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q–DEFORMED HILBERT TRANSFORM AND ITS

RELATED PROPERTIES AND INEQUALITIES

SERIKBOL SHAIMARDAN AND NARIMAN SARSENOVICH TOKMAGAMBETOV

(Communicated by L. E. Persson)

Abstract. We present a new formulation of the Hilbert transform constructed via the q -defor-
mation of convolution, which is called the q -deformed Hilbert transform. We also find the
q -deformed Hilbert transform of some basic functions and examine its connection with the q -
Fourier transform. In particular, a number of new related inequalities and embeddings are proved
such as a q -analuge of the Chebyshev inequality and a Hardy-type inequality. In additionally,
we present a direct application of Hardy-type inequality to study some inequalities for the q -
deformed Hilbert transform on Lp(Rq) and Lp,r(Rq). Finally, we prove a weak (1.1) inequality
for the q -deformed Hilbert transform.

1. Introduction

The most common language of quantum calculus is based on the q -calculus (or
q -deformation), though this type of calculus was already introduced by L. Euler [17] in
the 18th century. The study of q -deformation began in 1748 when he considered the in-
finite product (q;q)−1

∞ = ∏∞
k=0

1
1−qk+1 , |q|< 1, as a generating function for p(n) , where

p(n) denotes the partition function, i.e., the number of ways to express n as a sum of
positive integers. In the early 20th century, F. H. Jackson introduced the concept of the
q -derivative and the definite q -integral [25, 26], marking the foundation of what is now
known as q -deformation. During the last two decades, the study of q -deformation has
garnered significant attention from researchers. For examples, the book by V. Kac and
P. Cheung [11] explores many fundamental aspects of q -deformation. In the book [15]
of T. Ernst (see also [14]), it has gained renewed interest due to its relevance in math-
ematical models for quantum computing. Moreover, in [6], N. Bettaibi and R. H. Bet-
taieb introduced a new q -deformated Dunkl operator and examined the corresponding
Fourier transform in [19, 20] (see, [31]). The q -deformated Dunkl operator is defined
by Rubin’s q -differential operator ∂q , as presented in [39, 40]. For a more detailed
overview of the development and recent advances in q -calculus, we refer the reader to
the monographs [1, 3, 5, 14, 15, 16, 21] and the references therein. The first notable
results on q -deformed integral inequalities appeared with the work of H. Gauchman
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[22] in 2004. In 2014, L. Maligranda, R. Oinarov and L.-E. Persson [33] derived a
q -analogue of the classical Hardy inequality, originally introduced by Hardy in 1925
(see [23, 24]). The development of Hardy-type inequalities has since become a vast
and active area of research, with many significant results and applications discussed
in the monograph [35]. Consequently, exploring which of these classical Hardy-type
inequalities admit meaningful q -analogues remains a promising direction for further
research.

Recently, in this paper [34], the authors defined a q -deformated of the Hilbert
transform H of a real-valued function f (t) is defined as:

Hq,α( f )(x) = aq,α p.v.

∞∫
−∞

Tx
q,α( f )(−λ )

λ
dqλ = aq,α lim

ε→0

∫
|λ |>ε

Tx
q,α( f )(−λ )

λ
dqλ , (1)

where the generalized q -deformated Dunkl translation operator Tx
q,α (see, [34, formula

(32)]) and the constant aq,α is given by

aq,α =
(1+q)Γq2

(
α + 3

2

)
2qΓq2

( 1
2

)
Γq2 (α +1)

,

with the q2 -Gamma function Γq2(·) is defined by fomula (5). Historically, the Hilbert
transform emerged from D. Hilbert’s work [37] on integral equations and boundary
value problems in 1905 (see [29]). Moreover, they investigated its fundamental proper-
ties through the harmonic analysis framework related to the q -deformated Dunkl oper-
ator in [6].

One main purpose of this work is to introduce and investigate another q -deforma-
tion of the Hilbert transform (23) constructed via the q -deformated convolution (16).
In the particular case when α = 1

2 , the defination (1) is equivalent to our formulation
of the q -deformed Hilbert transform (23). However, the Definition (23) provides an
efficient tool for the direct derivation of the main results concerning the q -deformed
Hilbert transform in our further analysis. Moreover, we study the q -deformed Hardy-
type inequalities (38) and (37) and apply them to derive the Riesz inequality (45), the
inequality (42) and the inequality (49) related to the q -deformed Hilbert transform
(23). Note that lim

q→1
f (x�q y) = f (x− y), as a consequence of the approximation prop-

erty of the q -Transform in the limit q → 1 (see, [40, Section 3]). Therefore, we get
lim
q→1

(Hq f ) (x) = (H f )(x) which is the classical Hilbert transform H of a real-valued

function f is defined as:

(H f )(t) =
1
π

p.v.

∞∫
−∞

f (τ)
t− τ

dτ, (2)

where p.v. denotes the Cauchy principal value (see, [28]). The historical development
of the Hilbert transform began with David Hilbert’s study of integral equations and
boundary value problems in 1905 (see, [29]). If f ∈ Lp(R) with 1 < p < ∞, then there
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exists a positive constant A independent of f such that the following inequality holds:

(H f )(t) � A

(
1
t

∫ t

0
f (s)ds+

∫ ∞

t

f (s)
s

ds

)
t > 0. (3)

The inequality (3) demonstrates that the Hilbert transform maps functions from Lp(R)
spaces to other functional spaces (e.g., Lorentz spaces) while maintaining boundedness.
The proof can be found in Bennett & Sharpley [10, p. 134–138.]. Specifically, a weak-
type (1,1) inequality found in [10, Chapter 3, Section 4] (see also [43] and [45]). Similar
constructions for discrete Hilbert transform were investigated in [2] (see also [44])

Finally, we obtain the inequality (53) which is a q -analogue of the inequlaity (3).
As a applcation of the inequality (53) to investigate a weak (1.1) inequality (58) for the
q -deformed Hilbert transform (2).

The outline of this paper is as follows: We will recall the necessary notions and
definitions in Section 2. We introduce the definition of the q -deformed Hilbert trans-
form and proceed to compute its action on some basic functions. Additionally, we
will explore the relationship between the Hilbert transform and the Fourier transform in
Section 3. We also prove several important and useful theorems related to q -decreasing
rearrangement, which will be crucial for the subsequent developments of further inves-
tigation in Section 4. In Section 5, we study a special form of some q -deformed Hardy-
type inequality. Moreover, In Section 6, we present a direct application of q -deformed
Hardy-type inequalities to establish the q -deformed Hilbert transform Lp -boundedness
and to obtain its is bounded in Lorentz Lp,r(Rq). Finally, in Section 7, We will investi-
gate a weak (1.1) inequality (50) in Section.

