ∈ RN . Denote by B(x0,r) (resp. B(0,r)) the open ball of RN

of center x0 and radius r (resp. of center 0 and radius r ).

First case. Suppose that B(x0,r)∩B(0,r) �= /0 . Thus, B(x0,r) ⊂ B(0,3r) which
implies that

1

|B(x0,r)|
N
2

(∫
B(x0,r)

wβ (x)dx

)(∫
B(x0,r)

dx
wβ (x)

)N
2 −1

� c

r
N2
2

(∫ 3r

0
wβ (t)tN−1dt

)(∫ 3r

0

tN−1

wβ (t)
dt

)N
2 −1

. (20)

If 3r < 1, then

c

r
N2
2

(∫ 3r

0
wβ (t)tN−1dt

)(∫ 3r

0

tN−1

wβ (t)
dt

)N
2 −1

=
c

r
N2
2

(∫ 3r

0
tN−1(1− logt)β ( N

2 −1)dt

)(∫ 3r

0

tN−1

(1− logt)β ( N
2 −1)

dt

) N
2 −1

.

But, a simple computation gives

limsup
r→0+

c

r
N2
2

(∫ 3r

0
tN−1(1− logt)β ( N

2 −1)dt

)(∫ 3r

0

tN−1

(1− logt)β ( N
2 −1)

dt

) N
2 −1

< +∞.

(21)
If 3r � 1, then

c

r
N2
2

(∫ 3r

0
ωβ (t)tN−1dt

)(∫ 3r

0

tN−1

wβ (t)
dt

)N
2 −1

=
c

r
N2
2

(∫ 1

0
tN−1(1− logt)β ( N

2 −1)dt +
∫ 3r

1
tχ(t)dt

)

×
(∫ 1

0

tN−1

(1− logt)β ( N
2 −1)

dt +
∫ 3r

1

tN−1

χ(t)
dt

)N
2 −1

. (22)

Since inft�1 χ(t) � 1, then

limsup
r→+∞

1

r
N2
2

∫ 3r

1

tN−1

χ(t)
dt = 0 < +∞. (23)

On the other hand, by (12), we infer

limsup
r→+∞

1

r
N2
2

∫ 3r

1
tN−1χ(t)dt < +∞. (24)
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Hence, in view of (23), (24) and (22), it remains to show that

limsup
r→+∞

1

r
N2
2

(∫ 3r

1
tN−1χ(t)dt

)(∫ 3r

1

tN−1

χ(t)
dt

)N
2 −1

< +∞.

But this fact can immediately be deduced from (12). Combining (21) and (22), we
deduce from (20) that there exists a constant D0 > 0 independent of x0 and r such that

1

|B(x0,r)|
N
2

(∫
B(x0,r)

ωβ (x)dx

)(∫
B(x0,r)

dx
ωβ (x)

)N
2 −1

� D0. (25)

Second case. Suppose that B(x0,r)∩B(0,r) = /0 . In this case, we have

|x0|
2

� |x| � 2 |x0| ,∀x ∈ B(x0,r) .

Hence,

1

|B(x0,r)|
N
2

(∫
B(x0,r)

wβ (x)dx

)(∫
B(x0,r)

dx
wβ (x)

)N
2 −1

�

⎛
⎝sup |x0|

2 �|x|�2|x0|
wβ (t)

inf |x0|
2 �|x|�2|x0|

wβ (t)

⎞
⎠ � sup

τ>0

(
supτ�t�4τ wβ (t)
infτ�t�4τ wβ (t)

)
. (26)

If 4τ < 1, then

supτ�t�4τ wβ (t)
infτ�t�4τ wβ (t)

=
(1− logτ)β ( N

2 −1)

(1− log(4τ))β ( N
2 −1)

.

Taking into account that

sup
0<τ< 1

4

(
1− logτ

1− log(4τ)

)β ( N
2 −1)

< +∞,

it follows that

sup
0<τ< 1

4

(
supτ�t�4τ wβ (t)
infτ�t�4τ wβ (t)

)
< +∞. (27)

If 1
4 � τ < 1, then

supτ�t�4τ wβ (t)
infτ�t�4τ wβ (t)

�
sup1

4 �t�4 wβ (t)

inf 1
4 �t�4 wβ (t)

< +∞,

and consequently,

sup
1
4 �τ<1

(
supτ�t�4τ wβ (t)
infτ�t�4τ wβ (t)

)
< +∞. (28)
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If τ � 1, then it follows

supα�t�4α ωβ (t)
infτ�t�4τ ωβ (t)

=
supτ�t�4τ χ(t)
infτ�t�4τ χ(t)

� M,

and consequently,

sup
τ�1

(
supτ�t�4τ ωβ (t)
infτ�t�4τ ωβ (t)

)
< +∞. (29)

Combining (27) and (28), we deduce from that there exists a constant D1 > 0
independent of x0 and r such that

1

|B(x0,r)|
N
2

(∫
B(x0,r)

wβ (x)dx

)(∫
B(x0,r)

dx
wβ (x)

)N
2 −1

� D1. (30)

This finish the proof. �

3. Some useful preliminary results

In this section, we will derive several technical lemmas for our use later. First we
begin by the radial lemma due to Lions [42]. Let W 1,p(RN) be the first order Sobolev
space and consider the subspace of radial function namely W 1,p

rad (RN) . We have

LEMMA 2. [42] Let N � 2 , 1 � p < +∞ , u ∈ W 1,p
rad (RN) , then there exists a

positive constant C = C(N, p) such that

|u(x)| � C
1

|x|N−1
p

|u|
p−1
p

p |∇u|
1
p
p for a.e. x ∈ R

N .

In particular, for p = N
2 , we get the followin inequality:

|u(x)| � C
1

|x| 2(N−1)
N

|u|
N−2
N

N
2

|∇u|
2
N
N
2

for a.e. x ∈ R
N . (31)

It follows that, for N � 4, using Young inequality and the fact that wβ (x) � 1, we
get

|u(x)| � C
N−2

2
1

|x| 2(N−1)
N

(|u|N
2

+ |∇u|N
2

)
for a.e. x ∈ R

N

� C
N−2

2
1

|x| 2(N−1)
N

‖u‖ for a.e. x ∈ R
N

� C
1

|x| 2(N−1)
N

‖u‖ for a.e. x ∈ R
N . (32)

Now, we give the following Strauss compactness lemma [46].
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LEMMA 3. Let (Pn)n and (Qn)n be two sequences of continuous functions: Rn →
R . For c > 0 , let y(c)= sup{|t| : t = Pn(s) for some n and s such that |Qn(s)|< c|Pn(s)|} .

Assume the following conditions:

i) y(c) < ∞ for all c > 0 . (In other words,
Pn

Qn
→ 0 uniformly as Pn → ∞ .)

ii) (un)n is a sequence of measurable functions: RN → R such that

sup
n

∫
Ω
|Qn(un(x))|dx < ∞ for all bounded sets Ω .

iii) Pn(un(x)) → v(x) for almost every x ∈ RN .

Then:

a)
∫

Ω
|Pn(un)− v|dx → 0 .

b) Assume in addition that

iv) Pn(s) = o(Qn(s)) as s → 0 uniformly in n.

v) un(x) → 0 as |x| → ∞ uniformly in x and n.

Then
∫

RN
|Pn(un)− v|dx→ 0 .

We denote by B the unit ball of RN and consider the subspace

W
2, N

2
0,rad(B,w) = closure

{
u ∈C∞

0,rad(B) |
∫

B
log

( e
|x|

)β ( N
2 −1)|Δu|N

2 dx < ∞

}
.

We have the following results.

LEMMA 4. Let u be a radially symmetric function in C∞
0,rad(B) . Then, we have

(i) [55]

|u(x)| �
(

N
αβ

(∣∣∣ log
( e
|x|

)∣∣∣−1
)) 1

γ (∫
B
wβ (x)|Δu|N

2 dx
) 2

N

�
(

N
αβ

(∣∣∣ log
( e
|x|

)∣∣∣−1
)) 1

γ
‖u‖.

