
Mathematical
Inequalities

& Applications

Volume 28, Number 3 (2025), 519–530 doi:10.7153/mia-2025-28-32

WEIGHTED MAXIMAL POLYA–KNOPP INEQUALITIES

V. GARCÍA GARCÍA AND P. ORTEGA SALVADOR ∗

(Communicated by L. E. Persson)

Abstract. We characterize the pairs of weights (u,v) for the maximal operator G0 , defined for
nonnegative functions on (0,∞) by

G0 f (x) = sup
b>x

exp

(
1
b

∫ b

0
log f

)
,

to be bounded from Lp(v) to Lq(u) , p � q , or from Lp(v) to Lq,∞(u) .

1. Introduction and results

If f is a positive measurable function defined on (0,∞) , the inequality

∫ ∞

0
exp

(
1
x

∫ x

0
log f

)
dx � e

∫ ∞

0
f (x)dx (1)

is known as Polya-Knopp inequality. It was proved by Polya and, independently, by
Knopp [8], who extended the discrete result due to Carleman [1]. For more information
on this inequality and its connection with Hardy’s one, see the monograph [9].

It is simple to get the next stronger result:

∫ ∞

0

(
sup
b>x

exp

(
1
b

∫ b

0
log f

))
dx � e

∫ ∞

0
f (x)dx, (2)

which we call maximal Polya-Knopp inequality.
Inequality (2) is nothing but a strong-type inequality for the maximal geometric

mean operator G0 defined for nonnegative functions on (0,∞) and x ∈ (0,∞) by

G0 f (x) = sup
b>x

exp

(
1
b

∫ b

0
log f

)
,

where we mean that exp
(

1
b

∫ b
0 log f

)
= 0 if f = 0 on A ⊂ (0,b) with |A| > 0.
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The weighted versions of Polya-Knopp inequality (1) have been widely studied
(see, for instance, [7], [10], [11] and [13]). The weighted inequalities for the maximal
geometric operator

Gf (x) = sup
I

exp

(
1
|I|
∫

I
log | f |

)
,

where the supremum is taken over all open bounded intervals I containing x , have also
been characterized (see [2], [12] and [14]). However, as far as we know, it seems that
not much attention has been paid to weighted maximal Polya-Knopp inequalities.

The condition on the weight w that characterizes the one-weight strong-type in-
equality for G is that w ∈ A∞ . The classical A∞ condition can be expressed in several
equivalent ways (see, for instance, [6], chapter IV, Corollary 2.13 and Theorem 2.15).
In this sense, it is well known that w ∈ A∞ if and only if w ∈ ∪p>1Ap , which turns to
be equivalent to condition Aexp , i. e.,

sup
I

(
1
|I|
∫

I
w

)
exp

(
1
|I|
∫

I
log(w−1)

)
< ∞.

However, as Duoandikoetxea, Martı́n-Reyes and Ombrosi have pointed out in [3]
and [4], these equivalences do not hold for other bases. Specifically, this is the case for
the basis involved in G0 . It is therefore interesting to determine which is the A∞ -type
condition that characterizes the boundedness of G0 in weighted Lp spaces.

In this paper, we tackle the problem of characterizing the pairs of weights (u,v)
for which the inequality(∫ ∞

0
G0 f (x)qu(x)dx

) 1
q

� C

(∫ ∞

0
f (x)pv(x)dx

) 1
p

(3)

holds for all nonnegative functions f , with a constant C > 0 independent of f , in the
case 1 < p � q < ∞ . We will also deal with the weighted weak-type inequality

sup
λ>0

λ
(∫

{x∈(0,∞):G0 f (x)>λ}
u(x)dx

) 1
q

� C

(∫ ∞

0
f (x)pv(x)dx

) 1
p

, (4)

as well as the relationship between the weighted weak and strong-type inequalities in
the case p = q and u = v .

Our results are the following ones. The first one characterizes inequality (3) in the
case 1 < p � q < ∞ .