2. Preliminaries

In this Section, we give notation that we will also use throughout this paper and
assume that 0 < q < 1. Let α ∈ R. Then a q -real number [α]q is defined by

[α]q :=
1−qα

1−q
,

where lim
q→1

1−qα

1−q = α .

We introduce for any x,a ∈ R

(x,a)0
q = 1, (x,a)n =

n−1

∏
k=0

(
x−qka

)
, (x,a)∞ = lim

n→∞
(x,a)n

q.

The q -analog of the binomial coefficients are defined by

[n]q! :=
{

1, if n = 0,
[1]q× [2]q×·· ·× [n]q, if n ∈ N,

[
n
k

]
q
:=

[n]q!
[n− k]q![k]q!

.

Let us define q -addition by

(a⊕q b)0 = 1, (a⊕q b)1 = a−b, (a⊕q b)n =
n

∑
k=0

[
n
k

]
q
akbn−k, a �= b. (4)
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The gamma function Γq is defined by

Γq(x) =
(q;q)∞

(qx;q)∞
(1−q)1−x. (5)

The q -analogue differential operator is defined as (see [25])

Dq f (x) =
f (x)− f (qx)

x(1−q)

Note that if f is differentiable at x , then lim
q→1

Dq f (x) = f ′(x) .

Let R+
q = {qk,k ∈ Z} and Rq = {±qk,k ∈ Z} .

The q -integral (or Jackson integral) is defined as (see [26])

a∫
0

f (x)dqx = (1−q)a
∞

∑
m=0

qm f (aqm);
∫

R+
q

f (x)dqx = (1−q)
∞

∑
m=−∞

qm f (qm) (6)

and ∫
Rq

f (x)dqx = (1−q)
∞

∑
m=−∞

qm ( f (qm)+ f (−qm)) , (7)

provided the sums converge absolutely.
We denote

Lp
q (Rq) = { f :

∫
Rq

| f (x)|pdqx < ∞,0 < p < ∞}; L∞
q

(
R+

q

)
= { f : sup

x∈Rq

| f (x)| < ∞}.

The normalized q -Bessel function is defined by (see, [12] and [31])

jα (x,q2) =
∞

∑
n=0

(−1)n qn(n+1)

(q2α+2,q2)n(q2,q2)n
x2n.

Note that we have

jα(x,q2) = (1−q2)α Γ2
q(α +1)((1−q)x)−α Jα

(
(1−q)x;q2) ,

where

Jα(x;q2) =
xα (q2α+2,q2

)
∞

(q2,q2)∞

∞

∑
k=0

(−1)kqk(k−1)/2
(
q2x2

)k

(q2α+2,q2)k (q2,q2)∞
.

Moreover,

(1+q)tΓq2 ((α +1+ t)/2)
Γq2 ((α +1− t)/2)

=
∫

R+
q

xtJα
(
(1−q)x;q2)dqx, (8)
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for log(1− q)/ log(q) ∈ Z. The normalized q -Bessel function jα (.,q2) satisfies the
orthogonality relation (see e.g. [12])

K2
α ,q

∫
R+

q

jα(λ1x,q
2) jα(λ2x,q

2)x2α+1dqx = δq(λ1,λ2), ∀λ1,λ2 ∈ Rq (9)

where Kα ,q := (q2α+2,q2)∞
(1−q)(q2,q2)∞

and

δq(λ1,λ2) =

{
0, λ1 �= λ2;

1

(1−q)λ 2(α+1)
1

, λ1 = λ2.

Let f be a function defined on R+
q then∫

R+
q

f (λ2)δq(λ1,λ2)λ 2α+1
2 dqλ2 = f (λ1). (10)

The q2 -exponentials (see, [31] and [40])

exp(x;q2) = cos(−ix;q2)+ isin(−ix;q2), (11)

where

cos(x;q2) =
(q2;q2)∞

(q;q2)∞
((1−q)x)

1
2 J− 1

2
((1−q)x;q2),

sin(x;q2) =
(q2;q2)∞

(q;q2)∞
((1−q)x)

1
2 J 1

2
((1−q)x;q2). (12)

The q2 -Fourier transform f̂ is defined as follows (see [18] and [39])

f̂ (x;q2) = Kq

∫
Rq

f (t)exp(−ixt;q2)dqt (13)

and its inverse

f (t) = Kq

∫
Rq

exp(ixt;q2) f̂ (x;q2)dqx, (14)

where Kq = (1+q)
1
2

2Γq2( 1
2 )

. For x,y ∈ Rq , the Fourier multiplier operator corresponding to

translation by y is

f (x�q y) = Kq

∫
Rq

exp(−iyt;q2) f̂ (t;q2)exp(ixt;q2)dqt, (15)
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For f ∈L2
q(Rq) , g∈L1

q(Rq) , define the multiplier corresponding to Fourier convolution
of f with g to be

( f ∗q g)(x) =
∫
Rq

f (x�q y)g(y)dqy. (16)

If f ,g ∈ L1
q(Rq)

⋂
L2

q(Rq) . Then

f̂ ∗ g = f̂ ĝ. (17)

PROPOSITION 1. (q -Dirichlet Integral) Let x ∈ Rq . Then∫
R+

q

sin(xt;q2)
t

dqt =
πq

(1+q)
1
2

sgn(x), (18)

where πq := Γ2
q2

(
1
2

)
and sgn(·) is the signum function:

sgn(x) =

⎧⎪⎨⎪⎩
−1 if x < 0,

0 if x = 0,

1 if x > 0.

Proof. Let x ∈ Rq and x < 0. Then x = −|x| sin(t;q2) is even function and using
(12) we find that

− sin(|x|t;q2)
(12)
= − (q2;q2)∞

(q;q2)∞
((1−q)|x|t) 1

2 J 1
2
((1−q)|x|t;q2). (19)

Now |x|t replaced by z and (5), (8) and (19) we have that∫
R+

q

sin(xt;q2)
t

dqt
(19)
= − (q2;q2)∞

(q;q2)∞
(1−q)

1
2

∫
R+

q

[ |x|
t

] 1
2

J 1
2
((1−q)|x|t;q2)dqt

= − (q2;q2)∞

(q;q2)∞
(1−q)

1
2

∫
R+

q

z−
1
2 J 1

2
((1−q)z;q2)dqz

(8)
= − (q2;q2)∞

(q;q2)∞
(1−q)

1
2 (1+q)−

1
2

Γq2

( 1
2

)
Γq2 (1)

(20)

(5)
= −

Γ2
q2

( 1
2

)
(1+q)

1
2

.