(ii)
∫

B
e|u(x)|γ dx < +∞, ∀ u ∈W

2, N
2

0,rad(B).

(iii) The following embedding is continuous

E ↪→ Lp(RN) for all p � N
2

.
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(vi) E is compactly embedded in Lq(RN) for all q � N
2 .

Proof. (i) see [48].
(ii) From (i) and using the identity log( e

|x| )−| log(|x|)| = 1 ∀x ∈ B , we get

|u(x)|γ � 1
αβ

∣∣∣∣ log
( e
|x|

)∣∣∣∣‖u‖γ � N
αβ

(
1+

∣∣ log(|x|)∣∣) ‖u‖γ .

Hence, using the fact that the function r 
→ rN−1e
‖u‖γ (1+| logr|)

αβ is increasing, we get

∫
|x|<1

e|u|
γ
dx � NVN

∫ 1

0
rN−1e

N‖u‖γ (1+| logr|)
αβ dr � NVNe

N‖u‖γ
αβ < +∞.

Then (ii) follows by density.
(iii) Since wβ (x) � 1, then by Sobolev theorem, the following embedding are

continuous

E ↪→W
2, N

2
rad (RN ,wβ ) ↪→W

2, N
2

rad (RN) ↪→ Lq(RN) ∀q � N
2

.

We assert that the embedding E → Lq(RN) is compact. To do this, set Q(s) = |s|q and
P(s) = |s|q+ε0 + |s|q−ε0 , where 0 < ε0 < q− N

2 .

Clearly,
Q(s)
P(s)

→ 0 as |s| → +∞ , and
Q(s)
P(s)

→ 0 as |s| → 0. Let (un)n ∈ E be

such that un ↪→ 0 weakly in E and un(x) → 0 a.e. x ∈ RN . By the continuity of the
embedding E ↪→ Lq+ε0(RN) and E ↪→ Lq−ε0(RN) , we obtain that

sup
n

∫
RN

|P(un)| < +∞.

On the other hand, by (32), un(x)→ 0 as |x| →+∞ , uniformly in n∈ N . Therefore, we
can apply the compactness Strauss Lemma 3 to deduce that Q(un)→ 0 strongly in L1(RN) .

This concludes the lemma. �

REMARK 1. By Lemma 4 (ii) and (32), we have∫
RN

|u(x)|pdx =
∫

B
|u(x)|pdx+

∫
RN\B

|u(x)|pdx

� NVN‖u‖p
∫ 1

0
rN−1(1+ | logr|) p

γ dr+CNVN‖u‖p
∫ ∞

1
rN−1−2 p(N−1)

N dr

� VN‖u‖p +CNVN‖u‖p
∫ ∞

1
rN−1−2 p(N−1)

N dr.

The last integral is finite provided p > N2

2(N−1) > N
2 . The result of the previous

lemma is thus partially found.



434 S. BARAKET AND R. JAIDANE

LEMMA 5. [31] Let Ω ⊂ RN be a bounded domain and f : Ω×R a continuous
function. Let (un)n be a sequence in L1(Ω) converging to u in L1(Ω) . Assume that
f (x,un) and f (x,u) are also in L1(Ω) . If∫

Ω
| f (x,un)un|dx � C,

where C is a positive constant, then

f (x,un) → f (x,u) in L1(Ω).

4. Proof of Theorem 6

We begin by proving the first statement of Theorem 5. We have for all u ∈ E ,∫
RN

(e|u|
γ −1)dx =

∫
|x|�1

(e|u|
γ −1)dx+

∫
|x|<1

(e|u|
γ −1)dx. (33)

On the one hand, ∫
|x|�1

(e|u|
γ −1)dx =

+∞

∑
k=1

1
k!

∫
|x|�1

|u|γkdx. (34)

From Lemma 2, we get∫
|x|�1

|u|γkdx � NVN‖u‖γk
∫ +∞

1

1

r1−N+2γk N−1
N

dr = NVN‖u‖γk 1

−N +2γkN−1
N

� NVN‖u‖γk 1

−N +2γ N−1
N

, (35)

for all k � 1;
N2 −4N +2
N(N−2)

< β < 1.

Combining (34) and (35), we have

∫
|x|�1

(e|u|
γ −1)dx � NVN

−N +2γ N−1
N

+∞

∑
k=1

‖u‖γk

k!
=

NVN

−N +2γ N−1
N

e‖u‖
γ
< +∞. (36)

Now we are going to estimate the second integral in (33). Set

v(x) =
{

u(x)−u(e1), 0 � |x| < 1,
0, |x| � 1,

(37)

where e1 = (1,0,0,0, . . . ,0) ∈ RN . Clearly v ∈W
2, N

2
0,rad(B,wβ ) .

For all ε > 0, we have

|u|γ = |v+u(e1)|γ � (1+ ε)|v|γ +

(
1− 1

(1+ ε)
1

γ−1

)1−γ

|u(e1)|γ .
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Then, from Lemma 4 (ii) , we have

∫
|x|<1

e|u|
γ
dx �

∫
|x|<1

e(1+ε)|v|γ e

(
1− 1

(1+ε)
1

1−γ

)1−γ
|u(e1)|γ

dx

� e

(
1− 1

(1+ε)
1

1−γ

)1−γ
|u(e1)|γ ∫

|x|<1
e(1+ε)|v|γ dx < +∞.

(38)

Combining (33), (36), (38), (32) and Theorem 4, we conclude that∫
RN

(e|u|
γ −1)dx < +∞, for all u ∈ E.

This ends the proof of the first item.
By (36) we have

sup
u∈E,‖u‖�1

∫
|x|�1

(eα |u|γ −1)dx � sup
u∈E,‖u‖�1

NVN

−N +2γ N−1
N

e‖u‖
γ � NVN

−N +2γ N−1
N

e. (39)

On the other hand, by (38), (32) and using the radial lemma 4(i) , we get

sup
u∈E,‖u‖�1

∫
|x|�1

(eα |u|γ −1)dx � e

(
1− 1

(1+ε)
1

1−γ

)1−γ
|u(e1)|γ

sup
u∈E,‖u‖�1

∫
|x|<1

eα(1+ε)|v|γ dx

� e

(
1− 1

(1+ε)
1

1−γ

)1−γ
(C‖u‖))γ

sup
u∈E,‖u‖�1

∫
|x|<1

eα(1+ε)|v|γ dx

� e

(
1− 1

(1+ε)
1

1−γ

)1−γ
(C)γ

sup
u∈E,‖u‖�1

∫
|x|<1

eα(1+ε)|v|γ dx.

(40)

Let α < αβ . Clearly, there exists ε > 0 such that α(1+ ε) < αβ .
Do not forgot that

‖v‖
N
2

W
2, N2
0,rad(B)

=
∫

B
|Δv|N

2

(
log

(
e
|x|

))β ( N
2 −1)

dx (41)

=
∫

B
|Δu|N

2 wβ (x)dx � ‖u‖ N
2 � 1.

Then,

sup
u∈E,‖u‖�1

∫
|x|<1

eα(1+ε)|v|γ dx

� sup
{∫

|x|<1
eα(1+ε)|v|γ dx, v ∈W

2, N
2

0,rad(w,B), ‖v‖
W

2, N2
0,rad(B)

� 1
}
.
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So by (40), there exists C(β ) > 0 such that

sup
u∈E,‖u‖�1

∫
|x|<1

eα |u|γ dx � e

(
1− 1

(1+ε)
1

1−γ

)1−γ
(C)γ

C(β ). (42)

Combining (40) and (41), we get

sup
u∈E,‖u‖�1

∫
|x|<1

(eα |u|γ −1)dx < +∞.

Furthermore ∫
|x|�1

(eα |u|γ −1)dx =
+∞

∑
k=1

αk

k!

∫
|x|�1

|u|γkdx. (43)

Combining (35) and (43), we infer

sup
u∈E,‖u‖�1

∫
|x|�1

(eα |u|γ −1)dx < +∞. (44)

It follows from (40) and (44) that

sup
u∈E,‖u‖�1

∫
RN

(eα |u|γ −1)dx < +∞, for all α < αβ .

