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Abstract. Let W 1,n(Rn) (n � 2) be the standard Sobolev space, and denote, for p > n

γ1 = inf
u∈W1,n(Rn),u �≡0

∫
Rn (Fn(∇u)+ |u|n)dx

(
∫
Rn |u|pdx)

n
p

,

where F : R
n → [0, ∞) be a convex function of class C2(Rn\{0}) , which is even and positively

homogeneous of degree 1 . For γ ∈ [0,γ1) , we define a norm in W 1,n(Rn) by

‖u‖F,n,γ,p =
(∫

Rn
(Fn(∇u)+ |u|n)dx− γ(

∫
Rn

|u|pdx)
n
p

) 1
n

.

By performing a blow-up analysis, we prove that for real numbers 0 � γ < γ1 and p > n , the
following anisotropic Trudinger-Moser inequality

sup
u∈W1,n(Rn),‖u‖F,n,γ,p�1

∫
Rn

Φ(λn|u|
n

n−1 )dx

can be attained by some function u0 ∈ W 1,n(Rn) with ‖u0‖F,n,γ,p = 1 , where Φ(t) = et −
∑n−1

j=0
t j

j! , λn = n
n

n−1 κ
1

n−1
n and κn is the volume of the unit Wulff ball. In the case γ = 0 , this is

reduced to a result of Zhou-Zhou [19].

1. Introduction

Let n � 2 and Ω ⊂ R
n be a smooth bounded domain. We denote W 1,n

0 (Ω) the

closure of C∞
0 (Ω) under the norm ‖u‖

W1,n
0 (Ω) = (

∫
Ω |∇u|ndx)1/n . The Sobolev embed-

ding theorem asserts that W 1,n
0 (Ω) ↪→ Lq(Ω) is continuous for all 1 � q < ∞ . But the

embedding is not valid for q = ∞ . In this case, the classical Trudinger-Moser inequality
[18, 10, 9, 11, 8] claims that

sup
u∈W1,n

0 (Ω),
∫

Ω |∇u|ndx�1

∫
Ω

eα |u|
n

n−1 dx < ∞ (1)
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for any α � αn = nω
1

n−1
n−1 , where ωn−1 is the measure of the unit ball in R

n . The in-

equality (1) is sharp: for any growth eα |u|n/(n−1)
with α > αn , the supremum is infinity.

Moreover, when α � αn , the supremum can be attained by some u ∈ W 1,n
0 (Ω) with∫

Ω |∇u|ndx = 1, see also [2, 3, 6].

Due to wide range of applications in geometric analysis and partial differential
equations, the Trudinger-Moser inequality (1) has been generalized in various ways.
Recently, one interesting extension of (1) is the so-called anisotropic Trudinger-Moser
inequality, which was originally established by Wang-Xia [14]. Let F : R

n → [0,∞) be
a convex function of class C2(Rn\{0}) , which is even and positively homogeneous of
degree 1. They obtained that the supremum

sup
u∈W 1,n

0 (Ω),
∫

Ω Fn(∇u)dx�1

∫
Ω

eλ |u|
n

n−1 dx < ∞ (2)

for λ � λn = n
n

n−1 κ
1

n−1
n , here κn is the volume of the unit Wulff ball in R

n . Moreover,
the constant λn is optical in the sense that when λ > λn , we can find a sequence vk

such that
∫

Ω eλ |vk|n/(n−1)
dx diverges. For the attainability of the supremum in (2), this

has been done by Zhou-Zhou [19]. Recently, they also extended (2) to the unbounded
domain in [20], which can be described as follows

sup
u∈W 1,n(Rn),

∫
Rn (Fn(∇u)+|u|n)dx�1

∫
Rn

Ψ(λn|u| n
n−1 )dx < ∞, (3)

where Ψ(t) = et −∑n−2
j=0

t j

j! , and the supremum can be attained by some function u ∈
W 1,n(Rn) with

∫
Rn(Fn(∇u)+ |u|n)dx = 1. Liu [7] obtained the extremal functions for

an improvedTrudinger-Moser inequality on a smooth bounded domain. More precisely,
we denote a norm in W 1,n

0 (Ω)

‖u‖D =
(∫

Ω
Fn(∇u)dx− τ‖u‖n

p

) 1
n

for p > 1 and 0 � τ < inf
u∈W1,n

0 (Ω),u �≡0

‖F(∇u)‖n
n

‖u‖n
p

. Then there holds

sup
u∈W1,n

0 (Ω),‖u‖D�1

∫
Ω

eλn|u|
n

n−1 dx < ∞ (4)

and the supremum in (4) can be attained.
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2. Main results

In this note, we will consider possible extensions of the anisotropic Trudinger-
Moser inequality involving Lp norm for the unbound domain in R

n , and complement
the main results in [7, 20]. For any u ∈W 1,n(Rn) and p > n , denote

γ1 = inf
u∈W1,n(Rn),u �≡0

∫
Rn(Fn(∇u)+ |u|n)dx

(
∫
Rn |u|pdx)

n
p

.

For 0 � λ < λn , we define

‖u‖F,n,γ,p =
(∫

Rn
(Fn(∇u)+ |u|n)dx− γ(

∫
Rn

|u|pdx)
n
p

) 1
n

.

Our first result can be stated as follows:

THEOREM 1. Let n � 2 , p > n and 0 � γ < γ1 . Then
(1) For any 0 � γ < γ1 , there holds

sup
u∈W1,n(Rn),‖u‖F,n,γ,p�1

∫
Rn

Φ(λ |u| n
n−1 )dx < ∞; (5)

(2) For any λ > λn , the supremum infinity, i.e.

sup
u∈W 1,n(Rn),‖u‖F,n,γ,p�1

∫
Rn

Φ(λ |u| n
n−1 )dx = +∞,

where

Φ(t) = et −
n−1

∑
j=0

t j

j!
.