THEOREM 1. Let 1 < p � q < ∞ and let u , v be positive measurable functions
on (0,∞) . Then there exists a positive constant C such that inequality (3) holds for all
nonnegative functions f on (0,∞) if and only if

C1 ≡ sup
b>0

1

b
q
p

∫ b

0

(
G0(χ(0,b)v

−1)(x)
) q

p u(x)dx < ∞.

Moreover, the best constant C in (3) verifies C
1
q
1 � C � 4

(
1
p

) q
p
(p′)

1
qC

1
q
1 , where p′ is

the conjugate exponent of p .
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Our second result characterizes the weak-type inequality (4).

THEOREM 2. Let 0 < p,q < ∞ and let u , v be positive measurable functions
on (0,∞) . Then there exists a positive constant C such that inequality (4) holds for
all nonnegative functions f on (0,∞) if and only if the pair (u,v) verifies condition
A0,p,q,exp , which means that

[u,v]A0,p,q,exp ≡ sup
b>0

1
b

(∫ b

0
u

) p
q

exp

(
1
b

∫ b

0
logv−1

)
< ∞.

Moreover, the best constant in inequality (4) is [u,v]
1
p
A0,p,q,exp

.

The next result shows that when p = q and u = v , the weighted weak and strong-
type maximal Polya-Knopp inequalities are equivalent. The result is the next one.

THEOREM 3. Let q be a real number with 0 < q < ∞ and let w be a positive
measurable function on (0,∞) . Then the following statements are equivalent:

(i) There exists a positive constant Kq such that inequality

(∫ ∞

0
G0 f (x)qw(x)dx

) 1
q

� Kq

(∫ ∞

0
f (x)qw(x)dx

) 1
q

holds for all nonnegative functions f on (0,∞) .

(ii) There exists a positive constant Cq such that inequality

(∫
{x∈(0,∞):G0 f (x)>λ}

w(x)dx

) 1
q

� Cq

λ

(∫ ∞

0
f (x)qw(x)dx

) 1
q

holds for all nonnegative functions f on (0,∞) and all λ > 0 .

(iii) There exists a positive constant K1 such that inequality∫ ∞

0
G0 f (x)w(x)dx � K1

∫ ∞

0
f (x)w(x)dx

holds for all nonnegative functions f on (0,∞) .

(iv) There exists a positive constant C1 such that inequality∫
{x∈(0,∞):G0 f (x)>λ}

w(x)dx � C1

λ

∫ ∞

0
f (x)w(x)dx

holds for all nonnegative functions f on (0,∞) and all λ > 0 .

(v) The weight w verifies condition A0,exp , which means that

[w]A0,exp ≡ sup
b>0

(
1
b

∫ b

0
w

)
exp

(
1
b

∫ b

0
logw−1

)
< ∞.
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Furthermore, the best constants Kq , Cq , K1 and C1 in (i), (ii), (iii) and (iv) verify

1 = C1 = Cq
q � K1 = Kq

q = e

if [w]A0,exp = 1 , and

[w]A0,exp =C1 = Cq
q � K1 = Kq

q � [w]p0
A0,exp

(
p0

p0 −1

)p0

if [w]A0,exp > 1 , where p0 is the only real number greater than 1 which is solution of
the equation

1+ log[w]A0,exp + log

(
p

p−1

)
=

p
p−1

.

Observe that, by Jensen’s inequality,(
1
b

∫ b

0
w

)
exp

(
1
b

∫ b

0
logw−1

)
� exp

(
1
b

∫ b

0
logw

)
exp

(
1
b

∫ b

0
logw−1

)
= 1

for all b > 0, and then [w]A0,exp � 1. Observe also that [w]A0,exp = 1 if and only if w is
a constant a.e. function. It is clear that if w is constant a.e., then [w]A0,exp = 1. For the
converse, if [w]A0,exp = 1, then, as we have just seen,

(
1
b

∫ b

0
w

)
exp

(
1
b

∫ b

0
logw−1

)
= 1

for all b > 0, i. e.,
1
b

∫ b

0
w = exp

(
1
b

∫ b

0
logw

)
for all b > 0. This is a case of equality in Jensen’s inequality and since the exponential
function is strictly convex, necessarily w is constant a.e.