Let’s look at the case of α = αβ . It is clear that (39) is valid for α = αβ . So, we get

sup
u∈E,‖u‖�1

∫
|x|�1

(eαβ |u|γ −1)dx < +∞. (45)

We are going to show that

sup
u∈E,‖u‖�1

∫
|x|<1

(eαβ |u|γ −1)dx < +∞. (46)

For this, we consider u ∈ E , u �= 0 such that ‖u‖ � 1 and ε > 0 such that

(1+ ε)
N
2γ =

1(∫
|x|<1 |Δu|N

2 wβ (x)dx+
∫
|x|<1 |∇u|N

2 dx+
∫
|x|<1 |v|

N
2 dx

) .

Moreover, we have a similar inequality to (38) that is

∫
|x|<1

eαβ |u|γ dx �
∫
|x|<1

eαβ (1+ε)|v|γ e
αβ

(
1− 1

(1+ε)
1

γ−1

)1−γ
|u(e1)|γ

dx

� e
αβ

(
1− 1

(1+ε)
1

γ−1

)1−γ
|u(e1)|γ ∫

|x|<1
e(1+ε)αβ |v|γ dx,

(47)
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where v is given by (37). On the other hand, we have from radial Lemma 2,

|u(e1)|γ � C4

(∫
|x|�1

(
wβ |Δu|N

2 + |∇u|N
2 + |u+u(e1)−u(e1)|N

2
)
dx

) 2γ
N

� C4

(∫
RN

(
wβ |Δu|N

2 + |∇u|N
2 + |u|N

2
)
dx

−
∫
|x|<1

(
wβ |Δu|N

2 + |∇u|N
2 + |u−u(e1)+u(e1)|N

2
)
dx

) 2γ
N

+C3

� C4

(
1−

∫
|x|<1

(
wβ |Δu|N

2 + |∇u|N
2 + |u−u(e1)|N

2 + |u(e1)|N
2
)
dx

) 2γ
N

� C4

(
1−C5−

∫
|x|<1

(
wβ |Δu|N

2 + |∇u|N
2 + |u−u(e1)|N

2
)
dx

) 2γ
N

� C4

(
1−

∫
|x|<1

(
wβ |Δu|N

2 + |∇u|N
2 + |u−u(e1)|N

2
)
dx

) 2γ
N

� C4

(
1− 1

(1+ ε)
N
2γ

) 2γ
N

. (48)

Also,∫
|x|<1

|(1+ ε)γΔv|N
2 wβ (x)dx+

∫
|x|<1

|(1+ ε)γ∇v|N
2 dx+

∫
|x|<1

|(1+ ε)γv|N
2 dx = 1.

Then, by Theorem 4, there exists C > 0 such that∫
|x|<1

e(1+ε)αβ |v|γ dx < C. (49)

Using (48), we get,

∫
|x|<1

eαβ |u|γ dx � Cexp

(
αβ

(
1− 1

(1+ ε)
1

γ−1

)1−γ(
1− 1

(1+ ε)
N
2γ

) 2γ
N
)

.

But the function ξ : t →
(

1− 1

t
1

γ−1

)1−γ(
1− 1

t
N
2γ

) 2γ
N

defined on (1,+∞) is decreasing

and verifies lim
t→+∞

ξ (t) = 1. Hence, ξ is bounded and therefore we get

∫
|x|<1

eαβ |u|γ dx < +∞. (50)

So, (46) holds.
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In the next step, we show that if α > αβ , then the supremum is infinite. Now,
we will use particular functions [48], namely the Adams’ functions. We consider the
sequence defined for all n � 3 by

wn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
logn
αβ

) 1
γ
− Nn

2(1−β)
N |x|2(1−β )

2
(
αβ

) 1
γ
(
logn

) 2+(N−2)β
N

+
N

2
(
αβ

) 1
γ
(
logn

) 2+(N−2)β
N

if 0 � |x| � e
N√n

N1−β

α
1
γ

β
(
log(n)

) 2(1−β)
N

(
log

( e
|x|

))1−β
if e

N√n
� |x| � 1

2

ζn if |x| � 1
2

(51)

where ζn ∈C∞
0,rad(B) is such that

ζn

(
1
2

)
=

N1−β

α
1
γ

β
(
logn

) 2(1−β)
N

(
log2e

)1−β
,

∂ζn

∂ r

(
1
2

)
=

−2(1−β )N1−β

α
1
γ

β
(
logn

) 2(1−β)
N

(
log(2e)

)−β

ζn(1) =
∂ζn

∂ r
(1) = 0

and ξn , ∇ξn , Δξn are all o

(
1

[logn]
1
γ

)
. Here,

∂ζn

∂ r
denotes the first derivative of ζn

in the radial variable r = |x| .
Let vn(x) =

wn

‖wn‖ . We have, vn ∈ E , ‖vn‖ N
2 = 1.

We compute Δwn(x) , we get

Δwn(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−N(1−β )(4−2β )(n N
√

n)
2(1−β)

N |x|−2β

α
1
γ

β
(
logn)

) (N−2)β+2
N

if 0 � |x| � e
N√n

−(1−β )N(1−β )

|x|2

(
log( e

|x| )
)−β(

(N−2)+ β
(
log e

|x|
)−1

)
α

1
γ

β
(
log(n)

) 2(1−β)
N

if e
N√n

� |x| � 1
2

Δζn if |x| � 1
2 .
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So,

‖Δwn‖
N
2
N
2 ,w

=NVN

∫ e
N√n

0
rN−1|Δwn(x)|N

2

(
log

e
r

)β ( N
2 −1)

dr︸ ︷︷ ︸
I1

+NVN

∫ 1
2

e
N√n

rN−1|Δwn(x)|N
2

(
log

e
r

)β ( N
2 −1)

dr

︸ ︷︷ ︸
I2

+NVN

∫ 1

1
2

rN−1|Δζn(x)|N
2

(
log

e
r

)β ( N
2 −1)

dr+NVN

∫ +∞

1
|
ζn|N

2 χ(r)rN−1dr︸ ︷︷ ︸
I3

.

By using integration by parts, we obtain,

I1 = NVN
( N
√

n)1−β N
N
2 (1−β )

N
2 (4−2β )

N
2

N(1−β )
(
αβ

) N
2γ
(
log(n)

) (N−2)β+2
2

[
rN(1−β )

(
log

e
r

)β ( N
2 −1)

] e
N√n

0

+NVN
( N
√

n)1−β β (N
2 −1)N

N
2 (1−β )

N
2 (4−2β )

N
2

2
(
αβ

) N
2γ (log(n)

) (N−2)β+2
2

×
∫ e

N√n

0
rN(1−β )−1

(
log

e
r

)β ( N
2 −1)−1

dr

= o
( 1

log(n)

)
.

Also,

I2 =NVN
(1−β )

N
2 N

N(1−β)
2(

αβ
) N

2γ
(
log(e N

√
n)
)1−β

×
∫ 1

2

e
N√n

1
r

(
log

e
r

)− βN
2
(
(N−2)+ β

(
log

e
r

)−1) N
2
(

log
e
r

)β ( N
2 −1)

dr

=NVN
(1−β )

N
2 N

N(1−β)
2(

αβ
) N

2γ
(
log(n)

)1−β
(N−2)

N
2

∫ 1
2

e
N√n

1
r

(
log

e
r

)−β(
1+o

(
log

e
r

)−1) N
2
dr

=NVN
(1−β )

N
2 N

N(1−β)
2(

αβ
) N

2γ
(
log(n)

)1−β
(N−2)

N
2

×
(∫ 1

2

e
N√n

1
r

(
log

e
r

)−β
dr+

∫ 1
2

e
N√n

1
r

(
log

e
r

)−β
o
(

log
e
r

)−1
dr

)
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=NVN
(1−β )

N
2 N

N(1−β)
2(

αβ
) N

2γ
(
log(n)

)1−β
(N−2)

N
2

[
1

1−β

(
log

e
r

)1−β
] e

N√n

1
2

−NVN
(1−β )

N
2 N

N(1−β)
2(

αβ
) N

2γ
(
log(n)

)1−β
(N−2)

N
2

(∫ 1
2

e
N√n

1
r

(
log

e
r

)−β
o
(

log
e
r

)−1
dr

)

=1+o

(
1

(loge N
√

n)1−β

)

and I3 = o

(
1

(loge N
√

n)
2
γ

)
. Then ‖Δwn‖

N
2
N
2 ,w

= 1+o

(
1

(loge N√n)
N
γ

)
.