Next, assume that x > 0, applying the same argument as in the calculation of integral
(20), we obtain ∫

R+
q

sin(xt;q2)
t

dqt =
Γ2

q2

(
1
2

)
(1+q)

1
2

. (21)
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Therefore, combining (20) and (21) we conclude that (18) holds for all x ∈ Rq .
This completes the proof. �

REMARK 1. Since lim
q→1

Γq2

(
1
2

)
= Γ

(
1
2

)
=

√
π and lim

q→1
sin(t;q2) = sin(t) we get

that

lim
q→1

∫
R+

q

sin(xt;q2)
t

dqt = sgn(x) lim
q→1

πq

(1+q)
1
2

= sgn(x)
π
2

.

Hence, when q → 1 we find that the Dirichlet Integral:

lim
q→1

∫
R+

q

sin(xt;q2)
t

dqt =
∫
R

sin(xt)
t

dt.

PROPOSITION 2. Let ϕ(t) = 1
t and x ∈ Rq . Then

ϕ̂(x;q2) = −iΓq2

(
1
2

)
sgn(x). (22)

Proof. Using (11) we find

exp(−ixt;q2) = cos(xt;q2)+ isin(xt;q2).

Therefore, by (13) and (18) we get that

ϕ̂(x;q2)
(13)
= Kq

∫
Rq

exp(−ixt;q2)
t

dqt

= Kq

∫
Rq

[
cos(−xt;q2)

t
+ i

sin(−xt;q2)
t

]
dqt

(18)
= −2iKq

∫
R+

q

sin(xt;q2)
t

dqt

= −iΓq2

(
1
2

)
sgn(x).

Here we use the fact that cos(xt;q2)
t is an odd function and sin(xt;q2)

t is an even function.
This completes the proof. �

In the following, we denote by

• Sq(Rq) , the space of functions f defined on Rq satisfying

∀n,m ∈ N, Pn,m,q( f ) = sup
x∈Rq

∣∣xm∂ n
q f (x)

∣∣ < ∞.
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3. The q -deformed Hilbert transform

3.1. Hilbert transform on Rq

Let us start with the following main definition which is a new modification of (2)
on Rq.

DEFINITION 1. Let f ∈ Lp
q(Rq) be a function for 1 � p < ∞ . Then Hq is the

Hilbert transform of f given by

(Hq f ) (x) :=
1
πq

f (t)∗q
1
t

= p.v.
1
πq

∫
Rq

f (y)
x�q y

dqy. (23)

We now proceed to verify that (23) is well-defined. For this purpose, let us con-
sider a function f from the Schwartz class Sq(R). Then,

(Hq f ) (x) =
1
πq

lim
ε→0+

∫
|y−x|>ε

f (y)
x− y

dqy

=
1−q

πq
lim

ε→0+ ∑
|qn−x|>ε

qn f (qn)
x−qn

=
1−q

πq
lim

ε→0+

(
∑

ε<|x−qn|<1

qn f (qn)− f (x)
x−qn + ∑

|x−qn|>1

qn f (qn)
x−qn

)

=
1−q

πq
lim

ε→0+

(
∑

ε<|x−qn|<1

qn f (qn)− f (x)
x−qn + ∑

ε<|x−qn|<1

qn f (x)
x−qn

+ ∑
|x−qn|>1

qn f (qn)
x−qn

)

= lim
ε→0+

1−q
πq

∑
ε<|x−qn|<1

qn f (qn)− f (x)
x−qn − 1−q

πq
∑

|x−qn|>1

qn f (qn)
x−qn .

Here we used the fact that

∑
ε<|x−qn|<1

qn

x−qn = ∑
−1<−|x−qn|<−ε

qn

x−qn + ∑
ε<|x−qn|<1

qn

x−qn = 0.

Therefore,

|(Hq f ) (x)| � lim
ε→0+

1−q
πq

∑
ε<|x−qn|<1

qn

∣∣∣∣ f (qn)− f (x)
qn− x

∣∣∣∣+ 1−q
πq

∑
|x−qn|>1

|qn f (qn)|
|x−qn| .

By applying the mean value theorem (see, [38, Theorem 3.2]), we get | f (qn)− f (x)| =
|qn − x|Dq f (ξt), where ξt lies between qn and x. Since Dq f (x) is bounded, we can
conclude that: ∣∣∣∣ f (qn)− f (x)

qn− x

∣∣∣∣= |Dq f (ξt)| � ‖Dq f‖L∞(Rq)
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and qn = qn−x+x−qn+2

(1−q2) � 2
1−q2 |x−qn|. Thus,

|(Hq f ) (x)| �
‖Dq f‖L∞(Rq)

πq

2
1+q ∑

|x−qn|<1

|x−qn|

+
1−q

πq
∑

|x−qn|>1

1
|x−qn|P1,0,q( f )

� 4
(1+q)πq

(
‖Dq f‖L∞(Rq) +P1,0,q( f )

)
< ∞,

which means that Hq is well-defined.
Let us calculate the Hilbert transform of some basic functions.

EXAMPLE 1. The q -Hilbert transform for a constant function f (t) = c is easy to
calculate. Using the Definition 1 we obtain that

(Hq f ) (x) =
c

πq

∫
Rq

dqs

t�q s
= 0.

The last equality is due to the integrand 1
t�qs being an odd function over Rq (see, (15)).

Hence, H(c) = 0 for any constant c .

EXAMPLE 2. Let f (y) = exp(iαy;q2) and α ∈ R. Then, since

δ̂t(y : q2) = Kq exp(−iyt;q2)

(see, [40, Propery 2, p. 780]), using (10), (14), (15), Proposition 2 and (23) we obtain
that

(Hq f ) (x) (23)=
1
πq

∫
Rq

exp(iαy;q2)
x�q y

dqy

(15)=
Kq

πq

∫
Rq

exp(iαy;q2)
∫
Rq

exp(−iyt;q2)ϕ̂(t;q2)exp(ixt;q2)dqtdqy

=
1
πq

∫
Rq

ϕ̂(t;q2)exp(ixt;q2)
∫
Rq

Kq exp(−iyt;q2)exp(iαy;q2)dqydqt

=
1
πq

∫
Rq

ϕ̂(t;q2)exp(ixt;q2)
∫
Rq

δ̂t(y;q2)exp(iαy;q2)dqydqt

(14)=
1
πq

∫
Rq

ϕ̂(t;q2)exp(ixt;q2)δt(α)dqt

(10)
=

1
πq

ϕ̂(α;q2)exp(iαx;q2)

(22)= − i

Γq2

(
1
2

) exp(iαx;q2)sng(α).
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EXAMPLE 3. Let f (y) = sin(y;q2). Then, using (11), we find that

sin(y;q2) =
exp(iy;q2)− exp(−iy;q2)

2i
; cos(x;q2) =

exp(−ix;q2)+ exp(ix;q2)
2

.