Now, we include a theorem for power weights which is a straightforward conse-
quence of Theorems 1 and 2. It reads as follows.

THEOREM 4. Let u,v : (0,∞) → R , u(x) = xα , v(x) = xβ .

(i) If 1 < p � q < ∞ , then inequality (3) holds if and only if

(a) α +1 > 0 and α +1 = q
p(β +1) when β < 0 ;

(b) α +1 = q
p(β +1) when β � 0 .

(ii) If 0 < p � q < ∞ , then inequality (4) holds if and only if α +1 > 0 and α +1 =
q
p (β +1) .

Finally, we will apply the results on G0 in order to characterize the weighted
inequality ∫

Rn
G f (x)w(x)dx � C

∫
Rn

f (x)w(x)dx,
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where G is the operator defined for nonnegative functions on R
n by

G f (x) = sup
b�1

exp

(
1
b

∫ b

0
log( f (xt))dt

)
.

The result for G is the next one.

THEOREM 5. Let w be a positive weight on R
n . Then, the following statements

are equivalent:

(i) There exists a positive constant K1 such that inequality

∫
Rn

G f (x)w(x)dx � K1

∫
Rn

f (x)w(x)dx

holds for all nonnegative functions f on R
n .

(ii) There exists a positive constant C1 such that inequality

∫
{x∈Rn:G f (x)>λ}

w(x)dx � C1

λ

∫
Rn

f (x)w(x)dx

holds for all nonnegative functions f on R
n and all λ > 0 .

(iii) The weight w verifies condition Ã0,exp , which means that

[w]Ã0,exp
≡ ess sup

x∈Rn

(∫ 1

0
w(tx)tn−1dt

)
exp

(∫ 1

0
log(w−1(tx)t1−n)dt

)
< ∞.

Furthermore, the best constants K1 and C1 verify

1 � C1 � K1 � e

if [w]Ã0,exp
= 1 , and

[w]Ã0,exp
� C1 � K1 � [w]p0

Ã0,exp

(
p0

p0−1

)p0

if [w]Ã0,exp
> 1 , where p0 is the only real number greater than 1 which is solution of

the equation

1+ log[w]Ã0,exp
+ log

(
p

p−1

)
=

p
p−1

.

We will prove Theorems 1, 2, 3 and 5 in the next sections.
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2. Proof of Theorem 1

Assume that (3) holds. It is equivalent to

∫ ∞

0

(
G0( f v−1)(x)

) q
p u(x)dx � Cq

(∫ ∞

0
f (x)dx

) q
p

. (5)

Let b > 0 and f = χ(0,b) . Then (5) implies

∫ b

0

(
G0(χ(0,b)v

−1)(x)
) q

p u(x)dx � Cqb
q
p ,

and since this inequality holds for all b > 0, we get C1 � Cq .
Assume now that C1 < ∞ . Let f be a nonnegative function on (0,∞) . We can

suppose that f = 0 outside an interval (0,c) . Since the function G0 f is nonincreasing,
then for every k ∈ Z the set Ok = {x ∈ (0,∞) : G0 f (x) > 2k} is an interval (0,bk) ,

where bk verifies 2k = exp

(
1
bk

∫ bk

0
log f

)
. Thus, by Jensen’s inequality

∫ ∞

0
G0 f (x)qu(x)dx = ∑

k∈Z

∫
{x∈(0,∞):2k<G0 f (x)�2k+1}

G0 f (x)qu(x)dx

= ∑
k∈Z

∫ bk

bk+1

G0 f (x)qu(x)dx � 2q ∑
k∈Z

∫ bk

bk+1

2kqu(x)dx

= 2q ∑
k∈Z

(
exp

(
1
bk

∫ bk

0
log f

))q ∫ bk

bk+1

u

= 2q ∑
k∈Z

(
exp

(
1
bk

∫ bk

0
log( f v

1
p )
))q(

exp

(
1
bk

∫ bk

0
logv−1

)) q
p ∫ bk

bk+1

u

� 2q ∑
k∈Z

(
1
bk

∫ bk

0
f v

1
p

)q(
exp

(
1
bk

∫ bk

0
logv−1

)) q
p ∫ bk

bk+1

u

= 2q ∑
k∈Z

(
T ( f v

1
p )(k)

)q
γk,

(6)

where, for a nonnegative function h on (0,∞) ,

Th(k) =
1
bk

∫ bk

0
h and γk =

(
exp

(
1
bk

∫ bk

0
logv−1

)) q
p ∫ bk

bk+1

u.