In the sequel we prove the following key lemma.

LEMMA 6. The Adams’ function given by (51) verifies lim
n→+∞

‖wn‖ N
2 = 1.

Proof. We have

‖wn‖ N
2 =

∫
RN

wβ (x)|Δwn|N
2 dx+

∫
RN

|∇wn|N
2 dx+

∫
RN

|wn|N
2 dx

= 1+o

(
1

(loge N
√

n)
2
γ

)
+

∫
0�|x|� e

N√n

|w|
N
2
n dx+

∫
e

N√n
�|x|� 1

2

|wn|N
2 dx

+
∫
|x|� 1

2

|ζ |
N
2
n dx

+
∫

0�|x|� e
N√n

|∇wn|N
2 dx

︸ ︷︷ ︸
I′1

+
∫

e
N√n

�|x|� 1
2

|∇wn|N
2 dx

︸ ︷︷ ︸
I′2

+
∫
|x|� 1

2

|∇ζn|N
2 dx︸ ︷︷ ︸

I′3

.

We have,

I′1 = NVN
N

N
2 (1−β )

N
2

α
N
2γ

β
(
log(n)

) 2+(N−2)β)
2

∫ e
n N√n

0
rN( 3

2−β )−1dr

= NVN
N

N
2 (1−β )

N
2

α
N
2γ

β
(
log(n)

) 2+(N−2)β)
2

[
rN( 3

2−β )

N( 3
2 −β )

] e
n N√n

0

= VN
N

N
2 (1−β )

N
2

α
N
2γ

β n(N+1)( 3
2−β )( 3

2 −β ) log(n)
) N(γ−1)

2γ

= o

(
1

n( 3
2−β )(N+1) logn

)
.

Also, using the fact that the function r 
→ r
N
2 −1

(
log e

r

)− N
2 β

is increasing on [0,1] , we
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get

I′2 = NVNN(1−β ) N
2

(1−β )
N
2(

αβ
) N

2γ
(
log(n)

)1−β

∫ 1
2

e
N√n

r
N
2 −1

(
log

e
r

)− N
2 β

dr

� NVNN(1−β ) N
2

(1−β )
N
2(

αβ
) N

2γ
(
log(n)

)1−β

(1
2

)N
2 −1(

log2e
)− N

2 β

= o

(
1

[log(n)]1−β

)

and I′3 = o

(
1

(loge N
√

n)
2
γ

)
.

For |x| � e
N
√

n
, we have

|wn|N
2 �

(
log(n)

αβ

) 1
γ
+

⎛
⎝ N

2
(
αβ

) 1
γ
(
logn

) 2+(N−2)β
N

⎞
⎠

N
2

.

Then, ∫
0�|x|� e

N√n

|wn|N
2 dx

�

⎛
⎝(

log(n)
αβ

) 1
γ
+

N

2
(
αβ

) 1
γ
(
logn

) 2+(N−2)β
N

⎞
⎠

N
2

NVN

∫ e
N√n

0
rN−1dr = on(1).

Also,

∫
e

N√n
�|x|� 1

2

|wn|N
2 dx =

NVNN(1−β ) N
2(

αβ
) N

2γ
(
log(n)

)1−β

∫ 1
2

e
N√n

rN−1
(

log
(e

r

))N(1−β)
2

dr.

Using the fact that the function r 
→ rN−1
(

log e
r

)N(1−β)
2

is increasing on [0,1] , we

obtain

∫
e

N√n
�|x|� 1

2

|wn|N
2 dx � NVNN(1−β ) N

2(
αβ

) N
2γ
(
log(n)

)1−β

1
2N−1

(
log(2e)

) 2(1−β)
N = on(1).

Finaly, ∫
|x|� 1

2

|wn|N
2 dx =

∫
|x|� 1

2

|ζn|N
2 dx = on(1).

Then, ‖ wn‖ N
2 = 1+o

(
1

(loge N√n)
2
γ

)
. The Lemma is proved. �
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Now, let vn(x) =
wn

‖wn‖ . From the definition of wn , it is easy to see that

− Nn
2(1−β)

N |x|2(1−β )

2
(
αβ

) 1
γ (logn)

2+(N−2)β
N

+
N

2
(
αβ

) 1
γ (logn)

2+(N−2)β
N

� 0 for all 0 � |x| � 1
n N
√

n
.

Then, for all 0 � |x| � e
N√n

, |wn|N
2 �

(
log(n)

αβ

) N
2γ

. Let α = α
αβ

, we have

sup
u∈E,‖u‖�1

∫
RN

(eα |u|γ −1)dx � lim
n−→+∞

∫
|x|� e

N√n

(eα |vn|γ −1)dx

� lim
n−→+∞

NVN

∫ e
N√n

0

(
rN−1eα log(n)− rN−1)dr

� lim
n−→∞

eNVN
(
elogn(α−1)) = +∞ if α > 1.

Then,

sup
u∈E,‖u‖�1

∫
RN

(eα |u|γ −1)dx = +∞ ∀ α > αβ .

5. A Lions-type compactness concentration Lemma

In the sequel, we prove a concentration compactness result of Lions type.

LEMMA 7. Let (uk)k be a sequence in E . Suppose that, ‖uk‖= 1 , uk ⇀ u weakly
in E , uk(x) → u(x) a.e. x ∈ RN , ∇uk(x) → ∇u(x) a.e. x ∈ RN , Δuk(x) → Δu(x) a.e.
x ∈ RN and u �≡ 0 . Then

sup
k

∫
RN

(ep αβ |uk|γ −1)dx < +∞, where αβ = N[(N −2)NVN]
2

(N−2)(1−β) (1−β )
1

(1−β) ,

for all 1 < p < U(u) , where U(u) is given by:

U(u) :=

⎧⎨
⎩

1

(1−‖u‖ N
2 )

2γ
N

if ‖u‖ < 1

+∞ if ‖u‖ = 1.

Moreover, the last inequality is sharp in the sense that there exist a sequence (uk) ⊂ E
and a function u ∈ E \ {0} such that ‖uk‖ = 1, uk ⇀ u weakly in E and

sup
k

∫
RN

(ep αβ |uk|γ −1)dx = +∞ for all p > U(u).

Proof. For a, b∈ R , q > 1. If q′ its conjugate i.e. 1
q + 1

q′ = 1 we have, by Young
inequality, that

(ea+b−1) � 1
q
(eqa−1)+

1
q′

(eq′b −1).
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Also, we have

(1+a)q � (1+ ε)aq +

(
1− 1

(1+ ε)
1

q−1

)1−q

, ∀a � 0, ∀ε > 0 ∀q > 1. (52)

So, we get
|uk|γ = |uk −u+u|γ

� (|uk −u|+ |u|)γ

� (1+ ε)|uk−u|γ +

(
1− 1

(1+ ε)
1

γ−1

)1−γ

|u|γ

which implies that∫
RN

(
ep αβ |uk|γ −1

)
dx � 1

q

∫
RN

(
epq αβ (1+ε)|uk−u|γ −1

)
dx

+
1
q′

∫
RN

(
e

pq′ αβ

⎛
⎝1− 1

(1+ε)
1

γ−1

⎞
⎠1−γ

|u|γ
−1

)
dx,

for any p > 1. From Theorem 5 (i) , the last integral is finite.
To finish the proof, we need to prove that for all p such that 1 < p < U(u) ,

sup
k

∫
RN

(
epq αβ (1+ε)|uk−u|γ −1

)
dx < +∞, (53)

for some ε > 0 and q > 1.
In what follows, we assume that ‖u‖ < 1 and in the case that ‖u‖ = 1, the proof

is similar.
When

‖u‖ < 1

and

p <
1

(1−‖u‖ N
2 )

2γ
N

,

there exists ν > 0 such that

p(1−‖u‖ N
2 )

2γ
N (1+ ν) < 1.