Thus, by Example 2 we have that

(Hq f ) (x) =

(
Hq exp(i(·);q2)

)
(x)− (

Hq exp(−i(·);q2)
)
(x)

2i

(2)
=

− i
Γq2( 1

2 )
exp(ix;q2)− i

Γq2( 1
2 )

exp(−ix;q2)

2i

=
1

Γq2

( 1
2

) −exp(ix;q2)− exp(−ix;q2)
2

= − 1

Γq2

( 1
2

) cos(x;q2).

EXAMPLE 4. Let f (y) = cos(y;q2). Then, it follows from (11) and Example 2
that

Hq
(
cos((·);q2)

)
(x) (2)=

1

Γq2

( 1
2

) sin(x;q2).

3.2. The Fourier transform of the Hilbert transform

It is a well-known result that the Fourier transform of the Hilbert transform (H f )(x)
satisfies the following (see, [28]) relation

F (H f )(ξ ) = −i
sgn(ξ )

π
F ( f )(ξ ), (24)

where sgn(ξ ) is the signum function and the Fourier transform F ( f )(ξ ) of f (x) is
given by

F ( f )(ξ ) =
1√
2π

∫ ∞

−∞
f (x)e−iξxdx.

We obtain a q -analogue of relation (24).

THEOREM 1. Suppose f ∈ Lp
q (Rq) , 1 < p � 2 . Then the Fourier transform of

Hq(x(t)) is given by

(̂Hq f )(t;q2) = −i
sgn(x)
Γq2( 1

2 )
f̂ (t;q2).

for x ∈ Rq .
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Proof. Using (13), (17), (23) and Proposition 2 we have that

(̂Hq f )(t;q2)
(13)
=

1
πq

̂f (s)∗ϕ(s)(t;q2)

(17)
=

1
πq

f̂ (t;q2)ϕ̂(t;q2)

(22)
= −i

sgn(x)
πq

Γq2(
1
2
) f̂ (t;q2)

= −i
sgn(x)
Γq2( 1

2 )
f̂ (t;q2).

The proof is complete. �

4. Lorentz Lp,r(Rq) spaces

This section is devoted to the Lorentz Lp,r(Rq) spaces. In the first subsection
contains the decreasing rearrangement which is, in fact, a distribution function with
respect to the q -measure. Moreover, we provide proofs for some of its fundamental
properties. These investigations will be very important when we discuss the Lorentz
Lp,r(Rq) spaces in second subsection.

4.1. A q -measure and q -distribution function

Let B denote the Borel σ -algebra of R. Let Ω ⊂ R be a measurable space, and
let α0 ∈ R. The unit point measure (or Dirac measure) at α0, denoted by δα0 , is as
follows

δα0(Ω) =

{
1 if α0 ∈ Ω,

0 if α0 /∈ Ω.

More generally, if {αn : n ∈ Z} is a countable set of points in R and {βn � 0 : n ∈ Z},
we define a point measure μ by

μ = ∑
n∈Z

βnδαn , μ(Ω) = ∑
αn∈Ω

βn.

This measure is σ -finite, and finite if ∑βn < ∞ (see, [41, Chapter 4] and [8, Chapter
1]). Let 0 < q < 1. Assume that αn = qn and βn = (1−q)qn for n∈Z. Then we define
a q-measure μq is defined as

μq = ∑
n∈Z

qnδqn , μq(Ω) = (1−q) ∑
qn∈Ω

qn. (25)

EXAMPLES.

1. Let Ω1 = {qn : n ∈ N}. Then the q -measure of Ω1 is

μq(Ω1) = (1−q) ∑
qn∈Ω1

qn = (1−q)
∞

∑
k=1

qk =
q∫

0

dqx = q.
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2. Let Ω2 := [0,qm] ⊂ R+
q for some m ∈ Z. Then, by (7) and (25) we find

μq(Ω2) = (1−q) ∑
qn∈Ω2

qn

= (1−q) ∑
qn�qm

qn

= (1−q)
∞

∑
n=−∞

qnχ[0,qm](q
n) (26)

=
∫

R+
q

χ(0,qm](x)dqx.

3. Let Ω2 := [−qk,qm] ⊂ R+
q for some m,k ∈ Z. Then, by (7), (25) and (26) we

have

μq(Ω2) = (1−q) ∑
qn∈Ω3

qn

= (1−q) ∑
0�qn�qm

qn +(1−q) ∑
−qm�−qn�0

qn

= (1−q)
∞

∑
n=−∞

qnχ[0,qm](q
n)+ (1−q)

∞

∑
n=−∞

qnχ[0,qm](−qn) (27)

(26)
=

∫
Rq

χΩ2(x)dqx.

DEFINITION 2. The q -distribution function d f (λ ;q) of f : Rq → R is a real-
valued function, which expressed as

d f (λ ;q) = μq{x ∈ Rq : | f (x)| > λ}, λ > 0. (28)

Moreover, we observe that

d f+g(2λ ;q) � d f (λ ;q)+dg(λ ;q).

Let Ω3 = {x ∈ Rq : | f (x)| > λ}. Then, it follows from (27) and (28) that

d f (λ ;q) = (1−q) ∑
qn∈Ω3

qn =
∫
Rq

χΩ3(x)dqx. (29)

DEFINITION 3. The non-increasing rearrangement f ∗ of f is defined by

f ∗ = inf{λ � 0 : d f (λ ;q) � t}, t > 0. (30)

where we use the convention that inf ∅ = ∞.
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It is important to note that the function f ∗ exhibits the following properties

1) Subadditive:
( f +g)∗ � f ∗ +g∗; (31)

2) Submultiplicative:
( f g)∗ � f ∗g∗. (32)

REMARK 2. The non-increasing rearrangement f ∗ can be understood as a se-
quence { f ∗(qn)} by defining

f ∗(qn) = f ∗(λ ) = inf{λ > 0 : d f (λ ;q) � qn}, qn � λ < qn−1, (33)

for n ∈ Z.

PROPOSITION 3. Let 1 � p � ∞. Then, the following properties hold:

(i) f ∗(t) > λ if and only if d f (λ ;q) > t .