If we prove that the operator T is bounded from L∞(0,∞) to l∞({γk}) and that T

is also bounded from L1(0,∞) to l
q
p ,∞({γk}) , then by Marcinkiewicz’s interpolation

theorem the operator T will be bounded from Lp(0,∞) to lq({γk}) .
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The operator T is bounded from L∞(0,∞) to l∞({γk}) with constant equal to 1.
Indeed, observe that we use the weight {γk} as a measure, not as a multiplier, and then,
since l∞ ⊂ l∞({γk}) with ‖{xk}‖l∞({γk}) � ‖{xk}‖l∞ for all {xk} ∈ l∞ , we have

‖{Th(k)}‖l∞({γk}) � ‖{Th(k)}‖l∞ � ‖h‖L∞(0,∞).

Let us prove now that T is of weak-type (1, q
p) . Let λ > 0 and Oλ = {k ∈ Z :

Th(k) > λ} . Then,

∑
k∈Oλ

γk = lim
j→−∞ ∑

{k� j:Th(k)>λ}
γk.

We define Fj = {k � j : Th(k) > λ} . These sets verify Fj ⊂Fj−1 and also {Fj}↗
Oλ when j →−∞ . Let us fix j and the corresponding Fj . Let j0 = minFj . If k ∈ Fj ,
then k � j0 , which implies that bk � b j0 . Now, if x ∈ (bk+1,bk) and k ∈ Fj , we have

exp

(
1
bk

∫ bk

0
logv−1

)
� G0(χ(0,b j0 )v

−1)(x).

Then, by definition of C1 ,

∑
k∈Fj

γk = ∑
k∈Fj

∫ bk

bk+1

(
exp

(
1
bk

∫ bk

0
logv−1

)) q
p

u(x)dx

� ∑
k∈Fj

∫ bk

bk+1

(
G0(χ(0,b j0

)v
−1)
) q

p
u(x)dx

�
∫ b j0

0

(
G0(χ(0,b j0

)v
−1)
) q

p
u(x)dx � C1b

q
p
j0

� C1

(
1
λ

∫ b j0

0
h

) q
p

� C1

λ
q
p

(∫ ∞

0
h

) q
p

.

This proves that T is of weak-type (1, q
p) with constant C

p
q
1 , which implies the bound-

edness of T from Lp(0,∞) to lq({γk}) with constant 2
(

1
p

) q
p
(p′)

1
qC

1
q
1 (see [5], The-

orem (6.28), for the behaviour of constants in Marcinkiewicz interpolation theorem).
Now, applying this fact in (6), we get

(∫ ∞

0
G0 f (x)qu(x)dx

) 1
q

� 2

(
∑
k∈Z

(
T ( f v

1
p )(k)

)q
γk

) 1
q

� 4

(
1
p

) q
p

(p′)
1
qC

1
q
1

(∫ ∞

0
f pv

) 1
p

,

which finishes the proof.
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3. Proof of Theorem 2

Assume that (4) holds, which is clearly equivalent to

sup
λ>0

λ
(∫

{x∈(0,∞):G0 f (x)>λ}
u(x)dx

) p
q

� Cp
∫ ∞

0
f (x)v(x)dx. (7)

Let b > 0, 0 < α < 1, λ = α exp

(
1
b

∫ b

0
logv−1

)
and f = v−1χ(0,b) . If x ∈ (0,b) ,

then G0 f (x) > λ , which shows that (0,b) ⊂ {x : G0 f (x) > λ} . Then, by (7), we have

α exp

(
1
b

∫ b

0
logv−1

)(∫ b

0
u

) p
q

� Cpb.