On the other hand, by Brezis-Lieb’s Lemma [9] we have

‖uk −u‖ N
2 = ‖uk‖ N

2 −‖u‖ N
2 +o(1) where o(1) → 0 as k → +∞.

Then,

‖uk −u‖ N
2 = 1−‖u‖ N

2 +o(1),



444 S. BARAKET AND R. JAIDANE

and so
lim

k→+∞
‖uk −u‖γ = (1−‖u‖ N

2 )
2γ
N .

Therefore, for every ε > 0, there exists kε � 1 such that

‖uk −u‖γ � (1+ ε)(1−‖u‖ N
2 )

2γ
N , ∀ k � kε .

If we take q = 1+ ε with ε = 3
√

1+ ν −1, then ∀k � kε , we have

pq(1+ ε)‖uk−u‖γ � 1.

Consequently,∫
RN

(
epq αβ (1+ε)|uk−u|γ −1

)
dx �

∫
RN

(
e
(1+ε)pq αβ ( |uk−u|

‖uk−u‖ )γ‖uk−u‖γ
−1

)
dx

�
∫

RN

(
e

αβ ( |uk−u|
‖uk−u‖ )γ

−1

)
dx

� sup
‖u‖�1

∫
RN

(
e αβ |u|γ −1

)
dx < +∞.

Now, (53) follows from (15). This complete the proof of the first statement.
Now, let the sequence wn given by (51). Let also u ∈C∞

0 (RN be a radial function
such that u(x) = 0, for all |x| � 1

2 or |x| � 2 and ‖u‖ < 1. Set un = wn +u . Since
Δwn and Δu have disjoint supports and ∇wn and ∇ have also disjoint support then we
get

‖un‖ N
2 =

∫
RN

wβ |Δwn|N
2 +

∫
RN

wβ |Δu|N
2 +

∫
RN

|∇wn|N
2

+
∫

RN
|∇u|N

2 +
∫

RN
|wn|N

2 +
∫

RN
|un|N

2 .

From Lemma 6 we know that lim
n→+∞

‖wn‖ N
2 = 1. Then

‖un‖ N
2 → 1+‖u‖ N

2

and

‖un‖γ → (
1+‖u‖ N

2
) 2γ

N .

It’s obvious that wn ↪→ 0 weakly in E . Let α � αβU(u). we have

∫
RN

(e
|un|γ
‖un‖γ −1)dx �

∫
0�|x|� e

N√n

(e
|un|γ
‖un‖γ −1)dx

�
(

exp

(
α
(

log(n)
αβ‖un‖γ

))
−1

)
NVN

∫ e
N√n

0
rN−1dr

� VN
1
n

(
exp

(
α
(

log(n)
αβ‖un‖γ

))
−1

)
. (54)
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Also,
α

αβ‖un‖γ → α

αβ (1+‖u‖ N
2 )

2γ
N

and

U(u) =
1

(1−‖u‖ N
2 )

2γ
N

> (1+‖u‖ N
2 )

2γ
N .

Having in mind that α � αβU(u), we get

α

αβ (1+‖u‖ N
2 )

2γ
N

> 1. (55)

Therefore, passing to the limit in (54) and using (55), we get,

VN
1
n

(
exp

(
α
(

log(n)
αβ‖un‖γ

))
−1

)
= e

logn
(

α
αβ ‖un‖γ −1

)
− VN

n
→ +∞ as n → +∞.

This closes the proof of the lemma.

6. The variational formulation for the problem (16)

Note that, by the hypothesis (H3 ), for any ε > 0, there exists δ0 > 0 such that

| f (t)| � |t|N
2 −1, ∀ 0 < |t| � δ0. (56)

Moreover, since f is critical at infinity, for every ε > 0, there exists Cε > 0 such that

∀t � Cε | f (t)| � ε exp( a|t|γ −1) with a > α0. (57)

In particular, we obtain for q � 2,

| f (t)| � ε
Cq−1

ε
|t|q−1 exp(a |t|γ −1) with a > α0. (58)

Hence, using (56), (57), (58) and the continuity of f , for every ε > 0, for every q > N ,
there exists a positive constant C such that

| f (t)| � ε|t|N
2 −1 +C|t|q−1(ea |t|γ −1

)
, ∀ t ∈ R, ∀ a > α0. (59)

It follows from (59) and (H2) , that for all ε > 0, there exists C > 0 such that

F(t) � ε|t|N
2 +C|t|q(ea |t|γ −1

)
, for all t, ∀ a > α0. (60)

So, by (15) and (60) the functional J given by (19), is well defined. Moreover,
by standard arguments, J ∈C1(E,R) . �
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6.1. The mountain pass geometry of the energy

In the sequel, we prove that the functional J has a mountain pass geometry.

PROPOSITION 1. Assume that the hypothesis (H1),(H2) and (H3) hold. Then,

(i) there exist ρ , β0 > 0 such that J (u) � β0 for all u ∈ E with ‖u‖ = ρ .

(ii) Let φ1 ∈ E\{0} . Then, J (tφ1) →−∞, as t → +∞ .

Proof. From (59), for all ε > 0, there exists C > 0 such that

F(t) � ε|t|N
2 +C|t|q(ea tγ −1

)
, for all t ∈ R.

Then, using the last inequality, we get

J (u) � 2
N
‖u‖ N

2 − ε
∫

RN
|u|N

2 dx−C
∫

RN
|u|q(ea uγ −1

)
dx.

From the Hölder inequality and using the following inequality(
es−1

)ν � eνs−1, ∀ s � 0 ∀ν � 1,

we obtain

J (u) � 2
N
‖u‖ N

2 − ε
∫

RN
|u|N

2 dx−C
(∫

RN

(
e2a |u|γ −1

)
dx

) 1
2 ‖u‖q

2q. (61)

From the Theorem 1, if we choose u ∈ E such that

2a‖u‖γ � αβ , (62)

we get ∫
RN

(
e2a |u|γ −1

)
dx =

∫
RN

(
e
2a ‖u‖γ ( |u|

‖u‖ )γ
)−1

)
dx < +∞.

On the other hand from Sobolev embedding Lemma 4, there exist constants C1 > 0 and

C2 > 0 such that ‖u‖2q � C2‖u‖ and ‖u‖
N
2
N
2

� C1‖u‖ N
2 . So,

J (u) � 2
N
‖u‖ N

2 − εC1‖u‖ N
2 −C‖u‖q = ‖u‖ N

2

( 2
N
− εC1−C2‖u‖q− N

2

)
,

for all u ∈ E satisfying (62). Since q > N , we can choose ρ = ‖u‖ � (
αβ
2a )

1
γ and for

ε such that
2

NC1
> ε , there exists β0 = ρ

N
2

( 2
N
− εC1 −C2ρq− N

2

)
> 0 with J (u) �

β0 > 0.
(ii) Let φ1 ∈ E\{0}, ‖φ1‖ = 1. We define the function

ϕ(t) = J (tφ1) =
2
N

t
N
2 ‖φ1‖ N

2 −
∫

R4
F(tφ1)dx.
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By (H2) and (H3) there exist two positive constants C1 and C2 such that

F(t) � C1t
θ −C2t

N
2 , ∀ t ∈ R.

Hence, since θ > N ,

ϕ(t) = J (tφ1) � 2
N

t
N
2 ‖φ1‖ N

2 −C1|t|θ‖φ1‖θ +C2|t|N
2 ‖φ1‖

N
2
N
2
→−∞, as t → +∞.

