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REMARKS ON EXTREMAL FUNCTIONS FOR THE ANISOTROPIC
TRUDINGER-MOSER INEQUALITIES INVOLVING L? NORM

XIANFENG SU, XIAOMENG L1*, RULONG XIE AND MENG Qu

(Communicated by I. Peric)

Abstract. Let W'(R") (n >2) be the standard Sobolev space, and denote, for p > n

. Jio (" () + ")
ueWLn(Rm), u0 (fJR” ‘u‘l’dx)ﬁ

where F:R" — [0, ) be a convex function of class C%(R”\{0}), which is even and positively
homogeneous of degree 1. For v € [0,71), we define a norm in W'/ (R") by

1
lullrnyp = </R (F"(Vu) + \u\”)dxfy(/Rn |ul? dx) ;)

By performing a blow-up analysis, we prove that for real numbers 0 <y <7 and p > n, the
following anisotropic Trudinger-Moser inequality

sup /Ql\unl

ueWln(R1), |lul|fpn, yp<l

can be attained by some function ug € W (R") with [|u[|pn,y,, = 1, where ®(t) = ¢’ —

1
Z;’ é ’j, R . k' and K, is the volume of the unit Wulff ball. In the case y=0, this is
reduced to a result of Zhou-Zhou [19].

1. Introduction

Let n > 2 and Q C R” be a smooth bounded domain. We denote WO1 "(Q) the
closure of Ci’ () under the norm ||u||W1§n( =(Jo |Vu|”dx)1/n. The Sobolev embed-
0

ding theorem asserts that WOl "(Q) < L4(Q) is continuous for all 1 < g < eo. But the
embedding is not valid for g = <. In this case, the classical Trudinger-Moser inequality
[18, 10,9, 11, 8] claims that

sup /eo““‘mdx<oo (D)
UEWS(Q), fo [Vuprdx<1
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e
for any a < o, = na)n"ji , where @, _1 is the measure of the unit ball in R". The in-

equality (1) is sharp: for any growth " ith o > 0, , the supremum is infinity.

Moreover, when o < @, the supremum can be attained by some u & WO1 ’"(Q) with
Jo IVu|"dx =1, see also [2, 3, 6].

Due to wide range of applications in geometric analysis and partial differential
equations, the Trudinger-Moser inequality (1) has been generalized in various ways.
Recently, one interesting extension of (1) is the so-called anisotropic Trudinger-Moser
inequality, which was originally established by Wang-Xia [14]. Let F : R" — [0,0) be
a convex function of class C?(R"\{0}), which is even and positively homogeneous of
degree 1. They obtained that the supremum

o Jo ax < @)
”eWol"n(Q)JgF"(Vu)dxgl Q

1
for A <A, = niT K,,m , here K, is the volume of the unit Wulff ball in R”. Moreover,
the constant A, is optical in the sense that when A > A,,, we can find a sequence vy
such that [, Al g diverges. For the attainability of the supremum in (2), this
has been done by Zhou-Zhou [19]. Recently, they also extended (2) to the unbounded
domain in [20], which can be described as follows

sup W (Aue| 7T )dx < oo, 3)
ueW (R, fn (F' (Vi) +|ul")dx<1 7 R"

where W(r) = ¢ — 2’;;3 3—],, and the supremum can be attained by some function u €
WL (R") with [p. (F"(Vu)+ [u|")dx = 1. Liu [7] obtained the extremal functions for
an improved Trudinger-Moser inequality on a smooth bounded domain. More precisely,

we denote a norm in Wy, " (Q)

n

el = ( [, #*Vuds—cluly

[E (Vi) [

(lull;

forp>land 0<7< inf . Then there holds

uEW, ™ (Q),uz£0

M gy < oo €]
Q

sup
ueWy " (), ulp<1

and the supremum in (4) can be attained.
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2. Main results

In this note, we will consider possible extensions of the anisotropic Trudinger-
Moser inequality involving L” norm for the unbound domain in R”, and complement
the main results in [7, 20]. For any u € W1" (R") and p > n, denote

7= inf Jpn (F (W)Huj Jax
uEWIR (R0 ([ |ulPdx)P

For 0 < A < A,, we define

o= ( [ V) e | |u|pdx);)%

Our first result can be stated as follows:

THEOREM 1. Let n>2, p>nand 0 <y <. Then
(1) For any 0 <y < v, there holds

sup DA |u|mT)dx < oo (5)

Mer.n(Rn)’ HMHF,nA,y#pgl R”

(2) For any A > Ay, the supremum infinity, i.e.

sup DA |u|mT)dx = oo,
ueWLn (), ul| g p<t /R
where
n—1 tj
_ ot
j=07"

As an immediate consequence of the preceding theorem, we have

COROLLARY 1. Forany 0 <7y <71, we have

sup W (A |u| 7T )dix < oo, (6)