Letting α tend to 1 and taking supremum in b > 0, we get [u,v]A0,p,q,exp � Cp .
Assume now that [u,v]A0,p,q,exp < ∞ . Let f � 0 and λ > 0. We may assume that

there exists b0 > 0 such that f (x) = 0 for all x > b0 . This implies that G0 f (x) = 0 for
all x > b0 . Since G0 f is a nonincreasing function, Oλ = {x ∈ (0,∞) : G0 f (x) > λ} =

(0,bλ ), with exp

(
1
bλ

∫ bλ

0
log f

)
= λ . Then, by definition of A0,p,q,exp and Jensen’s

inequality, we have

(∫
Oλ

u

) p
q

=
(∫ bλ

0
u

) p
q

=
1
λ

(∫ bλ

0
u

) p
q

exp

(
1
bλ

∫ bλ

0
log f

)

=
1
λ

(∫ bλ

0
u

) p
q

exp

(
1
bλ

∫ bλ

0
log( f v)

)
exp

(
1
bλ

∫ bλ

0
logv−1

)

�
[u,v]A0,p,q,exp

λ
bλ exp

(
1
bλ

∫ bλ

0
log( f v)

)

�
[u,v]A0,p,q,exp

λ

∫ bλ

0
f v

�
[u,v]A0,p,q,exp

λ

∫ ∞

0
f v,

(8)

which proves (7) with constant [u,v]A0,p,q,exp or, equivalently, (4) with constant

[u,v]
1
p
A0,p,q,exp

.
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4. Proof of Theorem 3

We only have to prove (v)⇒ (iii) , because (i)⇔ (iii) , (ii)⇔ (iv) and (iii)⇒ (iv)
are clear and (iv) ⇒ (v) has been proved in theorem 2.

Assume that (v) holds. Let f � 0, x ∈ (0,∞) and b > x . Then, by (v) and
Jensen’s inequality

exp

(
1
b

∫ b

0
log f

)
= exp

(
1
b

∫ b

0
log( f w)

)
exp

(
1
b

∫ b

0
logw−1

)

� [w]A0,exp exp

(
1
b

∫ b

0
log( f w)

)
b∫ b

0
w

� [w]A0,exp

∫ b

0
f w∫ b

0
w

� [w]A0,expNw f (x),

(9)

where Nw is the maximal operator defined by

Nw f (x) = sup
b>x

∫ b

0
| f |w∫ b

0
w

.

As an immediate consequence of (9), we get that G0 f (x) � [w]A0,expNw f (x) . Since
the operator Nw is bounded in Lp(w) for all p > 1 with norm p

p−1 , we have

∫ ∞

0
G0 f (x)pw(x)dx � [w]pA0,exp

∫ ∞

0
Nw f (x)pw(x)dx

� [w]pA0,exp

(
p

p−1

)p ∫ ∞

0
f (x)pw(x)dx,

which is equivalent to

∫ ∞

0
G0 f (x)w(x)dx � [w]pA0,exp

(
p

p−1

)p ∫ ∞

0
f (x)w(x)dx. (10)

If [w]A0,exp = 1, then letting p tend to ∞ , we get

∫ ∞

0
G0 f (x)w(x)dx � e

∫ ∞

0
f (x)w(x)dx.

If [w]A0,exp > 1, then the function ϕ(p) = [w]pA0,exp

(
p

p−1

)p
has absolute minimum on

(1,∞) and its minimum value is ϕ(p0) , where p0 is the only real number greater than
1 which is solution of the equation

1+ log[w]A0,exp + log

(
p

p−1

)
=

p
p−1

.



528 V. GARCÍA GARCÍA AND P. ORTEGA SALVADOR

Therefore, we have

∫ ∞

0
G0 f (x)w(x)dx � [w]p0

A0,exp

(
p0

p0−1

)p0 ∫ ∞

0
f (x)w(x)dx,

as we wished to prove.

5. Proof of Theorem 5

It is clear that (i) implies (ii) . Let us see first that (iii) implies (i) . We note that
[w]Ã0,exp

= esssupα∈Sn−1 [wα(t)tn−1]A0,exp , where wα (t) = w(tα) and, as we have seen
in Theorem 3,

[wα (t)tn−1]A0,exp = sup
b>0

(
1
b

∫ b

0
wα(t)tn−1dt

)
exp

(
1
b

∫ b

0
log(w−1

α (t)t1−n)dt

)
.