We take e = t φ1 , for some t > 0 large enough. �

7. Proof of Theorem 6 and Theorem 7

7.1. Palais-Smale sequence

We begin by the Palais-Smale sequence that is

LEMMA 8. Assume that (H1) , (H2) , (H3) and (H4) . If (un) ⊂ E is a (PS) se-
quence and u ∈ E is a weak limit, then

(i) (un) is bounded in E .

(ii) ∫
RN

F(un)dx →
∫

RN
F(u)dx.

Proof. For the first item, we can see the proof in the proposition 2 below.
Now, we claim that

f (un) → f (u) in L1(BR), for any R > 0. (63)

Since un → u in L
N
2 (RN ), then un → u in L

N
2 (BR) . Furthermore,

∫
BR

f (un)undx �C .
It follows from Lemma 5 that (63) holds.

Now from (63), we deduce that, for any R > 0∫
BR

F(un)dx →
∫

BR

F(u)dx. (64)

Indeed by (H4) we have

0 < F(un) � M0| f (un)| a.e. {x ∈ R
N | |un| � t0}

and from (H2)

0 < F(un) � t0
θ
| f (un)| a.e. {x ∈ R

N | |un| < t0}.

Hence, applying the generalized Lebesgue dominated convergence theorem, we can
conclude that (64) holds for any R > 0.
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Now we claim that for any ε > 0, there exists R > 1 such that∣∣∣∣∫
RN\BR

(F(un)−F(u))dx

∣∣∣∣ � ε,∀ n � 1. (65)

In order to prove our claim, it’s sufficient to see that for any 0 < ε < 1, there exists
R > 1 such that ∫

RN\BR

F(un)dx � Cε and
∫

RN\BR

F(u)dx � Cε. (66)

Let R > 1 arbitrarily fixed. By (60), and for q = N
2 there exists a positive constant C3

such that∫
RN\BR

(F(un)dx � ε
∫

RN\BR

|un|N
2 dx+C3

∫
RN\BR

|u|
N
2
n (ea |un|γ −1)dx, ∀ n � 1, a > α0.

Using the power series expansion of the exponential function and estimating the single
terms with the radial lemma 2, the fact that (un) is bounded in E , we get for any n � 1

∫
RN\BR

|un|N
2 (ea |un|γ −1)dx =

+∞

∑
k=1

ak

k!

∫
RN\BR

|un|γk+ N
2 dx

� C4

+∞

∑
k=1

ak

k!
(C)γk‖un‖γk+ N

2
R−2 (N−1)(γk)

N +1

2(N−1)(γk)
N −1

� C4
‖un‖ N

2

R

+∞

∑
k=1

ak

k!
(C‖un‖)γk 1

2(N−1)(γ)
N −1

(67)

� C4

R
‖un‖ N

2

2(N−1)(γ)
N −1

+∞

∑
k=1

(C a ‖un‖γ)k

k!

=
C4

R
‖un‖ N

2

2(N−1)(γ)
N −1

ea C ‖un‖γ
, ∀n

� C5(a,ε)
R

. (68)

On the other hand, using Sobolev embedding and the fact that (un) is bounded in E ,
there exists C1 such that

ε
∫

RN\BR

|un|N
2 dx � εC‖un‖ N

2 � εC1.

It follows that,

∫
RN\BR

(F(un)dx � εC1 +
C5(a,ε)

R
.



LOGARITHMIC WEIGHTED ADAMS-TYPE INEQUALITY 449

We can assume without loss of generality that C5(a,ε)
ε > 1. Taking

R =
C5(a,ε)

ε
> 1,

we get ∫
RN\BR

F(un)dx � ε(C1 +1), ∀ n � 1.

In the same way, ∫
RN\BR

F(u)dx � ε(C1 +1).

Then,∣∣∣∣∫
RN\BR

(F(un)−F(u))dx

∣∣∣∣ �
∫

RN\BR

F(un)+
∫

RN\BR

F(u)dx � 2ε(C1 +1)

and (65) holds. �

7.2. Estimate of the mountain pass level

LEMMA 9. Assume that f verifies the conditions (H1) , (H2) , (H4) and (H5) .
Then, for the sequence (vn) given by (51), there exists n � 1 such that

max
t�0

J (tvn) <
2
N

(αβ

α0

) N
2γ

. (69)

Proof. By contradiction, suppose that for all n � 1,

max
t�0

J (tvn) � 2
N

(αβ

α0

) N
2γ

.

By contradiction, suppose that for all n � 1,

max
t�0

J (tvn) � 2
N

(αβ

α0

) N
2γ

.

Therefore, for any n � 1, there exists tn > 0 such that

max
t�0

J (tvn) = J (tnvn) � 2
N

(αβ

α0

) N
2γ

and so,

2
N

t
N
2

n −
∫

RN
F(x,tnvn)dx � 2

N

(αβ

α0

) N
2γ

.
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Then, by using (H1)

t
N
2

n �
(αβ

α0

) N
2γ

. (70)

On the other hand,

d
dt

J (tvn)
∣∣
t=tn

= t
N
2 −1

n −
∫

RN
f (x,tnvn)vndx = 0,

then,

t
N
2

n =
∫

RN
f (x,tnvn)tnvndx. (71)

Now, we claim that the sequence (tn) is bounded in (0,+∞) . Indeed, it follows
from (H4) that for all ε > 0, there exists tε > 0 such that

f (t)t � (γ0− ε)eα0t
γ ∀|t| � tε . (72)

Using (71), we get

t
N
2

n =
∫

RN
f (x,tnvn)tnvndx �

∫
0�|x|� e

N√n

f (x,tnvn)tnvndx.

We have for all 0 � |x| � e
N√n

, wγ
n �

(
log(n)

αβ

)
. From (70) and the result of Lemma 6,

tnvn � tn
‖wn‖

( log(n)
αβ

) 1
γ → ∞ as n → +∞.

Hence, it follows from (72) that for all ε > 0, there exists n0 such that for all n � n0

t
N
2

n � (γ0 − ε)
∫

0�|x|� e
N√n

eα0t
γ
n |v|γndx

and

t
N
2

n � NVN(γ0− ε)
∫ 1

N√n

0
rN−1e

α0t
γ
n

(
log(n)

‖wn‖γ αβ

)
dr. (73)

Hence,

1 � NVN(γ0− ε) e
α0t

γ
n

(
log(n)

‖wn‖γ αβ

)
−logNn− N

2 logtn
.

Therefore (tn) is bounded. Also, we have from the formula (71) that

lim
n→+∞

t
N
2

n �
(αβ

α0

) N
2γ

.

Now, suppose that

lim
n→+∞

t
N
2

n >

(αβ

α0

) N
2γ

,
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then for n large enough, there exists some δ > 0 such that tγ
n � αβ

α0
+δ . Consequently

the right hand side of (73) tends to infinity and this contradicts the boudness of (tn) .
Since (tn) is bounded, we get

lim
n→+∞

t
N
2

n =
(αβ

α0

) N
2γ

. (74)

Let consider the unit ball B of RN and the sets

An = {x ∈ B | tnvn � tε} and Cn = B\An.

We have,

t
N
2

n =
∫

RN
f (tnvn)tnvndx �

∫
B

f (tnvn)tnvndx =
∫

An

f (tnvn)tnvndx+
∫
Cn

f (tnvn)tnvn

� (γ0 − ε)
∫

An

eα0t
γ
n vγ

ndx+
∫
Cn

f (tnvn)tnvndx

= (γ0 − ε)
∫

B
eα0t

γ
n vγ

ndx− (γ0− ε)
∫

Cn

eα0t
γ
n vγ

ndx+
∫
Cn

f (tnvn)tnvndx.

Since vn → 0 a.e. in B , χCn → 1 a.e. in B , therefore using the dominated convergence
theorem, we get ∫

Cn

f (x,tnvn)tnvndx → 0 and
∫

Cn

eα0t
γ
n vγ

ndx → NVN .

Then,

lim
n→+∞

t
N
2

n =
(αβ

α0

) N
2γ

� (γ0 − ε) lim
n→+∞

∫
B
eα0t

γ
n vγ

ndx− (γ0− ε)NVN .