UEW L (RM),[ul| g p <1 /R

where W(t) =¢' — ?;é ’/—’,

For the existence of extremals for (5), we have the following:

THEOREM 2. Letn>2, p>n, forany 0 <y <7, there exists ug € W' (R") N
CH(R") ny,p = 1 such that

/@(Aﬂudﬁ)dx— sup /d>7L|u|nl)
Rn <1

MEWI n(Rn Hu ‘Fn VAR
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‘We mention that Corollary 1 fully extends [20, Theorem 1.2] and [7, Theorem 1.1]
for the entire space, while Theorem 2 partially extends [7, Theorem 1.2] because here
we study the modified function ®(¢) which is obtained for ¥(¢) by subtracting the
term corresponding to the L" norm. This helps us to yield the compactness necessary
to prove the attainability of the superemum in (5).

Here and throughout this note, let us now denote F°(x) is the polar function of
F(x). Actually, F°(x) is dual to F in the sense that

0(x) x, &) o) = x, &)
e )_gef@{){m &)’ Fi) 56%35{0}}70(&).

We use the notation %), := {x € R" : F°(x) < p} to represent a Wulff ball of radius p
with the center at O and the same letter C to denote constants.

Recall that, for a measurable function u on Q C R”", the one-dimensional decreas-
ing rearrangement of u is

w (t)=sup{s > 0:[{x e Q: |u(x)| > s} >t}
for t € R. The convex symmetrization of u with respect to F is defined by
' (x) =uw (K, F°(x)"), xeQ.

Here QF is the homothetic Wulff ball centered at the origin having the same measure
as Q. Other results about convex symmetrization may be found in [1].

The remaining part of this note is organized as follows: In section 3, we prove
point (2) of Theorem 1. We use the blow-up analysis to prove point (1) of Theorem 1
and Theorem 2. In section 4 , we obtain the existence of the subcritical maximizers. In
section 5, we analyze the convergence of maximizers sequence and its blow-up behav-
ior. In section 6, a sequence of functions is constructed to reach a contraction, which
completes the proof of point (1) of Theorem 1 and Theorem 2.

3. Test functions computations

In order to prove point (2) of Theorem 1, we consider the sequence defined, for

keN, as
n—1 . 0 Ly

(logk) =, if 0<F%(x) < %,

1

Ly

— _ log( 4o X ) .
Wk('x) \’Vn_Kn \n/%) , if % gFo(x) <Lk,
0, if F°(x) > Ly,
(logk)ﬁi”

where L; = . Obviously, {w;} C W!*(R") be a sequence consisting of radial

log(logk)
symmetric functions with respect to F°(x) and L; — 0 as k — oo. Moreover, we have
by straightforward calculation

1 Li 1

=— | —dr=1,
logk /b

F"(Vwy)dx
Rn
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and .
—k L' (logk n—1
/W e |"dx = (logk)"*l/o Contgy = Llog"™
Ly

&

Integration by parts, it follows that

Lokl L\
/ wel"dx = & [ <log—k) s
PN 1y logk Jk t
k
L (n—1) g 1,
zlogk e /%log 7S ds+oi(1)

- l(%@ (1 _ i) +or(1) = 0(1).

Similarly, we also yield

ﬂ 1-n
L} (logk) n P L} ! 1
[, el = kj;(‘)g )l L ple) 7 (1——)+0k(1):0k(1).

n)Kg_l (logk)r ~ nP*!

In view of the above estimates, we obtain
Wil yp = 1+ 0k(1).
Considering wx = wi/||wk||Fn,y,p» We have that

N _on_ n—1 A/ ~ nﬁ_l
/ D(A || T )dx >/ Aty AT
R” N j=0 J!

k

KoL

A
> (k(m(n)nl eO(l)+0((logk)n—l)> s

The last term on the right hand side goes to infinity as k — oo, thanks to A > A,,. Thus
point (2) of Theorem 1 is finished.

4. The subcritical functionals

For notation convenience, we set

FTM := sup / D (A |u|i 1)
<1

uew!n Rn HuHFn VAR

and also write
FTM(u / D (A | T)

where A, = A, — € for 0 < € < A,. We have the following lemma.
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LEMMA 1. Let p>n>2, 0<y<7. Then for any 0 < € < A,, there exists
some function ug € WH(R") NCY(R") such that ||ug|Fpyp =1 and

FTMg (ug) == Sup FTMg (u).

ueW L (B, <1

Moreover, ug can be chosen to be nonnegative, radially symmetric and radially de-
creasing with respect to F°(x).