Working as in the proof of Theorem 3, we have that

∫ ∞

0
G0( fα )(t)wα(t)tn−1dt � [wα (t)tn−1]pA0,exp

(
p

p−1

)p ∫ ∞

0
fα (t)wα(t)tn−1dt,

for almost every α ∈ Sn−1 and all p > 1 (see (10)). It implies that

∫ ∞

0
G0( fα )(t)wα(t)tn−1dt � [w]p

Ã0,exp

(
p

p−1

)p ∫ ∞

0
fα (t)wα(t)tn−1dt

for almost every α ∈ Sn−1 and all p > 1. By integrating on Sn−1 , we get

∫
Rn

G f (x)w(x)dx � [w]p
Ã0,exp

(
p

p−1

)p ∫
Rn

f (x)w(x)dx

for all p > 1, which implies

∫
Rn

G f (x)w(x)dx � [w]p0
Ã0,exp

(
p0

p0−1

)p0 ∫
Rn

f (x)w(x)dx,

where p0 is the absolute minimum of the function ϕ(p) = [w]p
Ã0,exp

(
p

p−1

)p
if

[w]Ã0,exp
> 1, and ∫

Rn
G f (x)w(x)dx � e

∫
Rn

f (x)w(x)dx

if [w]Ã0,exp
= 1.

Finally, let us see that (ii) implies (iii) . Then, assume that

∫
{x∈Rn:G f (x)>λ}

w � C1

λ

∫
Rn

f w,



WEIGHTED MAXIMAL POLYA-KNOPP INEQUALITIES 529

which is equivalent to the following inequality, by changing into polar coordinates:

∫
Sn−1

∫ ∞

0
χ{αt∈Rn:G f (αt)>λ}(αt)w(αt)tn−1dtdα � C1

λ

∫
Sn−1

∫ ∞

0
f (αt)w(αt)tn−1dtdα.

By a simple change of variables, it is easy to see that G f (αt) = G0( fα )(t) . Then, the
last inequality can be written as

∫
Sn−1

∫ ∞

0
χ{αt∈Rn:G0( fα )(t)>λ}(αt)w(αt)tn−1dtdα � C1

λ

∫
Sn−1

∫ ∞

0
fα (t)w(αt)tn−1dtdα.

For a fixed α ∈ Sn−1 , αt verifies G0( fα)(t) > λ if and only if t verifies G0( fα )(t)
> λ . Then, we get

∫
Sn−1

∫
{t∈(0,∞):G0( fα )(t)>λ}

wα (t)tn−1dtdα � C1

λ

∫
Sn−1

∫ ∞

0
fα (t)wα (t)tn−1dtdα. (11)

Let A ⊂ Sn−1 with positive measure and let fα (t) = χA(α)h(t) . Thus, we have that

G0( fα )(t) = sup
b�t

exp

(
1
b

∫ b

0
log(χA(α)h(s))ds

)
= G0h(t)

for all α ∈ A . Then, (11) implies that

∫
A

∫
{t∈(0,∞):G0h(t)>λ}

wα(t)tn−1dtdα � C1

λ

∫
A

∫ ∞

0
h(t)wα(t)tn−1dtdα.

By differentiation, the inequality above implies that

∫
{t∈(0,∞):G0h(t)>λ}

wα (t)tn−1dt � C1

λ

∫ ∞

0
h(t)wα(t)tn−1dt, (12)

for almost every α ∈ Sn−1 , where the constant C1 is independent of α and h . Applying
Theorem 2, (12) implies that

[wα(t)tn−1]A0,exp ≡ sup
b>0

(
1
b

∫ b

0
wα(t)tn−1dt

)
exp

(
1
b

∫ b

0
log(w−1

α (t)t1−n)dt

)
� C1,

for almost every α ∈ Sn−1 , and this gives (iii) and also [w]Ã0,exp
� C1 .
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