On the other hand,∫
B
eα0t

γ
n vγ

ndx �
∫

1
N√n

�|x|� 1
2

eα0t
γ
n vγ

ndx+
∫
Cn

eα0t
γ
n vγ

ndx.

Then, using (70)

lim
n→+∞

t
N
2

n � lim
n→+∞

(γ0− ε)
∫

B
eα0t

γ
n vγ

ndx

� lim
n→+∞

(γ0− ε)NVN

∫ 1
2

1
N√n

rN−1e

(log e
r )

N
N−2

(log(e N√n))
2

N−2 ‖wn‖γ dr.

Therefore, making the change of variable

s =
(log e

r )

(log(e N
√

n))
2

N−2 ‖wn‖γ
= P

(log e
r )

‖wn‖γ , with P =
1

(log(e N
√

n))
2

N−2
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we get

lim
n→+∞

t
N
2

n � lim
n→+∞

(γ0− ε)
∫

B
eα0t

γ
n vγ

ndx

� lim
n→+∞

NVN(γ0 − ε)
‖wn‖γ

P

∫ P log(e N√n)
‖wn‖γ

P log(2e)
‖wn‖γ

e
N(1− s‖wn‖γ

P )+ ‖wn‖
2γ

N−2

P
N

N−2
s

N
N−2

ds

� lim
n→+∞

NVN(γ0 − ε)
‖wn‖γ

P
eN

∫ P log(e N√n)
‖wn‖γ

P log(2e)
‖wn‖γ

e−
N
P ‖wn‖γ sds

= lim
n→+∞

(γ0− ε)NVN
eN

N

(− e−N log(e N√n) + e−N log(2e))
= (γ0 − ε)VNeN(1−log(2e)).

It follows that (αβ

α0

) N
2γ

� (γ0− ε)VNeN(1−log(2e))

for all ε > 0. So,

γ0 �

(αβ
α0

) N
2γ

VNeN(1−log(2e)) ,

which is in contradiction with the condition (H5) . �

7.3. The compactness level of the energy

The primary challenge within the variational approach to the critical growth prob-
lem arises due to the absence of compactness. Specifically, the global Palais-Smale
condition doesn’t hold. However, a partial Palais-Smale condition is retained under a
specific threshold. In the subsequent proposition, we pinpoint the initial level at which
the energy exhibits non-compactness.

PROPOSITION 2. Let J be the energy associated to the problem (16) defined by
(19), and suppose that the conditions (H1) , (H2) and (H4) are satisfied.

(i) If the function f (t) satisfies the condition (17) for some α0 > 0 , then the func-
tional J satisfies the Palais-Smale condition (PS)c for any

c <
2
N

(αβ

α0

) N
2γ

.

(ii) If f is subcritical at +∞ , then the functional J satisfies the Palais-Smale con-
dition (PS)c for any c ∈ R .
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Proof. (i) Consider a (PS)c sequence (un ) in E , for some c ∈ R , that is

J (un) =
2
N
‖un‖ N

2 −
∫

RN
F(x,un)dx → c, n → +∞ (75)

and

J ′(un)ϕ =
∣∣∣∫

RN

(
wβ (x)|Δun|N

2 −2ΔunΔϕ + |∇un|N
2 −2∇un.∇ϕ +V(x)|un|N

2 −2unϕ
)

dx

−
∫

RN
f (x,un) ϕ dx

∣∣∣
� εn‖ϕ‖, (76)

for all ϕ ∈ E , where εn → 0, as n → +∞ .
For n large enough, there exists a constant C > 0 such that

2
N
‖un‖ N

2 � C+
∫

RN
F(x,un)dx.

From (H2) , it follows that∫
RN

F(un)dx � 1
θ

∫
RN

f (un)undx.

Using (76) with ϕ = un , we obtain∫
RN

f (un)undx � εn‖un‖+‖un‖ N
2 .

Therefore,
2
N
‖un‖ N

2 � C1 +
εn

θ
‖un‖+

1
θ
‖un‖ N

2 .

Since, θ > N
2 , we get

0 <

(
2
N
− 1

θ

)
‖un‖ N

2 � C+
εn

θ
‖un‖.

We deduce that the sequence (un) is bounded in E . As consequence, there exists
u ∈ E such that, up to subsequence, un ⇀ u weakly in E , un → u strongly in Lq(B) ,
for all q � N

2 and un(x) → u(x) a.e. in RN . Also, we can follow [24] to prove that
∇un(x) → ∇u(x) a.e. x ∈ RN and Δun(x) → Δu(x) a.e. x ∈ RN .

Furthermore, we have, from (75) and (76), that

0 <

∫
RN

f (x,un)un � C, (77)

and

0 <

∫
RN

F(x,un) � C. (78)
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By Lemma 8, we have

F(x,un) → F(x,u) in L1(RN) as n → +∞. (79)

Then, from (75), we get

lim
n→+∞

∫
RN

f (x,un)undx =
N
2

(c+
∫

RN
F(x,u)dx) (80)

and from (76), we have

lim
n→+∞

∫
RN

f (x,un)undx =
N
2

(c+
∫

RN
F(x,u)dx). (81)

It follows from (H2) and (76), that

lim
n→+∞

N
2

∫
RN

F(x,un)dx � lim
n→+∞

∫
RN

f (x,un)undx =
N
2

(c+
∫

RN
F(x,u)dx). (82)

Then, passing to the limit in (76) and using (81),we obtain that u is a weak solution of
the problem (16) that is∫

RN

(
wβ (x) |Δu|N

2 −2 Δu Δϕ + |∇u|N
2 −2∇u.∇ϕ +V (x)|u|N

2 −2uϕ
)
dx =

∫
RN

f (x,u) ϕ dx,

for all ϕ ∈ E.
Taking ϕ = u as a test function, we get

‖u‖ N
2 =

∫
RN

wβ (x)|Δu|N
2 dx+

∫
RN

|∇u|N
2 dx+

∫
RN

|u|N
2 dx

=
∫

RN
f (x,u)udx � N

2

∫
RN

F(x,u)dx.

Hence J (u) � 0. We also have by the Fatou’s lemma and (79)

0 � J (u) � 2
N

liminf
n→∞

‖un‖ N
2 −

∫
RN

F(x,u)dx = c.

So, we will finish the proof by considering three cases for the level c .

Case 1. c = 0. In this case

0 � J (u) � liminf
n→+∞

J (un) = 0.

So,
J (u) = 0

and then by (79)

lim
n→+∞

2
N
‖un‖ N

2 =
∫

RN
F(x,u)dx =

2
N
‖u‖ N

2 .

By Brezis-Lieb’s Lemma [9], it follows that un → u in E .
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Case 2. c > 0 and u = 0. We will prove that this is not possible.
We will show in the following that

Jn =
∫

RN
f (un)undx → 0 as n → +∞. (83)

In fact, if (83) holds, then taking ϕ = un in (76) we get

‖un‖ N
2 � cεn +Jn → 0 as n → 0

which gives lim
n→+∞

‖un‖ N
2 = 0. This contradicts the fact that c �= 0 because from (75)

and (76), we have

lim
n→+∞

‖un‖ N
2 =

N
2

c.

It therefore remains to prove that (83) is valid. Let a > α0 and q � 1. By (59) and
again the boundedness of (un) in E , we obtain for all ε > 0,

Jn � C1ε +C(a,q,ε)
∫

RN
|u|qn (ea |un|γ −1)dx ∀ n � 1.

Applying Hölder’s inequality with p, p′ > 1 and 1
p + 1

p′ = 1, we get

Jn(u) � C‖un‖q
p′q

(∫
RN

(ep a |un|γ −1)dx

) 1
p

.

Since (N
2 c)

2γ
N <

(αβ
α0

)
, there exists η ∈ (0, 1

2 ) such that (N
2 c)

2γ
N = (1−2η)

(αβ
α0

)
.