Proof. For any u € W'(R"), let u* be the convex symmetrization of u with
respect to F(x). It is known that ||F(Vu*)||pwny < [|[F (Vi) || mnys 10| mey =
]l L ny > 1" || Lo ey = 2l Lo (ery > and

FTM(u*) > FTM¢(u), @)
On the other hand,

FTM:(u") < sup FTM;(u),
uEW LM (R?), [l nyp<1

which together with (7) implies that
sup FTM;(u) = sup FTM;(u),

uewl‘n(Rn)aHuHF,nA,yA,pgl u€S,[lullFn,y,p<1

where 3 is a set consisting of all nonnegative radially symmetric functions with respect
to F(x). Without of generality, we choose a sequence {v;} C 3 with ||vi||Fnyp=1,
such that
FTM,(v;) — sup FTM;¢(u) as i — oo. (8)
€S, |lullFnyp<1

Since v; is bounded in W' (R"), we can assume up to a subsequence that
v — ue weakly in WH(R"),
vi — ug strongly in Lj (R"), Vs> 1,

v;i — ug a.e.in R".

We can easily get that ue € 3. From the weak convergence of v; in W' (R"), we see
ttel| pnyp < limsup [[villrnyp < 1. Since w € 3, u"(p)[#p| < [y, u'dx < T and

i oo n-v’

” Ju

Ul _ Gy c

u(x) <ulp) < ———= < , XEWS. )

UK p P

In view of (9), we deduce
DAy eunT)dx = i/ )L'{’Su%dx
. P
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Hence we can choose R > 0 sufficiently large such that

D (A en T )dx < v
e

for any v > 0. On the other hand, we have by the mean value theorem

D ev T 1) = Dol 1) = (D) Ao (v T —ul ")
< max{®'(4, ngv" 1),<1)’(An gu;j l)}
><7L,,7g(vl-” T ué’ l),

where ¥ lies between A, gvﬁ

in [16] (Lemma 2. l)ylelds the following estimate: for s > 1, ¢ > 0, there holds
D(1)* < D(st).
It follows that

' (9)'dx < | D (Ayesv) )dx+ @ (A e5u 1)dx
7R 43 43

< / l,l gSV dx—|— 7L,, ;‘;suE dx+C1
VR Tk

</ A”SV dx+C
Wi

We now estimate the first integral. Taking v; g = v;(x) — v;(R), one can derive that

Vi () < (14 8)vik R Cov T (R)

foreach 6 >0 and v;g € WO1 "(#R). Furthermore, the Holder inequality implies

n

4717

(10)

(11)

and A, gug . A simple modification of the argument

12)

1 1
/ ellnswil(x)dxé </ Aness1(1+8)v 1; (x )dx) B (/ elnssuCgv YR )dx> 2 .
Z Tk 7k

Choosing s > 1 and sy > 1 sufficiently close to 1 and & > 0 sufficiently small such

Ang(1+8)ss1 < Ay, noting Turdinger-Moser inequality (4), one can see that enesvi
is bounded in L' (#%). We employ this fact, thereby obtaining

@ (0)'dx < C.
W

that

n/(n—1)

This inequality together with (11) and the fact that v; — u, in LfOC(R") for any ¢ > 0,

gives
lim [ ®(A,ev) " dx—/ DAy e 1

[—o0 Wi
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Combining now (8) and (10), we obtain

Him FTMg(vi) = FTMe(ug) = sup FTMe(u).

e uesﬂHuHF,n#yﬁp<1

It is easy to check that ue # 0. Also, we must have ||ug|f,,y,, = 1. Suppose this is not
ny.p < 1. It follows that

FTMg (ug/”ug”F’n"y’p) > FTMS(MS) - Sup FTMS(M),

”esvHuHF.n‘y‘pgl

which is impossible. Moreover, by a straightforward calculation, we derive the Euler-
Lagrange equation of ug as follows:

1

—Qnue= (e )~ yluefy ™" in R,

Ug > ||ugHanyp—1 in R", (13)
ag :fRn MSTICD/( ngu l)dx,

where Quu=3"_, ax (F" 1(Vu)Fg (Vu)) is a Finsler Laplacian operator. Applying

the standard elliptic estimate to (13), we have u € C'(R"). This completes the proof
of the lemma. [l

5. Blow-up analysis

In this section, we use the method of blow-up analysis to describe the asymptotic
behavior of the maximizers ug, the proof is inspired by the works [4, 5, 7, 15, 17, 20].
We now assert that
liminf o, > 0.
e—0
To see this, assume by contradiction that oz — 0 as € — 0. By the inequality ®(z) <
1®'(r) for t > 0, we have

/ (At T)dx < Ane / WET D (M el T)dx. (14)
Rn R’l

But we deduce upon sending € — 0 in (14) that FTM,(ue) = 0. It is impossible.