As an immediate consequence of the preceding theorem, we have

COROLLARY 1. For any 0 � γ < γ1 , we have

sup
u∈W 1,n(Rn),‖u‖F,n,γ,p�1

∫
Rn

Ψ(λn|u| n
n−1 )dx < ∞, (6)

where Ψ(t) = et −∑n−2
j=0

t j

j! .

For the existence of extremals for (5), we have the following:

THEOREM 2. Let n � 2 , p > n, for any 0 � γ < γ1 , there exists u0 ∈W 1,n(Rn)∩
C1(Rn) with ‖u0‖F,n,γ,p = 1 such that∫

Rn
Φ(λn|u0| n

n−1 )dx = sup
u∈W 1,n(Rn),‖u‖F,n,γ,p�1

∫
Rn

Φ(λn|u| n
n−1 )dx.
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We mention that Corollary 1 fully extends [20, Theorem 1.2] and [7, Theorem 1.1]
for the entire space, while Theorem 2 partially extends [7, Theorem 1.2] because here
we study the modified function Φ(t) which is obtained for Ψ(t) by subtracting the
term corresponding to the Ln norm. This helps us to yield the compactness necessary
to prove the attainability of the superemum in (5).

Here and throughout this note, let us now denote Fo(x) is the polar function of
F(x) . Actually, Fo(x) is dual to F in the sense that

Fo(x) = sup
ξ∈Rn\{0}

〈x, ξ 〉
F(ξ )

, F(x) = sup
ξ∈Rn\{0}

〈x, ξ 〉
Fo(ξ )

.

We use the notation Wρ := {x ∈ R
n : Fo(x) � ρ} to represent a Wulff ball of radius ρ

with the center at 0 and the same letter C to denote constants.
Recall that, for a measurable function u on Ω ⊂R

n , the one-dimensional decreas-
ing rearrangement of u is

u�(t) = sup{s � 0 : |{x ∈ Ω : |u(x)| > s}| > t}
for t ∈ R . The convex symmetrization of u with respect to F is defined by

u∗(x) = u�(κnF
o(x)n), x ∈ Ω∗.

Here Ω∗ is the homothetic Wulff ball centered at the origin having the same measure
as Ω . Other results about convex symmetrization may be found in [1].

The remaining part of this note is organized as follows: In section 3, we prove
point (2) of Theorem 1. We use the blow-up analysis to prove point (1) of Theorem 1
and Theorem 2. In section 4 , we obtain the existence of the subcritical maximizers. In
section 5, we analyze the convergence of maximizers sequence and its blow-up behav-
ior. In section 6, a sequence of functions is constructed to reach a contraction, which
completes the proof of point (1) of Theorem 1 and Theorem 2.

3. Test functions computations

In order to prove point (2) of Theorem 1, we consider the sequence defined, for
k ∈ N , as

wk(x) =
1

n
√

nκn

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(logk)

n−1
n , if 0 � Fo(x) < Lk

k ,

log( Lk
Fo(x) )

n√logk
, if Lk

k � Fo(x) < Lk,

0, if Fo(x) � Lk,

where Lk = (logk)
1

2np

log(logk) . Obviously, {wk} ⊂W 1,n(Rn) be a sequence consisting of radial

symmetric functions with respect to Fo(x) and Lk → 0 as k → ∞ . Moreover, we have
by straightforward calculation∫

Rn
Fn(∇wk)dx =

1
logk

∫ Lk

Lk
k

1
t
dt = 1,
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and ∫
W Lk

k

|wk|ndx = (logk)n−1
∫ Lk

k

0
tn−1dt =

Ln
k(logk)n−1

nkn = ok(1).

Integration by parts, it follows that∫
WLk

\W Lk
k

|wk|ndx =
Ln

k

logk

∫ k

Lk
k

(
log

Lk

t

)n

tn−1dt

=
Ln

k

logk
(n−1)!
nn−2

∫ 1

1
k

log

(
1
s

)
sn−1ds+ok(1)

=
Ln

k

logk
(n−1)!

nn

(
1− 1

kn

)
+ok(1) = ok(1).

Similarly, we also yield

∫
Rn

|wk|pdx =
Ln

k

kn

(logk)
n−1
n p

n
p
n κ

p
n −1
n

+
Ln

k

(logk)
n
p

p!(nκn)
1− n

p

np+1

(
1− 1

kn

)
+ok(1) = ok(1).

In view of the above estimates, we obtain

‖wk‖n
F,n,γ,p = 1+ok(1).

Considering w̃k = wk/‖wk‖F,n,γ,p , we have that

∫
Rn

Φ(λ |w̃k|
n

n−1 )dx �
∫

W Lk
k

(
eλ |w̃k|

n
n−1 −

n−1

∑
j=0

λ j|w̃k|
n

n−1

j!

)
dx

�
(

k

λ

(nκn)
1

n−1 eO(1) +O((logk)n−1)

)
κnLn

k

kn .

The last term on the right hand side goes to infinity as k → ∞ , thanks to λ > λn . Thus
point (2) of Theorem 1 is finished.

4. The subcritical functionals

For notation convenience, we set

FTM := sup
u∈W1,n(Rn),‖u‖F,n,γ,p�1

∫
Rn

Φ(λn|u| n
n−1 )dx

and also write
FTMε (u) :=

∫
Rn

Φ(λn,ε |u| n
n−1 )dx,

where λn,ε = λn− ε for 0 < ε < λn . We have the following lemma.
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LEMMA 1. Let p > n � 2 , 0 � γ < γ1 . Then for any 0 < ε < λn , there exists
some function uε ∈W 1,n(Rn)∩C1(Rn) such that ‖uε‖F,n,γ,p = 1 and

FTMε(uε) = sup
u∈W1,n(Rn),‖u‖F,n,γ,p�1

FTMε(u).

Moreover, uε can be chosen to be nonnegative, radially symmetric and radially de-
creasing with respect to Fo(x) .