On the other hand, ‖un‖γ → (N
2 c)

2γ
N , so there exists nη > 0 such that for all n � nη ,

we get ‖un‖γ � (1−η)
αβ
α0

. Therefore, if we choose a = (1+ η
2 )α0 , p = (1+ η

2 ) we
get

pa

( |un|
‖un‖

)γ
‖un‖γ � α0

(
1+

η
2

)2
( |un|
‖un‖

)γ
(1−η) � αβ

( |un|
‖un‖

)γ
.

Therefore, the integral is bounded in view of (17). On the other hand, choosing
q > 2, so p′q > 2 and therefore un → 0 Lqp′(RN) . Then Jn → 0 as n → +∞.

Case 3. c > 0 and u �= 0. In this case, we claim that J (u) = c and therefore, we
get

lim
n→+∞

‖un‖ N
2 =

N
2

(
c+

∫
RN

F(x,u)dx
)

=
(
J (u)+

∫
RN

F(x,u)dx
)

= ‖u‖ N
2 .

Do not forgot that

J (u) � 2
N

liminf
n→+∞

‖un‖ N
2 −

∫
RN

F(x,u)dx = c.



456 S. BARAKET AND R. JAIDANE

We argue by contradiction and suppose that J (u) < c . Then,

‖u‖ N
2 <

(N
2

(
c+

∫
RN

F(x,u)dx
)) 2

N
. (84)

Set
vn =

un

‖un‖
and

v =
u

(N
2

(
c+

∫
RN

F(x,u)dx
)
)

2
N

.

We have ‖vn‖ = 1, vn ⇀ v in E , ∇vn(x) → ∇v(x) a.e. x ∈ RN , Δvn(x) → Δv(x) a.e.
x ∈ RN , v �≡ 0 and ‖v‖ < 1. So, by Lemma 7, we get

sup
n

∫
RN

(
epαβ |vn|γ −1

)
dx < ∞, for 1 < p < U(v) = (1−‖v‖ N

2 )
−2γ
N . (85)

Since un ↪→ u in E, it suffice to prove that

J ′(un)(un−u) → 0 as n → +∞,

and that’s the case when ∫
RN

f (un)(un−u)dx → 0. (86)

Arguing as in Case 1, we can thus reduce the proof of (86) to showing the existence
of a > α0 and q � 1 such that

In :=
∫

RN
|un|q−1|un−u|(ea |un|γ −1)dx→ 0 as n → +∞.

We apply Hölder’s inequality twice with p, p′,t,t ′ > 1 and 1
p + 1

p′ = 1
t + 1

t′ = 1, we get

In � C(a,ε)‖un‖q−1
p′t′(q−1)‖un−u‖p′t

(∫
RN

(ep a |un|γ −1)dx

) 1
p

�
(∫

RN
(eτ a |un|γ −1)dx

) 1
p

for any τ > p .
From (85), it follows that

sup
n

∫
RN

(
eτ a |un|γ −1

)
dx = sup

n

∫
RN

(
eτ a |vn|γ‖un‖γ −1

)
dx < ∞

provided a > α0, p > 1 and τ > p can be chosen so that a τ‖un‖γ < (1−‖v‖ N
2 )

−2γ
N αβ

and 1 < p < U(v) = (1−‖v‖ N
2 )

−2γ
N .
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We have

(1−‖v‖ N
2 )

−2γ
N =

(
(N

2 (c+
∫
B F(x,u)dx)

(N
2 (c+

∫
B F(x,u)dx))−‖u‖ N

2 )

) 2γ
N

=
(

c+
∫
B F(x,u)dx

c−J (u)

) 2γ
N

. (87)

On the other hand,

lim
n→+∞

‖un‖γ =
(

N
2

(
c+

∫
RN

F(x,u)dx
)) 2γ

N

,

then, for all ε such that 0 < ε < 1 and for n large enough

α0(1+ ε)‖un‖γ � α0(1+2ε)
(

N
2

(
c+

∫
RN

F(x,u)dx
)) 2γ

N

.

Taking a = (1+ ε)α0 , τ = (1+ ε)p and using (87), we get

a‖un‖γτ � α0(1+7ε)
(

N
2

(
c+

∫
RN

F(x,u)dx
)) 2γ

N

(1−‖v‖ N
2 )

−2γ
N

� pα0(1+7ε)2
2γ
N
(
c−J (u)

) 2γ
N .

But J (u) � 0 and c < 2
N

(αβ
α0

) N
2γ

, then there exists η ∈ (0,1) such that c
2γ
N = (1−

η)( 2
N )

2γ
N

αβ
α0

.

If we choose ε = η
7 , we get,

a‖un‖γτ � (1+ η)(1−η)pαβ � pαβ < p (1−‖v‖ N
2 )

−2γ
N .

So, with this choice of τ > p > 1 and a > α0 , we have

In � C(a,α0)‖un‖q−1
p′t′(q−1)‖un−u‖p′t

where C(a,α0) is a positive constant depending only on a and α0. Now, since (q−
1)p′t ′ > q−1 and p′t > t , choosing q � 3 and t � 2 we have that (un) is bounded in
L((q−1)p′t′(RN) , so In → 0 as n → +∞ .

Hence,

lim
n→+∞

‖un‖ N
2 =

N
2

(
c+

∫
RN

F(x,u)dx
)

= ‖u‖ N
2

and this contradicts (84). So, J (u) = c and consequently, un → u .
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Proof of (ii) follows from (i) . Indeed, since (un) is bounded in E , there exists a
positive constant M > 0 such that ‖un‖ � M . As f is subcritical at infinity, then if we
choose a > 0 such that a � αβ

p Mγ , the integral

∫
RN

(ep a |un|γ −1)dx

is finite for all p � 1. So, arguing as in (i) we get that

In → 0 as n → +∞.

Now according to the Proposition 2, the functional J satisfies the (PS)c condi-

tion at a level c < 2
N

(αβ
α0

) N
2γ

, in the critical case and at all level c , in the subcritical

case. Moreover, Proposition 1 confirms that the functional J exhibits a mountain pass
structure. Consequently, by the Ambrosetti and Rabinowitz Theorem [5], J possesses
a non-zero critical point u within the space E . This leads to the proof of Theorem 6
and Theorem 7. �

Funding statement. This work was supported and funded by the Deanship of Sci-
entific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant num-
ber IMSIU-DDRSP2503).

Statements and Declarations. We declare that this manuscript is original, has not
been published before and is not currently being considered for publication elsewhere.

We confirm that the manuscript has been read and approved and that there are no
other persons who satisfied the criteria for authorship but are not listed.

Competing Interests. The authors declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

RE F ER EN C ES

[1] I. ABID, S. BARAKET AND R. JAIDANE,On a weighted elliptic equation of N-Kirchhoff type, Demon-
stratio Mathematica 2022, 55: 634–657, doi.org/10.1515/dema-2022-0156 .

[2] D. R. ADAMS, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128
(1988), 385–398.

[3] A. ADIMURTHI, Existence results for the semilinear Dirichlet problem with critical growth for the
n-Laplacian, Houst. J. Math. 7 (1991), 285–298.

[4] A. ADIMURTHI,Positive solutions of the semilinear Dirichlet problem with critical growth in the unit
disc in R2 , Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73.

[5] A. AMBROSETTI AND P. H. RABIONOWITZ, Dual variational methods in critical points theory and
applications, J. Funct. Anal. 14 (1973), 349–381.

[6] L. E. ANDERSSON, T. ELFVING, G. H. GOLUB, Solution of biharmonic equations with application
to radar imaging, J. Comp. and Appl. Math. 94 (2) (1998), 153–180.

doi.org/10.1515/dema-2022-0156


LOGARITHMIC WEIGHTED ADAMS-TYPE INEQUALITY 459

[7] S. AOUAOUI, R. JLEL, On some elliptic equation in the whole Euclidean space R2 with nonlinearities
having new exponential growth condition, Commun. Pure Appl. Anal. 19 (2020), no. 10, 4771–4796.

[8] S. BARAKET, R. JAIDANE, Non-autonomous weighted elliptic equations with double exponential
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