Recalling ||ug||Fn,p,y = 1, we thereby obtain u, is bounded in W!"(R"). We may
assume ue — ug weakly in W' (R"), ue — uq strongly in LlOC (R*) for ¢ > 1. In
particular, it is worth remarking that u, converges strongly to ug in L*(R") for s > n.
In fact, let n; € C3'(R",[0,1]) such that [Vn;| < C/R and

0, if xe& ¥k,
ni(x) = .
1, if xeR"\ %k
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Multiply (13) by njue and integrate on R” to obtain

F"(Vug)mdx—I—/ ugF"_l(Vug)Fé(Vug)dex—i—/R Niupdx

479

R’l
1
= — [ el ymul ldx+y||ug||;—1’/ muldsx. (15)

e JR? R

Since ug € 3, one has
at (1)
we j+2—n gixG+)-n = R

thanks to (9), for x € #, j >n—1 and R> 1. Noting also that 2, 1 J, converges,

we find

o lj
/Tllué"q) ne”s d ng/

Jj=n—1
We use the Holder inequality to discover that

C

— C n— n
/nueF” !(Vitg) Fe (Vug) Vinidx < g IEVue)lly el < 7

Also

Juelfy 7 [ i<
Rn

Inserting the above estimates into (15), we have

C C
/ wpdx < —+ .
V3 R Rp—™

Rp—n"

Thus we find that for any v > 0, there exists R; > O sufficiently large such that

/ wpdx <
’WL‘

Ry

w|<

By the absolute integrability of ug, there exists R, > 0, satisfying
v

/ updx < <.

iz 3
Choosing Ry = max{R|,R,}, we have

\%
uy — ugldx < —.
0

Therefore
lim | wupdx= | updx.
e—0 JRn R?
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In addition, for s > n, taking R3 > 0, such that ue < 1 if F?(x) > Rs, then we have
fw uidx < ch u'dx where R = max{R,,R3}. Similarly as above, we get for s > n,

Ug converges strongly to up in L*(R").
Denote
ce = ug(0) = maxug(x).
xeR"?

For the remainder of this section, we will suppose that cg — 4+ as € — 0. Along this
way we will need the following result.

LEMMA 2. Let cg — oo as € — 0. Then ug has two elementary properties: (i)
up = 0; (ii) F"(Vue)dx — 8 weakly in the sense of measure, & denoting the Dirac
measure on giving unit mass to the point 0.

Proof. Assume the result (ii) does not hold. Then there exists R > 0 such that

limsup [ F"(Vug)dx<1—p
£—0 WR

for 0 < g < 1. We set g (x) = ug(x) — ue(R) for x € #5 and thus @ (x) € W, " (#4).
Accordingly HF(Vﬁg)HZ,W%) = HF(V”S)HZ"(WE) < 1 —p. Recall the fundamental in-
equality (12), we have by the Holder inequality

n s

1 1
1 RO 51 n_ 5y
< = (/ ué"dx) l (/ @ (A essoul! )dx) ’
ot \Jr; e
1 1 1
S5 § 52
<= (/ Mé'ldx> 1 (/ elnesszue dx> , (16)
o2 \Jng z

where s,51,50 > 1 and + =~ = 1. Meanwhile, for any v > 0, there exists some
constant Cy depending on n and v, such that for all x € #%,

Wi T < (14 V) T +Coul T(R) < (14 V)il T +CR™T. (17)

Here we used (9). Choosing v > 0 sufficiently small and s,s, > 1 sufficiently close to
1, such that

552 (14 V) |F(VEe) | by < 1.

Inserting (17) into (16), and noting that u, is bounded in LY(#%) for ¢ > 1, one can

see from (2) that
1 n K
/ (a uy 1(I)’(7L,,7£u§’ )) dx<C (18)
&
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for some s > 1. Also ||luglp "ul™ " is bounded in LI’ITI(%) Applying the standard
elliptic estimate to (13), we get ug is uniformly bounded in #% /2~ This result contra-
dicts ¢g — o0 as € — 0. This confirms that F"(Vu,)dx — & weakly in the sense of
measure.

Now according to ||ug||Fn,y,p = 1 and F"(Vug)dx — &, we get [p, updx =o0¢(1),
Jgn b dx = 0g(1) for 0 < y < 7. Then we have

/ updx <limsup | updx=0
n 84}0 Rn

It follows that up =0. [

)1

LEMMA 3. Let ry = Ogce " Te “hnece” . Then for any o < °* l , we have

n

lim rle noci ! =0
e—0

Proof. By definition of r¢, we obtain

n

o nﬁl e(no_zfn,s)csntf T , 1

n _noc,

P1enocE :7/148 @ (A el ")dx. (19)

n—1

Ce

Note that, for any R > 0

-1 < A‘n,é‘ Hl)
[, O e = 3 S [ T dr< c)
”%[\’L‘ (‘

Jj=n—1

and therefore
lim 7/ wl @ (A eul " )dx = 0. (20)
e—0 n—1 W,

On the other hand, using the fact

—(Ane — no)ci ' < — (e — no)ui!