Proof. For any u ∈ W 1,n(Rn) , let u∗ be the convex symmetrization of u with
respect to Fo(x) . It is known that ‖F(∇u∗)‖Ln(Rn) � ‖F(∇u)‖Ln(Rn) , ‖u∗‖Ln(Rn) =
‖u‖Ln(Rn) , ‖u∗‖Lp(Rn) = ‖u‖Lp(Rn) , and

FTMε(u∗) � FTMε(u), (7)

On the other hand,

FTMε(u∗) � sup
u∈W 1,n(Rn),‖u‖F,n,γ,p�1

FTMε (u),

which together with (7) implies that

sup
u∈W1,n(Rn),‖u‖F,n,γ,p�1

FTMε(u) = sup
u∈ℑ,‖u‖F,n,γ,p�1

FTMε(u),

where ℑ is a set consisting of all nonnegative radially symmetric functions with respect
to Fo(x) . Without of generality, we choose a sequence {vi} ⊂ ℑ with ‖vi‖F,n,γ,p = 1,
such that

FTMε(vi) → sup
u∈ℑ,‖u‖F,n,γ,p�1

FTMε(u) as i → ∞. (8)

Since vi is bounded in W 1,n(Rn) , we can assume up to a subsequence that⎧⎪⎪⎨⎪⎪⎩
vi ⇀ uε weakly in W 1,n(Rn),

vi → uε strongly in Ls
loc(R

n), ∀s > 1,

vi → uε a.e. in R
n.

We can easily get that uε ∈ ℑ . From the weak convergence of vi in W 1,n(Rn) , we see
‖uε‖F,n,γ,p � limsup

i→∞
‖vi‖F,n,γ,p � 1. Since u ∈ ℑ , un(ρ)|Wρ | �

∫
Wρ

undx � γ1
γ1−γ , and

so

u(x) � u(ρ) �
‖u‖Ln(Rn)

n
√

κnρ
� Cn,γ

ρ
, x ∈ W c

ρ . (9)

In view of (9), we deduce∫
W c

R

Φ(λn,εu
n

n−1 )dx =
∞

∑
j=n

∫
W c

R

λ j
n,ε
j!

u
n j

n−1 dx

�
∞

∑
j=n

κn(n−1)
j−n+1

λ j
n,ε

j!

C
n

n−1 j
n,γ

R
n

n−1 j−n
.
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Hence we can choose R > 0 sufficiently large such that∫
W c

R

Φ(λn,εu
n

n−1 )dx < ν (10)

for any ν > 0. On the other hand, we have by the mean value theorem

Φ(λn,εv
n

n−1
j )−Φ(λn,εu

n
n−1
ε ) = Φ′(ϑ)λn,ε(v

n
n−1
i −u

n
n−1
ε )

� max{Φ′(λn,εv
n

n−1
i ),Φ′(λn,εu

n
n−1
ε )}

×λn,ε(v
n

n−1
i −u

n
n−1
ε ), (11)

where ϑ lies between λn,εv
n

n−1
i and λn,εu

n
n−1
ε . A simple modification of the argument

in [16] (Lemma 2.1) yields the following estimate: for s � 1, t � 0, there holds

Φ(t)s � Φ(st). (12)

It follows that∫
WR

Φ′(ϑ)sdx �
∫

WR

Φ′(λn,εsv
n

n−1
i )dx+

∫
WR

Φ′(λn,εsu
n

n−1
ε )dx

�
∫

WR

eλn,εsv
n

n−1
i dx+

∫
WR

eλn,εsu
n

n−1
ε dx+C1

�
∫

WR

eλn,εsv
n

n−1
i dx+C.

We now estimate the first integral. Taking vi,R = vi(x)− vi(R) , one can derive that

v
n

n−1
i (x) � (1+ δ )v

n
n−1
i,R +Cδ v

n
n−1
i (R)

for each δ > 0 and vi,R ∈W 1,n
0 (WR) . Furthermore, the Hölder inequality implies

∫
WR

eλn,ε sv
n

n−1
i (x)dx �

(∫
WR

eλn,εss1(1+δ )v
n

n−1
i,R (x)dx

) 1
s1
(∫

WR

eλn,ε ss2Cδ v
n

n−1
i (R)dx

) 1
s2

.

Choosing s > 1 and s1 > 1 sufficiently close to 1 and δ > 0 sufficiently small such that

λn,ε(1+δ )ss1 < λn , noting Turdinger-Moser inequality (4), one can see that eλn,ε sv
n/(n−1)
i

is bounded in L1(WR) . We employ this fact, thereby obtaining∫
WR

Φ′(ϑ)sdx � C.

This inequality together with (11) and the fact that vi → uε in Lq
loc(R

n) for any q > 0,
gives

lim
i→∞

∫
WR

Φ(λn,εv
n

n−1
i )dx =

∫
WR

Φ(λn,εu
n

n−1
ε )dx.
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Combining now (8) and (10), we obtain

lim
i→∞

FTMε(vi) = FTMε (uε) = sup
u∈ℑ,‖u‖F,n,γ,p�1

FTMε(u).

It is easy to check that uε �≡ 0. Also, we must have ‖uε‖F,n,γ,p = 1. Suppose this is not
true. That is, 0 < ‖uε‖F,n,γ,p < 1. It follows that

FTMε (uε/‖uε‖F,n,γ,p) > FTMε(uε) = sup
u∈ℑ,‖u‖F,n,γ,p�1

FTMε(u),

which is impossible. Moreover, by a straightforward calculation, we derive the Euler-
Lagrange equation of uε as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Qnuε = u
1

n−1
ε
αε

Φ′(λn,εu
n

n−1
ε )−un−1

ε + γ‖uε‖n−p
p up−1

ε in R
n,

uε � 0, ‖uε‖F,n,γ,p = 1 in R
n,

αε =
∫
Rn u

n
n−1
ε Φ′(λn,εu

n
n−1
ε )dx,

(13)

where Qnu = ∑n
j=1

∂
∂x j

(Fn−1(∇u)Fξ j
(∇u)) is a Finsler Laplacian operator. Applying

the standard elliptic estimate to (13), we have uε ∈C1(Rn) . This completes the proof
of the lemma. �

5. Blow-up analysis

In this section, we use the method of blow-up analysis to describe the asymptotic
behavior of the maximizers uε , the proof is inspired by the works [4, 5, 7, 15, 17, 20].

