athematical
nequalities
& Papplications
Volume 28, Number 3 (2025), 519-530 doi:10.7153/mia-2025-28-32

WEIGHTED MAXIMAL POLYA-KNOPP INEQUALITIES

V. GARCTA GARCIA AND P. ORTEGA SALVADOR*

(Communicated by L. E. Persson)

Abstract. We characterize the pairs of weights (u,v) for the maximal operator Gy, defined for
nonnegative functions on (0,0) by

L 1
Gof(x) = supexp (5/0 logf>,

to be bounded from L”(v) to L9(u), p < g, or from L?(v) to L9 (u).

1. Introduction and results

If f is a positive measurable function defined on (0, ), the inequality

/Omexp (%/Oxlogf) dxge/omf(x)dx (1)

is known as Polya-Knopp inequality. It was proved by Polya and, independently, by
Knopp [8], who extended the discrete result due to Carleman [1]. For more information
on this inequality and its connection with Hardy’s one, see the monograph [9].

It is simple to get the next stronger result:

oo 1 b oo
/0 (Zli[;exp (E/o logf>>dx<e/0 Sf(x)dx, 2)

which we call maximal Polya-Knopp inequality.
Inequality (2) is nothing but a strong-type inequality for the maximal geometric
mean operator Gy defined for nonnegative functions on (0,e) and x € (0,e0) by

b>x

1 1t
Gof(x) = supexp (z /0 logf) :

where we mean that exp (%fé’logf) =0if f=0o0n A C (0,b) with |A| > 0.
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The weighted versions of Polya-Knopp inequality (1) have been widely studied
(see, for instance, [7], [10], [11] and [13]). The weighted inequalities for the maximal

geometric operator
1
Gf(x) = supexp (—/log|f|> ,
I 1| Ji

where the supremum is taken over all open bounded intervals I containing x, have also
been characterized (see [2], [12] and [14]). However, as far as we know, it seems that
not much attention has been paid to weighted maximal Polya-Knopp inequalities.

The condition on the weight w that characterizes the one-weight strong-type in-
equality for G is that w € A... The classical A.. condition can be expressed in several
equivalent ways (see, for instance, [6], chapter IV, Corollary 2.13 and Theorem 2.15).
In this sense, it is well known that w € A.. if and only if w € U,~1A,, which turns to
be equivalent to condition Aep, i. €.,

sup(&/ )exp <|%/110g(w1)> < oo,

However, as Duoandikoetxea, Martin-Reyes and Ombrosi have pointed out in [3]
and [4], these equivalences do not hold for other bases. Specifically, this is the case for
the basis involved in Gy. It is therefore interesting to determine which is the A..-type
condition that characterizes the boundedness of G in weighted L? spaces.

In this paper, we tackle the problem of characterizing the pairs of weights (u,v)
for which the inequality

(Favrma)} ([ roma)) o

holds for all nonnegative functions f, with a constant C > 0 independent of f, in the
case 1 < p < g <. We will also deal with the weighted weak-type inequality

A/ ()d>é<C</wf( >P<>d)’l’ @
su u\x)ax S X)) vix)ax s
A>F()) {x€(0,00):Gof(x)>A} 0

as well as the relationship between the weighted weak and strong-type inequalities in
the case p=qg and u=v.

Our results are the following ones. The first one characterizes inequality (3) in the
case 1 < p < g <oo.

THEOREM 1. Let 1 < p < g < oo and let u, v be positive measurable functions
on (0,00). Then there exists a positive constant C such that inequality (3) holds for all
nonnegative functions f on (0,e0) if and only if

I N 4
Ci =sup—; / (GO(X(OJ,)V D(x))? u(x)dx < o.
b>0 pr YO

1 4 Tt
Moreover, the best constant C in (3) verifies Clq <C<K4 (%) P (p’)ﬁClﬂ where p' is

the conjugate exponent of p.
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Our second result characterizes the weak-type inequality (4).

THEOREM 2. Let 0 < p,q < oo and let u, v be positive measurable functions
on (0,00). Then there exists a positive constant C such that inequality (4) holds for
all nonnegative functions f on (0,c) if and only if the pair (u,v) verifies condition
Ao p.g.exp» Which means that

1 b g 1 /b 1
) = N b : ) =
[u V]AO‘p.q‘exp 2;1[(; 5 </(; u) exp (b /O ogv )

Moreover; the best constant in inequality (4) is [u, v} Aopgen”

The next result shows that when p = g and u = v, the weighted weak and strong-
type maximal Polya-Knopp inequalities are equivalent. The result is the next one.