and proving in a similar manner as in (18), we get

e(nc_ln#g)Cgil / I/ng q)/(z{n £u l )d.x < / ugj en(yuéf n—1 dx < C(R)
Y43 W
and thus
e(nofl,,‘g)cg%[ n
lim 7/ T (A eul T)dx = 0. 1)
£—0 Cﬁ Wy

The desire result follows from (19)-(21). [
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In order to derive the asymptotic of u, near the blow-up point, we first define
ve(x) = cg lug (rex) (22)
and
we (x) = e (ue(rex) — ce). (23)

LEMMA 4. Suppose ve(x) and we(x) be defined as in (22) and (23). Then ve(x) —
Lin CL.(R") and we(x) — wo(x) in CL.(R") . Moreover, wy satisfies

— Quwo(x) = em M0 in R” (24)

in the distributional sense.

Proof. For equation (13), we can compute

n
)1

—Quve=c;"e “hnect 1= l(I)'(?Ln eud T (rex)) — rave b yR T lue || PvET ' (25
and

n

-1 Lo A
— Qe = e e lvg’lcl)’(l,, et " (rex)) — racevie "+ yelrk |luelh PvE” L)

Utilizing the fact |v¢| < 1 and the decay estimate of r,, we infer that

1
([ eBrluel 5 PvE~| %(Rn)_cgrg 2 ueln ! = 0e(1).
In addition,
l n
he(x): = c."viTe™ P! d)/(lngug 1(rgx))
1A("L( —— DT = suem (rex)
—anvg T Ane(ug reX)—cCg _cgnvézl ,,gcg Z .

It follows that &g (x) is uniformly bounded in L”(#%) for fixed R > 0. We can apply
Theorem 1 in [13] to equation (25) and hence infer ve — vg in Clloc(R"), here vg
satisfies

—QnV():O in R"™

Since vp(0) = 1, the Liouville theorem leads to vo = 1 in R”.

For simplicity, all terms on the right side of (26) are marked as g¢(x). Clearly,
ge(x) is bounded in LY(#%) for some g > 1. Also —w, > 0, so that by Theorems 6
and 8 in [12], we can obtain we is uniformly bounded in #%/, and consequently we
have —Q,we = O(1) in #k. Then Theorem 1 in [13] together with Ascoli-Arzele’s
theorem implies there exists wo, such that we — wy in CL (R"). A direct computation
similar as [4], the details of which we omit, verifies

1 n n
viTe™ hnecl! O (A el T (rex)) = (14 0£(1))em "0 4 0. (1).
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Also we have r1cv 1 = 0. (1) and c2r||ue| PvE~" = 0¢(1). Therefore wy satisfies

(24) with wp(0) = 0 = maxwg(x).
xeR?
We can proceed as in [20] that

n—1

An

1 n
wo(x) = ————log (1 + K TF(x)i1).

Integration by parts, we obtain

. - !
/ ezmw()dx:n,cn/ — =1 @7
n 0

n

1+ Trt)"
( )

Next we shall be concerned with the convergence of u, away from 0. Following
[5], define

Ugp = min{ug, Bce }.
Then we establish the following result.

LEMMA 5. Foreach 0 < B < 1, there holds
tim (Vi )

Fotp = B.

Proof. Since

n n !
Xlug = PBe ce)' < / ugdx < ,
e > Bec}(Beey < [ < T
then we can choose a sequence p, which converges zero such that {x|us > Bce} C
W pe . We have first, by the fact u, convergesin L (R") for g > 1

loc

lim u? dx < lim uldx=0 28
e-0 ug=>Pee &p e-0 ug=>Pee ¢ ( )

and secondly,

lim ul(ue — Bee)Tdx = 0. (29)
£e—0 JRn

Now we multiply (13) by (e — Bce)t and take the integral over all x € R”

F"(V(ue — Bce)™)dx
Rn

= _/]Rn w1 (ug —ﬁcg)J’dx—l—yHugH;_p/Rn ul ™ (ug — Bee) Tdx

ug " (ug — Bee)™ o
ue (e —Pee)” &' (A eul T)dx
R? O :

n—1I _ + _n_
> / MQ/(M’S%’I )dx+0£(1)
WRe O¢

n

= L+ o)1= B) [ el e Dy o),
R
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according to (28) and (29). Sending € — O first and then R — +eo shows that

liminf [ F"(V(ue — Bce)T)dx > 1. (30)

e—0 JRrn

We choose u, g as a test function being computed as in the proof of (30) and obtain

liminf | F"(Vugg)dx > . 31)
e—0 JRn

Noting that

[ (e )+ /R F(V(ute — Bee) " )dx = /]R F'(Vug)dx=1+0s(1)  (32)
Combining (30)—(32), we get the result as desired. [J

LEMMA 6. Let cg — +oo, then

Ol
lim [ ®(A,eul " )dx = limsup
e—0JRn £—0 el T

and consequently O /ce — +o0 as € — 0.