(ii) f and f ∗ are q-equimeasurable, that is,

μq{x ∈ Rq : | f (x)| > λ} = μq{t > 0 : f ∗(t) > λ}, for all λ > 0.

Proof.

(i) Assume that d f (λ ;q) > t . Since d f (λ ;q) is a decreasing function we have

λ < inf{η : d f (η ;q) � t}.

Therefore, by Definition 3 we get f ∗(t) > λ . For the reverse direction, suppose
f ∗(t) > λ . Then, by Definition 3 we find that

inf{η : d f (η ;q) � t} > λ .

Hence, it follows from the fact that d f is a decreasing function that d f (λ ;q) > t .

(ii) By (i) and (30) we have

d f ∗(λ ;q) = μq{t > 0 : f ∗(t) > λ} = μq{t > 0 : d f (λ ;q) > t}
= μq{[0,d f (λ ;q))} = d f (λ ;q).

(iii) Since 0 < λ < ∞, using (30) we obtain

(| f |p)∗(t) = inf{λ > 0 : μq{x ∈ Ω : | f (x)|p > λ} � t}
= inf{λ p > 0 : μq{x ∈ Ω : | f (x)| > λ} � t} = f ∗(t)p.
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This completes the proof. �
In terms of the distribution function, we state and prove the following important

description of the Lp
q(Rq) norm.

PROPOSITION 4. Let 0 < p < ∞ and f ∈ Lp
q(Rq). Then

‖ f‖p
Lp

q (Rq)
= [p]q

∫
R+

q

λ p−1d f (λ ;q)dqλ =
∫

R+
q

f ∗(t)pdqt. (34)

Proof. Using (7) and (29) we get

[p]q
∫

R+
q

λ p−1d f (λ ;q)dqλ (29)
= [p]q

∫
R+

q

λ p−1
∫
Rq

χ{x∈Rq:| f (x)|>λ}(x)dqxdq

(7)= [p]q(1−q)2
∞

∑
n=−∞

qnp ∑
| f (qm)|>qn

qm. (35)

Since [p]q(1−q)2 = (1−q)(1−qp), we have

[p]q(1−q)2
∞

∑
n=−∞

qnp ∑
| f (qm)|>qn

qm = (1−q)(1−qp)
∞

∑
m=−∞

qm ∑
| f (qm)|�qn

qnp

= (1−q)
∞

∑
m=−∞

qm ∑
| f (qm)|�qn

(qnp−q(n+1)p)

= (1−q)
∞

∑
m=−∞

qm| f (qm)|p (36)

(7)=
∫
Rq

| f (x)|pdqx.

Finally, according to (35) and (36), we derive the first equality in (34). The second
equality in (34) follows directly from the q -equimeasurability of | f |p and ( f ∗)p in
Proposition 3. The proof is complete. �

LEMMA 1. Let f ∈ Lp
q (Rq) for 0 < p < ∞ . Then

i) We assume that Ω3 = {x ∈ Rq : | f (x)| > λ}

d f (λ ;q) � 1
λ

∫
Rq

χΩ3(x)| f (x)|dqx � 1
λ

∫
Rq

| f (x)|dqx;

ii) The following (The q-Chebyshev inequality) holds

d f (λ ;q) � 1
λ p

∫
Rq

χΩ3(x)| f (x)|pdqx,
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Proof. i) Let x ∈ Ω3. The, the relation 0 � λ χΩ3(x) � | f (x)|χΩ3(x) � | f (x)| im-
plies that ∫

Rq

λ χΩ3(x)dqx �
∫
Rq

χΩ3(x)| f (x)|dqx �
∫
Rq

| f (x)|dqx.

Since
∞∫
0

λ χΩ3(x)dqx = λd f (λ ;q) , the inequality in i) is proved.

ii) Using the fact that | f (x)|
λ > 1 for x ∈ Ω3 and (29), we obtain that

1
λ p

∫
Rq

χΩ3(x) | f (x)|p dqx =
∫
Rq

χΩ3(x)
( | f (x)|

λ

)p

dqx

�
∫
Rq

χΩ3(x)dqx

(29)= d f (λ ;q),

for 0 < p < ∞ . So also the inequality in ii) is proved. �

4.2. Lorentz Lp,r(Rq) spaces

After covering the fundamental properties of decreasing rearrangements of func-
tions (see, Subsection 4.1), now we introduce the definition of Lorentz spaces on Rq.

DEFINITION 4. Let f a function on Rq and 0 < p,r � ∞. The Lorentz space
Lp,r(Rq) is defined as the set of real-value functions f for which the following quasi-
norm is finite;

‖ f‖Lp,r(Rq) =

⎛⎝ ∞∫
0

(
t

1
p f ∗(t)

)r dqt

t

⎞⎠ 1
r

.

If q = ∞, then the quasi-norm is defined as

‖ f‖Lp,∞(Rq) = sup
t∈R+

q

t
1
p f ∗(t).

Note that, Lp,r(Rq) is a linear space for all 0 < p � ∞ and 0 < r < ∞. From our
proof above, it follows that the functional ‖ · ‖Lp,r(Rq) is a quasi-norm. Moreover, the
functional ‖ · ‖Lp,r(Rq) is a norm if and only if either 1 � r � p or p = r = 1.

4.3. The maximal function on Rq

The maximal function plays a crucial role in the study of Lorentz Lp,r(Rq) spaces,
with its applications becoming evident in further analysis. The formal definition is as
follows:
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DEFINITION 5. The function f ∗∗ : (0,∞) → [0,∞] is defined as

f ∗∗(t) =
1
t

t∫
0

f ∗(s)dqs.

Note that, as q → 1, we obtain 1
t

t∫
0

f ∗(s)dqs which is sometimes referred to as the

maximal function of f . In classical analysis, it represents the supremum of all average
values of f ∗.

4.4. The normed space N p,r(Rq)

In this subsection, we introduce the space N p,r(Rq) and prove its equivalence to
spaces Lp,r(Rq).

DEFINITION 6. For any f ∈ Lp,r(Rq), the functional ‖ · ‖N p,r(Rq) is defined by

‖ f‖N p,r(Rq) =

⎛⎝ ∞∫
0

(
t

1
p f ∗∗(t)

)r dqt

t

⎞⎠ 1
r

,

for 0 < p < ∞, 0 < r < ∞, and

‖ f‖N p,∞(Rq) = sup
t∈R+

q

t
1
p f ∗∗(t),

for 0 < p < ∞, r = ∞.