THEOREM 3. Let q be a real number with 0 < q < o and let w be a positive
measurable function on (0,0). Then the following statements are equivalent:

(i) There exists a positive constant K, such that inequality

(/ Gof (¥)Iw(x dx> <K (/f Yw(x dx)

holds for all nonnegative functions f on (0,0).

(i1) There exists a positive constant Cy, such that inequality

5 % oo 5
</{x6(0,°°):Gof(x)>l}W(x)dx) ) ( /o f (x)qW(X)dx)

holds for all nonnegative functions f on (0,e0) and all A > 0.

(iii) There exists a positive constant K| such that inequality

/w Gof(x)w(x)dx < K; /wf(x)w(x)dx
0 0

holds for all nonnegative functions f on (0,0).

(iv) There exists a positive constant Cy such that inequality

C, [~
w(x)dx < —/ Sx)w(x)dx
/{xe(o.,ooxcof(xw} A Jo

holds for all nonnegative functions f on (0,e0) and all A > 0.

(v) The weight w verifies condition Ag exp, which means that

(W] =su 1/bw ex 1/blo wl) <
A(Lexp >I(; b 0 p b 0 g .
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Furthermore, the best constants K, Cy4, Ky and Cy in (i), (ii), (iii) and (iv) verify
1=C :C3<K1 :nge

if‘ [W}AO,exp = 1’ and

, o \7°
— — — 0
Wlagey = C1 = Cq < Ki = KJ < Wl ( o 1)
if W] Ay > 1, where po is the only real number greater than 1 which is solution of
the equation

p

p
l 1 1 - = —.
+ Og[W]AOAﬁxp + Og (p — 1 ) p — 1

Observe that, by Jensen’s inequality,

l/bw ex l/blo w ) >ex 1/blo w | ex l/blo wl)=1
bJo Pl 0 8 Z eXp{ 5 0 8 Pl 0 g =
forall b >0, and then [w]a,,, > 1. Observe also that [w]s, ., =1 if and only if w is

a constant a.e. function. It is clear that if w is constant a.e., then [w] = 1. For the
converse, if [w] =1, then, as we have just seen,

l/h X l/hl 1) =1
5 Jo w | exp 5 Jo ogw =
1 b 1 ”1
E/O w = exp <E/O OgW)

for all b > 0. This is a case of equality in Jensen’s inequality and since the exponential
function is strictly convex, necessarily w is constant a.e.

Now, we include a theorem for power weights which is a straightforward conse-
quence of Theorems 1 and 2. It reads as follows.

AO,exp
A(Lexp

forall b >0,1. e.,

THEOREM 4. Let u,v: (0,00) — R, u(x) =x%, v(x) =xP.
(i) If 1 < p < g < oo, then inequality (3) holds if and only if
(@) a+1>0and a+1="1(B+1) when B <0;

(b) a+1="1(B+1) when p>0.

(ii) If 0 < p < g < oo, then inequality (4) holds if and only if oo+1 >0 and o+ 1 =
LB+1).
Finally, we will apply the results on Gy in order to characterize the weighted
inequality
- Gf(x)w(x)dx <C - Sx)w(x)dx,
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where ¢ is the operator defined for nonnegative functions on R” by

4 f(x) = supexp (% /Oblog(f(xt))dt> .

b>1

The result for ¢ is the next one.

THEOREM 5. Let w be a positive weight on R". Then, the following statements
are equivalent:

(i) There exists a positive constant K| such that inequality

- Gfxwkx)dx <K [ fx)w(x)dx

Rr

holds for all nonnegative functions f on R".

(ii) There exists a positive constant Cy such that inequality

C1

wix)dx < o= | fw(x)dx

~/{xeR":€¢f(x)>7L}
holds for all nonnegative functions f on R" and all A > 0.

(iii) The weight w verifies condition A~O,expy which means that

w|; = esssup wtx "Vt ) exp log Yex)e ="y ar
AQ
“r x€R?

Furthermore, the best constants K| and Cy verify
I<C <K <e

if [W}Ao,exp =1, and

) o \7
. 0
[W]AOJ,XP <C <K <[w ]AOBxp <p0_ 1)

if W] ooy > 1, where pq is the only real number greater than 1 which is solution of

the equation
p p
141 X 1 o
+log[wlz,, + g( 1) FE

We will prove Theorems 1, 2, 3 and 5 in the next sections.
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2. Proof of Theorem 1

Assume that (3) holds. It is equivalent to

/Om (Go(£v™") () ? u(x)dx < €7 (/Omf(x)dx) g 5)