["l

Proof. Since @' (1) = eI

L +®(r), we have

n n—l n2
O = ufd)(ln_gug Vdx + —— /ué”ldx
R" ’ (n —1)

<l / D(Ap el " Vdx + 0g(1)
Rn

and therefore

limsup —&— < lim | ®(Apeul )dx. (33)

£—0 ng e—0JRn

By Lemma 2 and Lemma 5, we have limsup, o [pa (F" (Vg g) +ul! g)dx = . Using
the mean value theorem and the Holder inequality, we first note that

n— 1 n— l / n— l
/usgﬁ%cp(x ol Ang/ (A eu § )

_;Lng/ = 1c1> Anelt ﬁ)dx+0£( )

N 2\

< e / uy g dx /R" @(lmgpgu&ﬁ Ydx | +oe(l)
€L €1
o\ z

< e (/ gﬁdx) (/ Y( ,,gpzusp) x) +og(1).
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Let 1 <py < % and ﬁ + piz = 1. According (3) and the estimate

/ug.ﬁdng uldx = og(1)

for g > 1. Thus we may continue to write

n

/ DAy el ")dx = 0g(1). (34)
Ms<ﬁ¢'£
On the other hand, we have

N 1 _n_ _n_
DA, culNdx < 7,1/ ul 'O (A, eul " dx
| RO S o AL O

! (0
- )

Thus (34) and (35) imply

2 o,
lim | ®(A,cuf ")dx < limsup ————.

e—0 JRn £—0 (ﬁcg)n—l
Let B — 1. This inequality and (33) complete the proof.

If o /ce is bounded. Then there exists some constant C > 0 such that o /ce < C.

Consequently, we yield % — 0 which leads to the following contradiction

lim [ ®(A,eul ' )dx=0
e—0 JRn

and so the second assertion of the lemma follows. [

There is no problem in showing that for any ¢(x) € C5 (R")

1
ceul !

lim @ (A euZ V) (x)dx = 9(0). (36)
e—0Jrn O '

The reader can see [20] for more details. We turn our attention next to the properties of
1

function sequence ¢} ue .

1

LEMMA 7. ¢f Tuz — G in CL_(R"\ {0}) and weakly in W'4(R") for any 1 <

q < n, where G is a distributional solution to
—0.G=8—-G""+v|G|ly PG 37)
Moreover, G € Wl (R"\ #;) for any r >0 and G takes the form

G= —%logr+CG+o,(l)7

where Cg is a constant and r = F°(x).
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Proof. Multiplying both sides of (13) by c¢, we find

1 celty” 1 L 1 _
— Oulcf Tug) = @' (Aeug 7)) — (e Tue)"™ +YHC Tue|ln P (cd Tue)P ™.
(38)
1

For convenience in writing, we set pe = ¢£~' ue . Then we can rewrite (38) in the form

1
ceul "

O (el ) — i+ Pl Pl (39)

- ane

€

We now claim that [|pg|, is bounded. Suppose this is not true; that is, ||pe||, — oo
as € — 0. Writing pe = H/fs—EHp’ we have ||pe||, = 1 and also obtain from (39) that p,
satisfies 1

~ Ceugjq)/(ln e”g l)

_ans =
el pellp

which together with (36) implies that —(Q,p, is bound in LlOC(R"). As a similar
progress of Lemma 4.6 in [20], we conclude that pe is bound in W, ’q(R") for 1 <

loc
g < n. Assume p; — py weakly in W I(R"). Testing (40) with ¢ € C5(R") and
letting € — 0, we obtain

F* ! (Vpo) P (Vpo)Vodx = — [ piodx+v [ pf o

which forces py =0 since 0 < y < y;. This contradicts to ||po||, = 1. Therefore our
claim is proved.

The remaining part of the proof is completely analogous to that of ([20], Lemma
4.6 and Lemma 4.7), we omit the details but refer the reader to [20]. [

—pr ! (40)

Rr

We quote the following Carleson-Change’s type estimate, which is shown in [19],
provides the essential step to get an upper bound for FTM . More precisely
LEMMA 8. Let ¢, € Wol’"(%) with [, F"(V@e)dx = 1. Suppose ¢ — O weakly
in Wol’"(%) and f%\% F" (Ve )dx =0 for 0 < p < 1, then
limsup [ (191" — 1)dx < Knezz;: z. (41)
e—0 JM
Now by (37), we compute

/W(Fn(vm +G")dx = —+-10g 8 +C + 7G4 05(1)
5 n

for any fixed & > 0. Hence we get

1 n
F"(Vug)dx = 1 — — (/ (F"(VG) + G”)dx—/ G'dx+ y(/ G”dx) ")
% m 6(‘ ’Ws ]Rn

Ce
fnlogé—kCG—Foa(l)—l—og(l)
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Here we use |[ug||Fny,p = 1. Writing Tl = (ug — ue(6))", then @ € WOI’"(%) and
te — 0 weakly in WO1 "(#s) . Furthermore