5. Some q -deformed Hardy-type inequality

The Hardy-type inequality, renowned for its rich historical significance and nu-
merous variants, stands as one of the most widely utilized tools in classical analysis,
alongside Sobolev inequalities (see [35]). In recent years, substantial progress has been
made in developing the q -deformed Hardy inequality. This includes early generaliza-
tions incorporating weighted frameworks, as well as various modifications and exten-
sions (see [4, 33, 36, 42]). In the following, we present a special form of the q -deformed
Hardy-type inequality.

THEOREM 2. Let 1 � p < ∞ and α > 0. Assume that g be a positive function on
Rq. Then we have the following inequalities⎛⎜⎝∫

R+
q

t−α−1

⎛⎝ t∫
0

g(s)dqs

⎞⎠p

dqt

⎞⎟⎠
1
p

�
[

α
p

]−1

q

⎛⎜⎝∫
R+

q

gp(t)t−α+p−1dqt

⎞⎟⎠
1
p

, (37)
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and ⎛⎜⎝∫
R+

q

tα−1

⎛⎝ ∞∫
t

g(s)dqs

⎞⎠p

dqt

⎞⎟⎠
1
p

�
[

α
p

]−1

q

⎛⎜⎝∫
R+

q

gp(t)tα+p−1dqt

⎞⎟⎠
1
p

. (38)

Proof. First we prove the inequality (37). Using (6) and (26) we get

I p
1 (g) :=

∫
R+

q

t−α−1

⎛⎝ t∫
0

g(s)dqs

⎞⎠p

dqt

= (1−q)1+p
∞

∑
n=−∞

q−nα
( ∞

∑
m=n

qmg(qm)
)p

. (39)

Next, we demonstrate the necessary facts. It follows from Jensen inequality (see, [32])

∑
i

aiφ(xi) �
(

∑
i

ai

)
φ
(

∑i aixi

∑i ai

)
(where ai > 0 are positive weights, xi are points, and φ(t) := t p is a convex function
with p > 1) that⎛⎜⎝

∞
∑

m=n
qmg(qm)qm α

p q−m α
p

∞
∑

m=n
qm α

p

⎞⎟⎠
r

∞

∑
m=n

qm α
p �

∞

∑
m=n

(
qmg(qm)q−m α

p

)p
qm α

p (40)

and we have that

[
α
p

]
q

∞

∑
k=±k0

qk α
p =

(1−q
α
p )

∞
∑

k=±k0

qk α
p

1−q

=
(1−q

α
p )

∞
∑

k=±k0

[
qk α

p −q(k+1) α
p

]
1−q

(41)

=
q±k0

α
p

1−q
,

where k0 ∈ Z. It follows from (6), (39), (40) and (41) that

I p
1 (g)

(39)
= (1−q)1+p

∞

∑
n=−∞

q−nα
( ∞

∑
m=n

qmg(qm)
)p

= (1−q)1+p
∞

∑
n=−∞

q−nα

⎛⎜⎝
∞
∑

m=n
qmg(qm)qm α

p q−m α
p

∞
∑

m=n
qm α

p

⎞⎟⎠
p( ∞

∑
m=n

qm α
p

)p
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(40)
� (1−q)1+p

∞

∑
n=−∞

q−nα
∞

∑
m=n

(
qmg(qm)q−m α

p

)p
qm α

p

( ∞

∑
m=n

qm α
p

)p−1

=
[

α
p

]1−p

q
(1−q)1+p

∞

∑
n=−∞

q−nα
∞

∑
m=n

(qmg(qm))p qm( α
p −α)

([
α
p

]
q

∞

∑
m=n

qm α
p

)p−1

(41)=
[

α
p

]1−p

q
(1−q)2

∞

∑
n=−∞

q−n α
p

∞

∑
m=n

gp(qm)qm( α
p −α+p)

=
[

α
p

]1−p

q
(1−q)2

∞

∑
m=−∞

gp(qm)qm( α
p −α+p)

m

∑
n=−∞

q−n α
p

=
[

α
p

]−p

q
(1−q)2

∞

∑
m=−∞

gp(qm)qm( α
p −α+p)

([
α
p

]
q

∞

∑
n=−m

qn α
p

)

(41)=
[

α
p

]−p

q
(1−q)

∞

∑
m=−∞

gp(qm)qm( α
p −α+p)q−m α

p

=
[

α
p

]−p

q
(1−q)

∞

∑
m=−∞

qmgp(qm)q−m(α−1+p)

(6)
=

[
α
p

]−p

q
(1−q)

∫
Rq

gp(t)t−α−1+pdqt.

Hence, we have the following inequality:

I p
1 (g) �

[
α
p

]−p

q
(1−q)

∫
Rq

gp(t)t−α−1+pdqt,

which gives the inequality (37). Next, by (6) we find that

I2(g) :=

⎛⎜⎝∫
R+

q

t−α−1

⎛⎝ ∞∫
t

g(s)dqs

⎞⎠p

dqt

⎞⎟⎠
1
p

=

(
(1−q)1+p

∞

∑
n=−∞

q−nα

(
n

∑
m=−∞

qmg(qm)

)p) 1
p

=

(
(1−q)1+p

∞

∑
n=−∞

qnα
( ∞

∑
m=n

q−mg(q−m)
)p

) 1
p

.
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Moreover, by applying the same argument as in the calculation of I1(g) we have that

I2(g) =

(
(1−q)1+p

∞

∑
n=−∞

qnα
( ∞

∑
m=n

q−mg(q−m)
)p

) 1
p

�
[

α
p

]−p

q
(1−q)

∞

∑
m=−∞

q−mgp(q−m)qm(α−1+p)

(6)=
[

α
p

]−p

q
(1−q)

∫
Rq

gp(t)tα−1+pdqt.

which shows that (38) holds. So the proof is complete. �

THEOREM 3. Let 1< p < ∞, 1� r � ∞ or p = r = ∞, then ‖·‖N p,r(Rq) is a norm
on Lp,r(Rq) and hence (Lp,r(Rq),‖ · ‖N p,r(Rq)) is a normed space. More precisely,

‖ f‖Lp,r(Rq) � ‖ f‖N p,r(Rq) � 1[
1− 1

p

]
q

‖ f‖Lp,r(Rq). (42)

That is, the quasi-norms ‖ · ‖Lp,r(Rq) and ‖ · ‖N p,r(Rq) are equivalent.

Proof. It follows from f ∗ is a decreasing function that

f ∗∗(t) =
1
t

t∫
0

f ∗(s)dqs � 1
t

t∫
0

f ∗(t)dqs = f ∗(t).