Let b >0 and f = ¥(op)- Then (5) implies

b a
| (Golrony™ ) uxidx < v,
0 :
and since this inequality holds for all b > 0, we get C; < CY.
Assume now that C; < . Let f be a nonnegative function on (0,e). We can

suppose that f = 0 outside an interval (0,c¢). Since the function Gy f is nonincreasing,
then for every k € Z the set O = {x € (0,%0) : Gof(x) > 2K} is an interval (0,b;),

1 b
where by verifies 2F = exp (b_ log f) . Thus, by Jensen’s inequality
k J0

wG x)9u(x)dx = / G q d
| Gorxyut) 3 ctomratecpipen ) G0 )

by
= Z Go S(x)Tu(x)dx <297 / 2Ky (x)dx
kez” bkr1 kez” b1

q Z ( l by, q by,

=2 exp (—/ logf>> / u
keZ bic Jo bi1

1 rbe 1 4 1 b

=21 — 1 » — [ logv!
E (i o)) e o)
g 1 e 1\1? 1 /b h borbe

<2 —/ vt’> (ex (— logv™ )) / u
ke%<bk 0 ! P b Jo & bt

=23 (1)1 e

keZ

(6)

T

by
/ y
bit1

where, for a nonnegative function % on (0,),

) borbe
Th(k) = b_k/o h and exp / logv ) /b u.
k1

If we prove that the operator T is bounded from L~(0,) to [*({¥%}) and that T

is also bounded from L'(0,) to l%’m({yk}), then by Marcinkiewicz’s interpolation
theorem the operator T will be bounded from L?(0,c0) to 14({y}).
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The operator T is bounded from L=(0,) to I”({y}) with constant equal to 1.
Indeed, observe that we use the weight {y;} as a measure, not as a multiplier, and then,
since 1 C 1™ ({%}) with [[{xx} li=(151) < [Hoa} ||i= for all {xz} € 1, we have

LT R(E) Hli= (1) < IHTR() Hl= < (|B]| 2 (0,00) -
Let us prove now that T is of weak-type (1, %) Let A >0and Oy ={keZ:
Th(k) > A}. Then,

Y = lim D Yk
k€0, T k= Th(k)> A}

We define F; = {k> j:Th(k) > A}. These sets verify F; C F;_; andalso {F;}
0; when j— —eo. Letus fix j and the corresponding Fj. Let jo = minF;. If k € Fj,
then k > jo, which implies that by < bj,. Now, if x € (by1,bx) and k € F;, we have

1 b _ _
exp <b_k A logv 1) < Go(X(0.;)V D).

Then, by definition of Cy,
q
by 1 bk ?
> = Z/ (exp (—/ logv_1)> u(x)dx
kGFj kEFj karl bk 0
q

<3 [ (Golronyr ™) o

keF; Dkt

by .,
</0 <GO(7C(O,b_,-O)V ))

1 oo \? _C [ [ \?
() <&
0 Ap 0

P

This proves that T is of weak-type (1, %) with constant Cf , which implies the bound-

T

q
u(x)dx < Cibj

1 1
edness of T from L?(0,) to 19({y}) with constant 2 (%) "(p"ac] (see [5], The-
orem (6.28), for the behaviour of constants in Marcinkiewicz interpolation theorem).
Now, applying this fact in (6), we get

(f Gof(X)qu(X)dX); <2 ( )y (T(fv%xk))qn) 5

4 (}))Z@')écf’ (fm)"

N

which finishes the proof.
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3. Proof of Theorem 2

Assume that (4) holds, which is clearly equivalent to

14
sup A (/ u(x)dx) ! < C”/ F(x)v(x)dx. (7
A>0 {xe(0,20):Go f(x)>A} 0

1 rb

Let b>0,0< o<1, A=aexp (Z/ logv_l) and f = v‘lx(07b). If x € (0,b),
0

then Gof(x) > A, which shows that (0,b) C {x: Gof(x) > A}. Then, by (7), we have

1 /b b\ G
oexp (Z/ logvl) (/ u) < CPbh.
0 0

Letting o tend to 1 and taking supremumin b > 0, we get [u,v]a,, ., < CP.
Assume now that [u,v]a,, . <. Let f >0 and A > 0. We may assume that
there exists by > 0 such that f(x) = 0 for all x > b¢. This implies that Go f(x) =0 for
all x > bg. Since Gy f is a nonincreasing function, O) = {x € (0,) : Gof(x) > A} =
1 /o
(0,b,,), with exp <b_/ logf) = A. Then, by definition of A, 4exp and Jensen’s
2 J0

inequality, we have

(o) = ()

N
gTPwv/o v,

which proves (7) with constant [u, V]
1

[u,V] Xoﬁprq#exp .