We now assert that
liminf

ε→0
αε > 0.

To see this, assume by contradiction that αε → 0 as ε → 0. By the inequality Φ(t) �
tΦ′(t) for t � 0, we have∫

Rn
Φ(λn,εu

n
n−1
ε )dx � λn,ε

∫
Rn

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx. (14)

But we deduce upon sending ε → 0 in (14) that FTMε (uε) = 0. It is impossible.
Recalling ‖uε‖F,n,p,γ = 1, we thereby obtain uε is bounded in W 1,n(Rn) . We may

assume uε ⇀ u0 weakly in W 1,n(Rn) , uε → u0 strongly in Lq
loc(R

n) for q > 1. In
particular, it is worth remarking that uε converges strongly to u0 in Ls(Rn) for s � n .
In fact, let η1 ∈C∞

0 (Rn, [0,1]) such that |∇η1| � C/R and

η1(x) =

{
0, if x ∈ WR,

1, if x ∈ R
n \W2R.
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Multiply (13) by η1uε and integrate on R
n to obtain∫

Rn
Fn(∇uε)η1dx+

∫
Rn

uεF
n−1(∇uε )Fξ (∇uε )∇η1dx+

∫
Rn

η1u
n
εdx

=
1

αε

∫
Rn

Φ′(λn,εu
n

n−1
ε )η1u

n
n−1
ε dx+ γ‖uε‖n−p

p

∫
Rn

η1u
p
ε dx. (15)

Since uε ∈ ℑ , one has

∫
W c

R

u
n

n−1 ( j+1)
ε dx � κn(n−1)

j +2−n

C
n

n−1 ( j+1)
n,γ

R
n

n−1 ( j+1)−n
� C

R

thanks to (9), for x∈W c
R , j � n−1 and R > 1. Noting also that ∑∞

j=n−1
λ j

n,ε
j! converges,

we find ∫
Rn

η1u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx �

∞

∑
j=n−1

λ j
n,ε

j!

∫
W c

R

u
n( j+1)
n−1

ε dx � C
R

.

We use the Hölder inequality to discover that∫
Rn

uεF
n−1(∇uε)Fξ (∇uε)∇η1dx � C

R
‖F(∇uε)‖n−1

n ‖uε‖n
n � C

R
.

Also

‖uε‖n−p
p

∫
Rn

η1u
p
ε dx � C

Rp−n .

Inserting the above estimates into (15), we have∫
W c

R

un
εdx � C

R
+

C
Rp−n .

Thus we find that for any ν > 0, there exists R1 > 0 sufficiently large such that∫
W c

R1

un
εdx � ν

3
.

By the absolute integrability of u0 , there exists R2 > 0, satisfying∫
W c

R2

un
0dx � ν

3
.

Choosing R0 = max{R1,R2} , we have∫
W c

R0

|un
ε −un

0|dx <
ν
3

.

Therefore
lim
ε→0

∫
Rn

un
εdx =

∫
Rn

un
0dx.



480 X. SU, X. LI, R. XIE AND M. QU

In addition, for s > n , taking R3 > 0, such that uε < 1 if Fo(x) > R3 , then we have∫
W c

R̃
us

εdx �
∫
W c

R̃
un

εdx where R̃ = max{R1,R3} . Similarly as above, we get for s > n ,

uε converges strongly to u0 in Ls(Rn) .
Denote

cε = uε(0) = max
x∈Rn

uε(x).

For the remainder of this section, we will suppose that cε → +∞ as ε → 0. Along this
way we will need the following result.

LEMMA 2. Let cε → +∞ as ε → 0 . Then uε has two elementary properties: (i)
u0 ≡ 0 ; (ii) Fn(∇uε)dx ⇀ δ0 weakly in the sense of measure, δ0 denoting the Dirac
measure on giving unit mass to the point 0 .

Proof. Assume the result (ii) does not hold. Then there exists R > 0 such that

limsup
ε→0

∫
WR

Fn(∇uε)dx < 1− μ

for 0 < μ < 1. We set uε(x) = uε(x)−uε(R) for x ∈ WR and thus uε(x) ∈W 1,n
0 (WR) .

Accordingly ‖F(∇uε )‖n
Ln(WR) = ‖F(∇uε)‖n

Ln(WR) < 1− μ . Recall the fundamental in-

equality (12), we have by the Hölder inequality

∫
WR

⎛⎝u
1

n−1
ε Φ′(λn,εu

n
n−1
ε )

αε

⎞⎠s

dx � 1
αs

ε

∫
WR

(
u

s
n−1
ε Φ′(λn,εsu

n
n−1
ε )

)
dx

� 1
αs

ε

(∫
WR

u
ss1
n−1
ε dx

) 1
s1
(∫

WR

Φ′(λn,εss2u
n

n−1
ε )dx

) 1
s2

� 1
αs

ε

(∫
WR

u
ss1
n−1
ε dx

) 1
s1
(∫

WR

eλn,εss2u
n

n−1
ε dx

) 1
s2

, (16)

where s,s1,s2 > 1 and 1
s1

+ 1
s2

= 1. Meanwhile, for any ν > 0, there exists some
constant C0 depending on n and ν , such that for all x ∈ WR ,

u
n

n−1
ε � (1+ ν)u

n
n−1
ε +C0u

n
n−1
ε (R) � (1+ ν)u

n
n−1
ε +CR

n
n−1 . (17)

Here we used (9). Choosing ν > 0 sufficiently small and s,s2 > 1 sufficiently close to
1, such that

ss2(1+ ν)‖F(∇uε)‖
n

n−1
Ln(WR) < 1.