Therefore, the first inequality follows immediately from the above inequality. To prove
the second inequality, we will consider the following three cases:

1) If 1 < p < ∞ and 1 < r < ∞. Then, by Definition 5 and Definition 6 we get that

‖ f‖N p,r(Rq) =

⎛⎝ ∞∫
0

(
t

1
p f ∗∗(t)

)r dqt

t

⎞⎠ 1
r

=

⎛⎝ ∞∫
0

⎛⎝t
1
p− 1

r −1
t∫

0

f ∗(s)dqs

⎞⎠r

dqt

⎞⎠
1
r

. (43)

If we take α = r(1− 1
p) for Hardy inequality (37), then we obtain⎛⎝ ∞∫

0

⎛⎝t
1
p− 1

r −1
t∫

0

f ∗(s)dqs

⎞⎠r

dqt

⎞⎠
1
r

� 1[
1− 1

p

]
q

⎛⎝ ∞∫
0

( f ∗(t))rt
r
p−1dqt

⎞⎠ 1
r

=
1[

1− 1
p

]
q

‖ f‖Lp,r(Rq), (44)
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Thus, according to (43) and (44) we have (42).

2) If 1 < p < ∞ and r = ∞. Then

‖ f‖N p,∞(Rq) = sup
t∈R+

q

t
1
p f ∗∗(t) = sup

t∈R+
q

t
1
p−1

t∫
0

f ∗(s)dqs

= sup
t∈R+

q

t
1
p−1

t∫
0

s−
1
p s

1
p f ∗(s)dqs

� sup
t∈R+

q

t
1
p−1

t∫
0

s−
1
p sup

u∈R+
q

u
1
p f ∗(u)dqs.

= ‖ f‖Lp,∞(Rq) sup
t∈R+

q

t
1
p−1

t∫
0

s−
1
p dqs

=
1[

1− 1
p

]
q

‖ f‖Lp,∞(Rq).

3) If p = r = ∞. Then,

‖ f‖N p,∞(Rq) = sup
t∈Rq

f ∗∗(t) = lim
t→0+

∞∫
t

f ∗(s)dqs = f ∗(0) = ‖ f‖L∞,∞(Rq).

This completes the proof. �

6. Applications of the q -deformed Hardy-type inequality

6.1. The Riesz inequality for the q -deformed Hilbert transform

The Hilbert transform is a bounded linear operator on Lp(Rq), for 1 < p < ∞. In
the classical case next inequality was shown by M. Riesz and is known as the Riesz
inequality [28].

THEOREM 4. If 1 < p < ∞ , then there exists a positive constant Cp,q such that

‖Hq f‖Lp(Rq) � Cp,q‖ f‖Lp(Rq) for all f ∈ Lp(Rq), (45)

where Cp,q a positive constant independent of f .
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Proof. It follows from (32), (34) and (53) that

‖Hq f‖Lp(Rq) = ‖(Hq f )∗‖Lp(Rq)

� Cp
q

∥∥∥∥∥∥
∞∫

t

f ∗(s)
dqs
s

+
1
x

t∫
0

f ∗(s)dqs

∥∥∥∥∥∥
Lp(Rq)

� Cp
q

∥∥∥∥∥∥
∞∫

t

f ∗(s)
dqs
s

∥∥∥∥∥∥
Lp(Rq)

+Cp
q

∥∥∥∥∥∥1
t

t∫
0

f ∗(s)dqs

∥∥∥∥∥∥
Lp(Rq)

(46)

= Cp
q

∥∥∥∥∥∥
∞∫

t

f ∗(s)
s

dqs

∥∥∥∥∥∥
Lp(Rq)

+Cp
q‖ f‖N p,p(Rq).

If we take α = 1 for the Hardy’s inequality (38), we get that∥∥∥∥∥∥
∞∫

t

f ∗(s)
s

dqs

∥∥∥∥∥∥
Lp(Rq)

=

⎛⎝ ∞∫
0

⎛⎝ ∞∫
t

f ∗(s)
s

dqs

⎞⎠p

dqt

⎞⎠
1
p

� 1[
1
p

]
q

⎛⎝ ∞∫
0

(
f ∗(t)

t

)p

t pdt

⎞⎠ 1
p

(47)

� 1[
1
p

]
q

‖ f‖Lp(Rq)

Using (42) we get

‖ f‖N p,p(Rq) � 1[
1− 1

p

]
q

‖ f‖Lp,p(Rq) =
1[

1− 1
p

]
q

‖ f‖Lp(Rq). (48)

Hence, it follows from (46), (47) and (48) that

‖Hq f‖Lp(Rq) � Cq[
1− 1

p

]
q

‖ f‖Lp(Rq) +
Cq[
1
p

]
q

‖ f‖Lp(Rq)

�

⎛⎜⎝ Cq[
1− 1

p

]
q

+
Cq[
1
p

]
q

⎞⎟⎠‖ f‖Lp(Rq)

= Cp,q‖ f‖Lp(Rq),

where Cp,q := Cq[
1− 1

p

]
q

+ Cq[
1
p

]
q

. This completes the proof that the inequality (4) holds i.e

that Hq is bounded on Lp(Rq) for 1 < p < ∞. This completes the proof. �
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6.2. A inequality for the q -deformated Hilbert transform on Lorentz Lp,r(Rq)

In this subsection, we study the boundedness of the q -deformated Hilbert trans-
form on Lorentz Lp,r(Rq) spaces.

THEOREM 5. Let 1 < p < ∞ and 1 � r � ∞. Then the following inequality holds

‖Hq f‖Lp,r(Rq) � Bp,q‖ f‖Lp,r(Rq) for all f ∈ Lp,r(Rq), (49)

where Bp,q a positive constant independent of f .

Proof. Using Definition 5 and the estimate (53) and the triangle inequality of the
quasi-norm, we obtain that

‖Hq f‖Lp,r(Rq) � Cq

∥∥∥∥∥∥ f ∗∗(x)+
∞∫

t

f ∗(s)
dqs

s

∥∥∥∥∥∥
Lp,r(Rq)

� Cq2
1
p+ 1

r +1

⎛⎜⎝‖ f‖N p,r(Rq) +

∥∥∥∥∥∥
∞∫

t

f ∗(s)
dqs
s

∥∥∥∥∥∥
Lp,r(Rq)

⎞⎟⎠ . (50)

If we take α = r
p for the Hardy’s inequality (38) we get that

∥∥∥∥∥∥
∞∫

t

f ∗(s)
dqs

s

∥∥∥∥∥∥
Lp,r(Rq)

�

⎛⎝ ∞∫
0

t
r
p−1

⎛⎝ ∞∫
t

f ∗(s)dqs

⎞⎠r

dqt

⎞⎠
1
r

� 1[
1
p

]
q

⎛⎝ ∞∫
0

( f ∗(s))r t
r
p−1dt

⎞⎠ 1
r

(51)

� 1[
1
p

]
q

‖ f‖Lp,r(Rq) .