Ao pgexp OF €quivalently, (4) with constant



WEIGHTED MAXIMAL POLYA-KNOPP INEQUALITIES 527

4. Proof of Theorem 3

We only have to prove (v) = (iii), because (i) < (iii), (ii) < (iv) and (iii) = (iv)
are clear and (iv) = (v) has been proved in theorem 2.

Assume that (v) holds. Let f >0, x € (0,0) and b > x. Then, by (v) and
Jensen’s inequality

exp(b/logf)—exp< /logfw)exp< /logw )

b
b Jw
< Wltgeg e (5 [ Toetr)) - <l b o

b
b Aoexp ™ b
0 0

< [W]Ao‘expNWf(x%

where N,, is the maximal operator defined by

0

As an immediate consequence of (9), we get that Gof(x) < [W]a, o, Nwf(x) . Since

the operator N,, is bounded in L?(w) for all p > 1 with norm pp we have

1°

/0 " Gof (e wix)dx < [wlf, /0 " N f ()P w(x)dx

<[W]AOCXP< ) / Jx)Pw(x
which is equivalent to

| Gortom []A(,exp( _1) | s (10)

If [W]ag . = 1, then letting p tend to o, we get

/Ow Gof(x)w(x)dx < e[)Nf(x)W(x)dx

If hen the f 7 (-2.)" has absolute mini
[Wlag e, > 1, then the function ¢(p) = [w] Aoep \ T as absolute minimum on

(1,00) and its minimum value is ¢(po), where py is the only real number greater than
1 which is solution of the equation

1 +logw ]AOexp+10g< pl>_p%l'
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Therefore, we have

/Gof [}ﬁﬁex,J(pO_l)m/ f@)

as we wished to prove.

5. Proof of Theorem 5

It is clear that (i) implies (i ) Let us see first that (iii) implies ({). We note that
[w] Ao = ESSUPgeg-1 [we ()" 1] Apexp+ Where wy (1) = w(to) and, as we have seen
in Theorem 3,

b b
Wo ()" ag o, = SUP l/ wo (1)t dt | exp l/ log(wy ' (1)e ™")dr ) .
0 \bJo b Jo

Working as in the proof of Theorem 3, we have that

” P e
/0 Go(fa) (()wa(£)e" " dlt < [wa ()" 15, (ﬁ) /0 fa(t)wa(0)"dt,

for almost every oo € "' and all p > 1 (see (10)). It implies that

[ Gatromatnrtar < il o (7)) [ salmatona

for almost every a € §"~! and all p > 1. By integrating on S"~!, we get

Ap,exp

p p
[ 91w < ] (g) [ P

for all p > 1, which implies

Po
Po Po
[ artmar < o, (S25) [ et
p
where py is the absolute minimum of the function ¢(p) = [w]? (%) if

AO.exp P—
[w] Aoy > 1> and
L, DT wx)dx<e [ flx)wlx)dx

if [wi;

=1
A(Lexp ’
Finally, let us see that (if) implies (iii). Then, assume that

C1

/{xeRn:g,f(x)>z} S fw
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which is equivalent to the following inequality, by changing into polar coordinates:

/5’171/0 X{oucrr f(on)>2y (ot )w(an)i"™ 1dtd0‘< 7 Jo 1/ flat)yw(oa)" didar.

By a simple change of variables, it is easy to see that & f(ot) = Go(fo)(¢). Then, the
last inequality can be written as

/sH/o X{areRn:Gy(fo)(1)>2} (Ot )w( o )t~ 1dfd05<— - 1/ fa(t)w(at)t" dtda.

For a fixed o € "7, at verifies Go(fy)(¢) > A if and only if ¢ verifies Go(fx)(?)
> A. Then, we get

C oo
n—1 1 n—1

dtdo < — dtdo. (11
/Suil ~/{t6(0,°°):G0(fa)(t)>7L} W (1)t t 1 Jgi /0 So(O)we ()t t (11)

Let A C §"~! with positive measure and let fy(t) = xa(@)h(t). Thus, we have that

Gi(1) 1) = supexp (5 o (@)hts)s ) = Gt

b>t

for all o € A. Then, (11) implies that

C oo
0" drdo < —1// h(t)we (1) dtdo.
S ocomsamrony ]| nowato)

By differentiation, the inequality above implies that

/ weo ()" dr < / h(t)we (1)1 dr, (12)
{t€(0,00):Goh(r)>A}

for almost every o € §"~!, where the constant C; is independentof o and &. Applying
Theorem 2, (12) implies that

1 /b 1 /b
b agog =500 (5 [t ar exo (5 [ toxtug! 0r' ar) <

b>0

<Cr.

for almost every o € "1, and this gives (iii) and also [w]; Aoexp
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