Inserting (17) into (16), and noting that uε is bounded in Lq(WR) for q > 1, one can
see from (2) that ∫

WR

(
α−1

ε u
1

n−1
ε Φ′(λn,εu

n
n−1
ε )

)s

dx � C (18)
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for some s > 1. Also ‖uε‖n−p
p up−1

ε is bounded in L
p

p−1 (WR) . Applying the standard
elliptic estimate to (13), we get uε is uniformly bounded in WR/2 . This result contra-
dicts cε → +∞ as ε → 0. This confirms that Fn(∇uε )dx ⇀ δ0 weakly in the sense of
measure.

Now according to ‖uε‖F,n,γ,p = 1 and Fn(∇uε)dx ⇀ δ0 , we get
∫
Rn un

εdx = oε(1) ,∫
Rn up

ε dx = oε(1) for 0 < γ < γ1 . Then we have∫
Rn

un
0dx � limsup

ε→0

∫
Rn

un
εdx = 0.

It follows that u0 ≡ 0. �

LEMMA 3. Let rn
ε = αεc

− n
n−1

ε e−λn,εc
n

n−1
ε . Then for any σ < λn

n , we have

lim
ε→0

rn
ε enσc

n
n−1
ε = 0.

Proof. By definition of rε , we obtain

rn
ε enσc

n
n−1
ε =

e(nσ−λn,ε)c
n

n−1
ε

c
n

n−1
ε

∫
Rn

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx. (19)

Note that, for any R > 0

∫
W c

R

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx =

∞

∑
j=n−1

λ j
n,ε
j!

∫
W c

R

u
n( j+1)
n−1

ε dx � C(R),

and therefore

lim
ε→0

e(nσ−λn,ε)c
n

n−1
ε

c
n

n−1
ε

∫
W c

R

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx = 0. (20)

On the other hand, using the fact

−(λn,ε −nσ)c
n

n−1
ε � −(λn,ε −nσ)u

n
n−1
ε

and proving in a similar manner as in (18), we get

e(nσ−λn,ε)c
n

n−1
ε

∫
WR

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx �

∫
WR

u
n

n−1
ε enσu

n
n−1
ε dx � C(R)

and thus

lim
ε→0

e(nσ−λn,ε)c
n

n−1
ε

c
n

n−1
ε

∫
WR

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx = 0. (21)

The desire result follows from (19)–(21). �
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In order to derive the asymptotic of uε near the blow-up point, we first define

vε(x) = c−1
ε uε(rεx) (22)

and

wε (x) = c
1

n−1
ε (uε(rεx)− cε). (23)

LEMMA 4. Suppose vε(x) and wε(x) be defined as in (22) and (23). Then vε (x)→
1 in C1

loc(R
n) and wε (x) → w0(x) in C1

loc(R
n) . Moreover, w0 satisfies

−Qnw0(x) = e
n

n−1 λnw0 in R
n (24)

in the distributional sense.

Proof. For equation (13), we can compute

−Qnvε = c−n
ε e−λn,εc

n
n−1
ε v

1
n−1
ε Φ′(λn,εu

n
n−1
ε (rεx))− rn

εv
n−1
ε + γcp−n

ε rn
ε‖uε‖n−p

p vp−1
ε (25)

and

−Qnwε = e−λn,εc
n

n−1
ε v

1
n−1
ε Φ′(λn,εu

n
n−1
ε (rεx))− rn

εc
n
εv

n−1
ε + γcp

ε rn
ε‖uε‖n−p

p vp−1
ε . (26)

Utilizing the fact |vε | � 1 and the decay estimate of rε , we infer that∥∥cp
ε rn

ε‖uε‖n−p
p vp−1

ε
∥∥

L
p

p−1 (Rn)
= cεr

n
p

ε ‖uε‖n−1
p = oε(1).

In addition,

hε(x) : = c−n
ε v

1
n−1
ε e−λn,εc

n
n−1
ε Φ′(λn,εu

n
n−1
ε (rεx))

= c−n
ε v

1
n−1
ε eλn,ε (u

n
n−1
ε (rε x)−c

n
n−1
ε )− c−n

ε v
1

n−1
ε e−λn,εc

n
n−1
ε

n−2

∑
j=0

λ j
n,εu

jn
n−1
ε (rεx)
j!

.

It follows that hε(x) is uniformly bounded in L∞(WR) for fixed R > 0. We can apply
Theorem 1 in [13] to equation (25) and hence infer vε → v0 in C1

loc(R
n) , here v0

satisfies
−Qnv0 = 0 in R

n.

Since v0(0) = 1, the Liouville theorem leads to v0 ≡ 1 in R
n .

For simplicity, all terms on the right side of (26) are marked as gε(x) . Clearly,
gε(x) is bounded in Lq(WR) for some q > 1. Also −wε � 0, so that by Theorems 6
and 8 in [12], we can obtain wε is uniformly bounded in WR/2 and consequently we
have −Qnwε = O(1) in WR . Then Theorem 1 in [13] together with Ascoli-Arzele’s
theorem implies there exists w0 , such that wε → w0 in C1

loc(R
n) . A direct computation

similar as [4], the details of which we omit, verifies

v
1

n−1
ε e−λn,ε c

n
n−1
ε Φ′(λn,εu

n
n−1
ε (rεx)) = (1+oε(1))e

n
n−1 λnw0 +oε(1).
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Also we have rn
εc

n
εv

n−1
ε = oε(1) and cp

ε rn
ε‖uε‖n−p

p vp−1
ε = oε(1) . Therefore w0 satisfies

(24) with w0(0) = 0 = max
x∈Rn

wε (x) . �

We can proceed as in [20] that

w0(x) = −n−1
λn

log(1+ κ
1

n−1
n Fo(x)

n
n−1 ).