2 og L 4 Co+0g(1) +0e(1
T ::/ F"(Viig)dx < 1 — 2220 os+odl) (42)
” =

n—1

By Lemma 8, we infer the estimate

limsup (el”(ﬁ‘g/w)m —1dx < Kn5"ezln(;: 3 (43)
£e—0 Wy

Hence by inequality (42)

—

< B B o)
=
< T/ YT5) 7"~ nlog + AnCo +o(1)

and owing to (43), we get

®(ln7gu‘§’+l )dx = 67"e’1”CG+”(1)/ (e’l”(ﬁs/V%)m — 1)dx+og(1)

WRre WRre

< 6_ne}L,1CG+0(1)/ (eln(ﬁs/(l/ﬁ)"nj — 1)dx+0£(l)
Vs

n—1 1
< Kne)l,nCG-‘er:l F+0(1)+0(1).

Then
_n_ n—11
lim lim DAy eul " )dx < KMo R 7 (44)
R—o0e—0 %rg

We take a change of variable x = r.y and recall (27), to discover

n n

DAy el " )dx = 11 / el e =el gy 4o (1)
V/Rrg Wi

= 2 (], Midtoc(1) +oe(1)
R

= % (11 0(1) +0g(1)).

n—1

Ce

Due to Lemma 6 and (44), we immediately obtain

FTM = liII(l) DAy eus )dx < Koo £ 45
e—0 JRrn
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6. Proof of main Theorems

If c¢¢ is a bounded sequence, then applying the standard elliptic estimate to (13),
we derive that ug — ug in C} .(R") and

/ D (A uto| ™7 )dx = lim / D(Ape|ue |77 )dx = FTM, (46)
R e—0 JRn :

where ||uo||Fn,y,p = 1. Therefore, ug is an extremal function for FTM.

If c¢ is not bounded, the blow-up phenomenon occurs. We have got an upper
bound shown in (45), we now construct a family of test function y, € W!(R") with
IWellFnyp =1 and

/ D (M | We| 7T )dx > i Co T T 47)
Rn

provided ¢ is sufficiently small. Define

L 0 n
e () s
V/S X)= 0

G(F 1(x)) F°(x) > Le,

cn—1

where L, b and c are functions of € to be determined later which satisfy
(i) L—oo,c—oand Le —0as € —0;
1 n
. —iljog (141 TL=T)4+b (1
(11) c+ Ay T = ( 18)
en-T en-T
(i) %% —0ase—0.
=17 .
From (ii), we obtain

b}

.1 }
it = —logky — b — —~loge +Cg + O(L™m1) + O(Le). 48)

An An

Fny,p = 1, we shall verify the relation

Next suppose || e

[ E e+ =— [ (F(V6)+(GI)as

. cn—1
B ;/||G||?, +G(Le) + O(log? (Le)(Le)") + O(log (Le)" (Le)")
cn—1
and
[ v = 10O o))
LCE cn—1
On the other hand

1
—1 (log(1+xi "LiT) =S | 1 +O(L 7T
F' (Ve )dx = g( )= Ti51§+O0L7"T)
Vie A cinT
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In addition
| lwelax=o((toge) ! zey)
WLe
and
[ lwelrdx=o((loge) "+ (Le)").
Ve

Combining the previous estimates, we conclude

1 n—1 o,
[ WellF . TP tl (G(L£)+ 7 log(1+ Kk 'La-T) — :
n

where i = log? (Le)(Le) + log (Le)"(Le)" + log" (Le)(Le) 7 + (loge)™ ! (Le)" +
(loge)"~(Le) 7 + L™ T . Therefore

n 1
il = G(L£)+n 10g(1+K" L)

A
= M ogetCot logk —n;il+0( )
T, BETROT R T T A O

Owing to (48), we deduce

n—1 1
b= ~+0
A’n = k+ (Vll)
We then compute
n . n =% log(1+;<,,l (@it 4+p
vl et [ 14 - ;
n—1 cin-T
1 nlq n 1 (Fo(x) =
:CG+/l_n <logKn+k§1%> s (log£+log <1+K’n ! ( - )
+0(y1) (49)

for any x € #7¢, and hence

DAyl T )dx > / AV dx o O(c"(Le)")

Ve

> Kne_"eA"CGJ”Z'é;f%JFO(WI)/ - ! dx+0(c"(Le)")
Wie (1 +KF(FUE(X))’:_1)’1

> 1,CH I 4 O(y) + O(c"(Le)") + O(L™7T). (50)

Ve
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On the other hand, we have

_n_ A 22
/ Oy x> — 11 (/ Gnldx—i—og(l)) :
IRH\WLS " vl n
nlc -1
Owing to (50), we deduce
n 2.C, n—11 A,n n2
/ QA pi )dx > 1Mtk ( Gnldx—i—og(l))
R» "72 Rn
nlc-1)
+0(y1) +O(c"(Le)") + O(L™7T).
We now set
L= (_ 10g8)2v
2 2 2

n n n

so that L™#1T =o(c =17), "(Le)* =o(c 7)) and y; = o(c 7). We then
obtain the inequality (47) and infer that ¢, must be bounded. The blow-up phenomenon
in fact does not happen; whence the desired equality (46) holds, we finish the proof of
point (5) of Thoerem 1 and Theorem 2.