Moreover, by using the inequality (42) we have that

‖ f‖N p,r(Rq) � 1[
1− 1

p

]
q

‖ f‖Lp,r(Rq). (52)

Consequently, from (50), (51) and (52) we deduce that

‖Hq f‖Lp,r(Rq) � Cp,q‖ f‖Lp,r(Rq),

where Bp,q := 2
1
p+ 1

r +1

(
Cq[
1

p−1

]
q

+ Cq[
1− 1

p

]
q

)
. This completes the proof. �
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7. Weak type (1,1) inequality for the q -deformated Hilbert transform

The following inequality (53) involving the Hardy operator and its relationship
to nonincreasing rearrangements is discussed extensively in the context of classical
Lorentz spaces and integral inequalities. It can be found with detailed proofs in Bennett
& Sharpley work on interpolation of operators, particularly around pages 134–138 in
[10].

THEOREM 6. If f ∈ Lp(Rq) for 1 < p < ∞, then there exists a positive constant
Cq independent of f such that

(Hq f )∗(t) � Cq

(
1
t

∫ t

0
f ∗(s)dqs+

∫ ∞

t

f ∗(s)
s

dqs

)
. (53)

for all t > 0.

Proof. Using (7) and (1) we have

∣∣(Hq f ) (qm)
∣∣ =

∣∣∣∣∣1−q
πq

m−1

∑
n=−∞

qn f (qn)
qm −qn +

1−q
πq

∞

∑
n=m+1

qn f (qn)
qm−qn

+
1−q

πq

m−1

∑
n=−∞

qn f (−qn)
qm +qn +

1−q
πq

∞

∑
n=m+1

qn f (−qn)
qm +qn

∣∣∣∣∣
� −1−q

πq

m−1

∑
n=−∞

| f (qn)| 1
|1−qm−n| +

1−q
πq

qm
∞

∑
n=m+1

qn| f (qn)| 1
|1−qn−m|

+
1−q

πq

m−1

∑
n=−∞

| f (−qn)| 1
1+qm−n +

1−q
πq

qm
∞

∑
n=m+1

qn| f (−qn)| 1
1+qn−m ,

If we set m � 0. Then, for n ∈ Z, it is simple to confirm that{
m−n > 0 for n < m;
n−m > 0 for m < n.

(54)

If we assume m < 0. Then, for n ∈ Z, we have{
m−n > 0 for n < m;
n−m > 0 for m < n.

(55)

Hence, (54) and (55) imply that⎧⎨⎩
1

|1−qm−n| = 1
1−qm−n < 1 for n < m;

1
|1−qn−m| = 1

1−qn−m < 1 for m < n.
(56)

Since 1
1+qn−m < 1 for all n,m ∈ Z, and we apply (56) in order to derive the inequality

|(Hq f ) (qm)| � 1
πq

m−1

∑
n=−∞

{| f (qn)|+ | f (−qn)|}+
1
πq

1
qm

∞

∑
n=m+1

qn{| f (qn)|+ | f (−qn)|}.
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Thus, applying (33), we obtain the following inequality:

(Hq f )∗ (qm)
(33)
� 2

πq

m−1

∑
n=−∞

f ∗(qn)+
2
πq

1
qm

∞

∑
n=m

qn f ∗(qn)

=
2
πq

(
(1−q)

m−1

∑
n=−∞

qn f ∗(qn)
qn +

2
πq

1
qm

∞

∑
n=m

qn f ∗(qn)

)
. (57)

Here we also used the well-known fact that ∑
n∈Z

a(n)b(n) � ∑
n∈Z

a∗(n)b∗(n) holds when

a∗(n) and b∗(n) are the decreasing rearrangements of a(n) and b(n), respectively.
From (6), (7) and (57) we immediately obtain that

(Hq f )∗ (x) � Cq

⎛⎝ ∞∫
x

f ∗(t)
dqt

t
+

1
x

x∫
0

f ∗(t)dqt

⎞⎠ .

This completes the proof. �

THEOREM 7. Let f ∈ L1(Rq). Then the following inequality holds:

‖Hq f‖L1,∞(Rq) � Cq‖ f‖L1(Rq). (58)

where Cq a positive constant independent of f .

Proof. Form Definition 5 and the estimate (53) that

‖Hq f‖L1,∞(Rq) = ‖(Hq f )∗‖L1,∞(Rq)

= sup
t∈R+

q

t(Hq f )∗(t)

� Cq sup
t∈R+

q

t

⎛⎝ ∞∫
t

f ∗(s)
dqs

s
+

1
t

t∫
0

f ∗(s)dqs

⎞⎠
� Cq sup

t∈R+
q

t

⎛⎝1
t

∞∫
t

f ∗(s)dqs+
1
t

t∫
0

f ∗(s)dqs

⎞⎠
� Cq

∞∫
0

f ∗(s)dqs

= ‖Hq f‖L1(Rq)

and the inequality (50) holds, so the proof is complete. �
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University of Technology, Department of Mathematics, (2002).

[31] T. H. KOORNWINDER AND R. F. SWARTTOUW, On q-analogues of Fourier and Hankel transforms,
Trans. Amer. Math. Soc. 333 (1992), no. 1, 445–461.

[32] C. NICULESCU AND L.-E. PERSSON,Convex Functions and Their Applications, Third Edition, CMS
Books of Mathematics, Springer, Cham, 2025 (First Edition 2005, Second Edition 2018).

[33] L. MALIGRANDA, R. OINAROV AND L.-E. PERSSON,On Hardy q-inequalities, Czechoslovak Math.
J. 64 (2014), no. 3, 659–682.

[34] T. OTHMAN, S. FAOUAZ AND D. RADOUAN DAHER, On the generalized Hilbert transform and
weighted Hardy spaces in q-Dunkl harmonic analysis, Ramanujan J. 60 (2023), no. 1, 95–122.

[35] L.-E. PERSSON, A. KUFNER, N. SAMKO, Weighted Inequalities Of Hardy Type, second edition,
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

[36] L.-E. PERSSON AND S. SHAIMARDAN, Some new Hardy-type inequalities for Riemann-Liouville
fractional q -integral operator, J. Inequal. Appl. 2015, 2015:296, 17 pp.

[37] M. RIESZ, Surles fonctions conjuguées, Mathematische Zeitschrift (1928), 218–244.
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