Integration by parts, we obtain∫
Rn

eλn
n

n−1 w0dx = nκn

∫ ∞

0

rn−1(
1+ κ

1
n−1
n r

n
n−1
)n dr = 1. (27)

Next we shall be concerned with the convergence of uε away from 0. Following
[5], define

uε,β = min{uε ,βcε}.
Then we establish the following result.

LEMMA 5. For each 0 < β < 1 , there holds

lim
ε→0

‖F(∇uε,β )‖n
F,n,γ,p = β .

Proof. Since

|{x|uε � βcε}|(βcε)n �
∫

uε�β cε
un

εdx � γ1

γ1 − γ
,

then we can choose a sequence ρε which converges zero such that {x|uε � βcε} ⊂
W ρε . We have first, by the fact uε converges in Lq

loc(R
n) for q > 1

lim
ε→0

∫
uε�β cε

uq
ε,β dx � lim

ε→0

∫
uε�β cε

uq
εdx = 0 (28)

and secondly,

lim
ε→0

∫
Rn

uq
ε(uε −βcε)+dx = 0. (29)

Now we multiply (13) by (uε −βcε)+ and take the integral over all x ∈ R
n∫

Rn
Fn(∇(uε −βcε)+)dx

= −
∫

Rn
un−1

ε (uε −βcε)+dx+ γ‖uε‖n−p
p

∫
Rn

up−1
ε (uε −βcε)+dx

+
∫

Rn

u
1

n−1
ε (uε −βcε)+

αε
Φ′(λn,εu

n
n−1
ε )dx

�
∫

WRε

u
1

n−1
ε (uε −βcε)+

αε
Φ′(λn,εu

n
n−1
ε )dx+oε(1)

= (1+oε(1))(1−β )
∫
WR

eλn,ε(u
n

n−1
ε (rε y)−c

n
n−1
ε )dy+oε(1),
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according to (28) and (29). Sending ε → 0 first and then R → +∞ shows that

liminf
ε→0

∫
Rn

Fn(∇(uε −βcε)+)dx � 1−β . (30)

We choose uε,β as a test function being computed as in the proof of (30) and obtain

liminf
ε→0

∫
Rn

Fn(∇uε,β )dx � β . (31)

Noting that∫
Rn

Fn(∇uε,β )dx+
∫

Rn
Fn(∇(uε −βcε)+)dx =

∫
Rn

Fn(∇uε)dx = 1+oε(1) (32)

Combining (30)–(32), we get the result as desired. �

LEMMA 6. Let cε → +∞ , then

lim
ε→0

∫
Rn

Φ(λn,εu
n

n−1
ε )dx = limsup

ε→0

αε

c
n

n−1
ε

and consequently αε/cε → +∞ as ε → 0 .

Proof. Since Φ′(t) = tn−1

(n−1)! + Φ(t) , we have

αε =
∫

Rn
u

n
n−1
ε Φ(λn,εu

n
n−1
ε )dx+

λ n−1
n,ε

(n−1)!

∫
Rn

u
n2

n−1
ε dx

� c
n

n−1
ε

∫
Rn

Φ(λn,εu
n

n−1
ε )dx+oε(1)

and therefore

limsup
ε→0

αε

c
n

n−1
ε

� lim
ε→0

∫
Rn

Φ(λn,εu
n

n−1
ε )dx. (33)

By Lemma 2 and Lemma 5, we have limsupε→0
∫
Rn(Fn(∇uε,β )+un

ε,β )dx = β . Using
the mean value theorem and the Hölder inequality, we first note that∫

uε�β cε
Φ(λn,εu

n
n−1
ε )dx � λn,ε

∫
Rn

u
n

n−1
ε,β Φ′(λn,εu

n
n−1
ε,β )dx

= λn,ε

∫
Rn

u
n

n−1
ε,β Φ(λn,εu

n
n−1
ε,β )dx+oε(1)

� λn,ε

(∫
Rn

u
np1
n−1
ε,β dx

) 1
p1
(∫

Rn
Φ(λn,ε p2u

n
n−1
ε,β )dx

) 1
p2

+oε(1)

� λn,ε

(∫
Rn

u
np1
n−1
ε,β dx

) 1
p1
(∫

Rn
Ψ(λn,ε p2u

n
n−1
ε,β )dx

) 1
p2

+oε(1).
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Let 1 < p2 < 1
β and 1

p1
+ 1

p2
= 1. According (3) and the estimate∫
Rn

uq
ε,β dx �

∫
Rn

uq
εdx = oε(1)

for q > 1. Thus we may continue to write∫
uε�β cε

Φ(λn,εu
n

n−1
ε )dx = oε(1). (34)

On the other hand, we have∫
uε>β cε

Φ(λn,εu
n

n−1
ε )dx � 1

(βcε)
n

n−1

∫
uε>β cε

u
n

n−1
ε Φ(λn,εu

n
n−1
ε )dx

=
1

(βcε)
n

n−1

(∫
uε>β cε

u
n

n−1
ε Φ′(λn,εu

n
n−1
ε )dx+oε(1)

)
=

αε

(βcε)
n

n−1
+oε(1). (35)

Thus (34) and (35) imply

lim
ε→0

∫
Rn

Φ(λn,εu
n

n−1
ε )dx � limsup

ε→0

αε

(βcε )
n

n−1
.

Let β → 1. This inequality and (33) complete the proof.
If αε/cε is bounded. Then there exists some constant C > 0 such that αε/cε �C .

Consequently, we yield αε
cn/(n−1)

ε
→ 0 which leads to the following contradiction

lim
ε→0

∫
Rn

Φ(λn,εu
n

n−1
ε )dx = 0

and so the second assertion of the lemma follows. �
There is no problem in showing that for any ϕ(x) ∈C∞

0 (Rn)

lim
ε→0

∫
Rn

cεu
1

n−1
ε

αε
Φ′(λn,εu

n
n−1
ε )ϕ(x)dx = ϕ(0). (36)

The reader can see [20] for more details. We turn our attention next to the properties of

function sequence c
1

n−1
ε uε .