Acknowledgements. This work was supported by the National Natural Science

Foundation of China (12201234), the Natural Science Foundation of Anhui Province of
China (2008085MAOQ7), the Natural Science Foundation of the Education Department
of Anhui Province of China (2024 AHO051344) and the Foundation of Chaohu University
(kj22zdjsxk01, KYQD-2025024).

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

REFERENCES

A. ALVINO, V. FERONE, G. TROMBETTI, P. L. LIONS, Convex symmetrization and applications,
Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 2 (1997), 275-293.

L. CARLESON, A. CHANG, On the existence of an extremal function for an inequality of J. Moser,
Bull. Sci. Math., 110, 2 (1986), 113-127.

M. FLUCHER, Extremal functions for Trudinger-Moser inequality in 2 dimensions, Comment. Math.
Helv. 67, 1 (1992), 471-497.

X. L1, Y. YANG, Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean
space, Journal of Differential Equations, 264, 8 (2018), 4901-4943.

Y. L1, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial
Differential Equations, 14, 2 (2001), 163-192.

K. LIN, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc. 348, (1996), 2663—-2671.
Y. L1U, An improved Trudinger-Moser inequality involving N-Finsler-Laplacian and LP norm, Poten-
tial Anal. 60, 2 (2024), 673-701.

J. MOSER, A sharp form of an inequality by N. Trudinger, Indiana. Univ. Math. J., 20, 11 (1971),
1077-1091.

J. PEETRE, Espaces d’interpolation et theoreme de Soboleff, Ann. Inst. Fourier (Grenoble), 16, (1966),
279-317.

S. POHOZAEV, The Sobolev embedding in the special case pl = n, Proceedings of the technical
scientific conference onadvances of scientific reseach 1964—1965, Mathematics sections, 158-170,
Moscov. Energet. Inst., Moscow, 1965.

N. S. TRUDINGER, On embeddings into Orlicz space and some applications, J. Math. Mech., 17,
(1967), 473-483.

J. SERRIN, Local behavior of solutions of quasilinear equations, Acta Math., 111, (1964), 247-302.



[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

REMARKS ON EXTREMAL FUNCTIONS FOR THE TRUDINGER-MOSER INEQUALITIES 491

P. TOLKSDORF, Regularity for a more general class of qusilinear elliptic equations, J. Differential
Equations, 51, (1984), 126-150.

G. F. WANG, C. XI1A, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ-
ential Equations, 252, 2 (2012), 1668-1700.

Y. YANG, A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal., 239, 1
(2006), 100-126.

Y. YANG, Existence of positive solutions to quasi-linear elliptic equations with exponential growth in
the whole Euclidean space, J. Funct. Anal., 262, 4 (2012), 1679-1704.

Y. YANG, Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension
two, J. Differential Equations, 258, 9 (2015), 3161-3193.

V. I. YUDOVICH, Some estimates connected with integral operators and with solutions of elliptic
equations, Sov. Math. Docl., 2,4 (1961), 746-749.

C. L. Znou, C. Q. ZHOU, Moser-Trudinger inequality involving the anisotropic Dirichlet norm
(Jo FN (Vu)dx) ¥ on Wol"N(Q) , J. Funct. Anal., 276, (2019), 2901-2935.

C. L. ZHou, C. Q. ZHOU, On the anisotropic Moser-Trudinger inequality for unbounded domains in
R", Disctete and Contimuous Dynamical Systems, 40, 2 (2020), 847-881.

(Received October 8, 2024) Xianfeng Su

School of Mathematics and Big Data
Chaohu University
Hefei, 238000, Anhui Province, China

e-mail: suxf2006@sina.com

Xiaomeng Li

School of Mathematics and Big Data
Chaohu University

Hefei, 238000, Anhui Province, China
e-mail: xmlimath@163.com

Rulong Xie

School of Mathematics and Big Data
Chaohu University

Hefei, 238000, Anhui Province, China

e-mail: rulongxie@163.com

Meng Qu

School of Mathematics and Big Data
Chaohu University

Hefei, 238000, Anhui Province, China

e-mail: mengqu@vip.163.com

Mathematical Inequalities & Applications

v.ele-math.com

mia@ele-math.com