LEMMA 7. c
1

n−1
ε uε → G in C1

loc(R
n \ {0}) and weakly in W 1,q(Rn) for any 1 <

q < n, where G is a distributional solution to

−QnG = δ0 −Gn−1 + γ‖G‖n−p
p Gp−1. (37)

Moreover, G ∈W 1,n(Rn \Wr) for any r > 0 and G takes the form

G = − n
λn

logr+CG +or(1),

where CG is a constant and r = Fo(x) .
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Proof. Multiplying both sides of (13) by cε , we find

−Qn(c
1

n−1
ε uε) =

cεu
1

n−1
ε

αε
Φ′(λn,εu

n
n−1
ε )− (c

1
n−1
ε uε)n−1 + γ‖c

1
n−1
ε uε‖n−p

p (c
1

n−1
ε uε)p−1.

(38)

For convenience in writing, we set ρε = c
1

n−1
ε uε . Then we can rewrite (38) in the form

−Qnρε =
cεu

1
n−1
ε

αε
Φ′(λn,εu

n
n−1
ε )−ρn−1

ε + γ‖ρε‖n−p
p ρ p−1

ε . (39)

We now claim that ‖ρε‖p is bounded. Suppose this is not true; that is, ‖ρε‖p → ∞
as ε → 0. Writing ρ̃ε = ρε

‖ρε‖p
, we have ‖ρ̃ε‖p = 1 and also obtain from (39) that ρ̃ε

satisfies

−Qnρ̃ε =
cεu

1
n−1
ε Φ′(λn,εu

n
n−1
ε )

αε‖ρε‖n−1
p

− ρ̃n−1
ε + γρ̃ p−1

ε (40)

which together with (36) implies that −Qnρ̃ε is bound in L1
loc(R

n) . As a similar

progress of Lemma 4.6 in [20], we conclude that ρ̃ε is bound in W 1,q
loc (Rn) for 1 <

q < n . Assume ρ̃ε ⇀ ρ0 weakly in W 1,q
loc (Rn) . Testing (40) with φ ∈ C∞

0 (Rn) and
letting ε → 0, we obtain∫

Rn
Fn−1(∇ρ0)Fξ (∇ρ0)∇φdx = −

∫
Rn

ρn−1
0 φdx+ γ

∫
Rn

ρ p−1
0 φdx,

which forces ρ0 = 0 since 0 < γ < γ1 . This contradicts to ‖ρ0‖p = 1. Therefore our
claim is proved.

The remaining part of the proof is completely analogous to that of ([20], Lemma
4.6 and Lemma 4.7), we omit the details but refer the reader to [20]. �

We quote the following Carleson-Change’s type estimate, which is shown in [19],
provides the essential step to get an upper bound for FTM . More precisely

LEMMA 8. Let φε ∈W 1,n
0 (W1) with

∫
W1

Fn(∇φε )dx = 1 . Suppose φε ⇀ 0 weakly

in W 1,n
0 (W1) and

∫
W1\Wρ

Fn(∇φε )dx = 0 for 0 < ρ < 1 , then

limsup
ε→0

∫
W1

(eλn|φε |
n

n−1 −1)dx � κne∑n−1
k=1

1
k . (41)

Now by (37), we compute∫
W c

δ

(Fn(∇G)+Gn)dx = − n
λn

logδ +CG + γ‖G‖n
p +oδ(1)

for any fixed δ > 0. Hence we get∫
Wδ

Fn(∇uε)dx = 1− 1

c
n

n−1
ε

(∫
W c

δ

(Fn(∇G)+Gn)dx−
∫
Wδ

Gndx+ γ
(∫

Rn
Gpdx

) n
p
)

= 1−
n

λn
log 1

δ +CG +oδ(1)+oε(1)

c
n

n−1
ε

.
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Here we use ‖uε‖F,n,γ,p = 1. Writing uε = (uε − uε(δ ))+ , then uε ∈ W 1,n
0 (Wδ ) and

uε ⇀ 0 weakly in W 1,n
0 (Wδ ) . Furthermore

τδ :=
∫

Wδ
Fn(∇uε)dx � 1−

n
λn

log 1
δ +CG +oδ(1)+oε(1)

c
n

n−1
ε

. (42)

By Lemma 8, we infer the estimate

limsup
ε→0

∫
Wδ

(eλn(uε/ n√τδ )
n

n−1 −1)dx � κnδ ne∑n−1
k=1

1
k . (43)

Hence by inequality (42)

λn,εu
n

n−1
ε � λn(uε +uε(δ ))

n
n−1

� λnu
n

n−1
ε +

n
n−1

λnuε(δ )u
1

n−1
ε +oε(1)

� λn(uε/ n
√

τδ )
n

n−1 −n logδ + λnCG +o(1)

and owing to (43), we get∫
WRrε

Φ(λn,εu
n

n−1
ε )dx = δ−neλnCG+o(1)

∫
WRrε

(eλn(uε/ n√τδ )
n

n−1 −1)dx+oε(1)

� δ−neλnCG+o(1)
∫

Wδ
(eλn(uε/ n√τδ )

n
n−1 −1)dx+oε(1)

� κne
λnCG+∑n−1

k=1
1
k +o(1) +o(1).

Then

lim
R→∞

lim
ε→0

∫
WRrε

Φ(λn,εu
n

n−1
ε )dx � κne

λnCG+∑n−1
k=1

1
k . (44)

We take a change of variable x = rεy and recall (27), to discover

∫
WRrε

Φ(λn,εu
n

n−1
ε )dx = rn

ε

∫
WR

eλn,ε(u
n

n−1
ε (rεy)−c

n
n−1
ε )dy+oε(1)

=
αε

c
n

n−1
ε

(
∫

WR

eλn
n

n−1 w0dx+oε(1))+oε(1)

=
αε

c
n

n−1
ε

(1+oε(1)+oR(1)).

Due to Lemma 6 and (44), we immediately obtain

FTM = lim
ε→0

∫
Rn

Φ(λn,εu
n

n−1
ε )dx � κne

λnCG+∑n−1
k=1

1
k . (45)
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6. Proof of main Theorems

If cε is a bounded sequence, then applying the standard elliptic estimate to (13),
we derive that uε → u0 in C1

loc(R
n) and∫

Rn
Φ(λn|u0| n

n−1 )dx = lim
ε→0

∫
Rn

Φ(λn,ε |uε | n
n−1 )dx = FTM, (46)

where ‖u0‖F,n,γ,p = 1. Therefore, u0 is an extremal function for FTM .
If cε is not bounded, the blow-up phenomenon occurs. We have got an upper

bound shown in (45), we now construct a family of test function ψε ∈W 1,n(Rn) with
‖ψε‖F,n,γ,p = 1 and ∫

Rn
Φ(λn,ε |ψε | n

n−1 )dx > κne
λnCG+∑n−1

k=1
1
k (47)

provided ε is sufficiently small. Define

ψε(x) =

⎧⎪⎨⎪⎩
c+ c−

1
n−1

(
− n−1

λn
log(1+ κ

1
n−1
n (Fo(x)

ε )
n

n−1 )+b

)
Fo(x) � Lε,

G(Fo(x))

c
1

n−1
Fo(x) > Lε,

where L , b and c are functions of ε to be determined later which satisfy
(i) L → ∞ , c → ∞ and Lε → 0 as ε → 0;

(ii) c+
− n−1

λn
log(1+κ

1
n−1
n L

n
n−1 )+b

c
1

n−1
= G(Lε)

c
1

n−1
;

(iii) logL

c
n2

(n−1)2

→ 0 as ε → 0.

From (ii), we obtain

c
n

n−1 =
1
λn

logκn−b− n
λn

logε +CG +O(L− n
n−1 )+O(Lε). (48)

Next suppose ‖ψε‖F,n,γ,p = 1, we shall verify the relation∫
W c

Lε

(Fn(∇ψε )+ ψn
ε )dx =

1

c
n

n−1

∫
W c

Lε

(Fn(∇G)+ |G|n)dx

=
γ‖G‖n

p +G(Lε)+O(logp (Lε)(Lε)n)+O(log(Lε)n(Lε)n)

c
n

n−1
.

and ∫
W c

Lε

|ψε |pdx =
‖G‖p

p +O(logp (Lε)(Lε)n)

c
p

n−1
.

On the other hand

∫
WLε

Fn(∇ψε )dx =
n−1

λn

⎛⎝ log(1+ κ
1

n−1
n L

n
n−1 )−∑n−1

k=1
1
k +O(L− n

n−1 )

c
n

n−1

⎞⎠ .
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In addition ∫
WLε

|ψε |ndx = O((logε)n−1(Lε)n)

and ∫
WLε

|ψε |pdx = O((logε)
n−1

n p(Lε)n).

Combining the previous estimates, we conclude

‖ψε‖n
F,n,γ,p =

1

c
n

n−1

(
G(Lε)+

n−1
λn

log(1+ κ
1

n−1
n L

n
n−1 )− n−1

λn

n−1

∑
k=1

1
k

+O(ψ1)

)
,

where ψ1 = logp (Lε)(Lε)n + log(Lε)n(Lε)n + logn (Lε)(Lε)
n2
p + (logε)n−1(Lε)n +

(logε)n−1(Lε)
n2
p +L− n

n−1 . Therefore

c
n

n−1 = G(Lε)+
n−1

λn
log(1+ κ

1
n−1
n L

n
n−1 )− n−1

λn

n−1

∑
k=1

1
k

+O(ψ1)

= − n
λn

logε +CG +
1
λn

logκn− n−1
λn

n−1

∑
k=1

1
k

+O(ψ1).

Owing to (48), we deduce

b =
n−1

λn

n−1

∑
k=1

1
k

+O(ψ1).

We then compute

ψ
n

n−1
ε � c

n
n−1

⎛⎝1+
n

n−1

− n−1
λn

log(1+ κ
1

n−1
n (Fo(x)

ε )
n

n−1 )+b

c
n

n−1

⎞⎠
= CG +

1
λn

(
logκn +

n−1

∑
k=1

1
k

)
− n

λn

(
logε + log

(
1+ κ

1
n−1
n

(
Fo(x)

ε

) n
n−1
))

+O(ψ1) (49)

for any x ∈ WLε , and hence∫
WLε

Φ(λnψ
n

n−1
ε )dx �

∫
WLε

eλnψ
n

n−1
ε dx+O(cn(Lε)n)

� κnε−neλnCG+∑n−1
k=1

1
k +O(ψ1)

∫
WLε

1(
1+ κ

1
n−1
n (Fo(x)

ε )
n

n−1
)n dx+O(cn(Lε)n)

� κne
λnCG+∑n−1

k−1
1
k +O(ψ1)+O(cn(Lε)n)+O(L− n

n−1 ). (50)
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On the other hand, we have∫
Rn\WLε

Φ(λnψ
n

n−1
ε )dx � λ n

n

n!c
n2

(n−1)2

(∫
Rn

G
n2

n−1 dx+oε(1)
)

.

Owing to (50), we deduce∫
Rn

Φ(λnψ
n

n−1
ε )dx � κne

λnCG+∑n−1
k=1

1
k +

λ n
n

n!c
n2

(n−1)2

(∫
Rn

G
n2

n−1 dx+oε(1)
)

+O(ψ1)+O(cn(Lε)n)+O(L− n
n−1 ).

We now set
L = (− logε)2,

so that L− n
n−1 = o(c

− n2

(n−1)2 ) , cn(Lε)n = o(c
− n2

(n−1)2 ) and ψ1 = o(c
− n2

(n−1)2 ) . We then
obtain the inequality (47) and infer that cε must be bounded. The blow-up phenomenon
in fact does not happen; whence the desired equality (46) holds, we finish the proof of
point (5) of Thoerem 1 and Theorem 2.
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