

WEIGHTED MAXIMAL POLYA-KNOPP INEQUALITIES

V. GARCÍA GARCÍA AND P. ORTEGA SALVADOR*

(Communicated by L. E. Persson)

Abstract. We characterize the pairs of weights (u,v) for the maximal operator G_0 , defined for nonnegative functions on $(0,\infty)$ by

$$G_0 f(x) = \sup_{b>x} \exp\left(\frac{1}{b} \int_0^b \log f\right),$$

to be bounded from $L^p(v)$ to $L^q(u)$, $p \leq q$, or from $L^p(v)$ to $L^{q,\infty}(u)$.

1. Introduction and results

If f is a positive measurable function defined on $(0, \infty)$, the inequality

$$\int_0^\infty \exp\left(\frac{1}{x} \int_0^x \log f\right) dx \leqslant e \int_0^\infty f(x) dx \tag{1}$$

is known as Polya-Knopp inequality. It was proved by Polya and, independently, by Knopp [8], who extended the discrete result due to Carleman [1]. For more information on this inequality and its connection with Hardy's one, see the monograph [9].

It is simple to get the next stronger result:

$$\int_{0}^{\infty} \left(\sup_{b > x} \exp\left(\frac{1}{b} \int_{0}^{b} \log f\right) \right) dx \leqslant e \int_{0}^{\infty} f(x) dx, \tag{2}$$

which we call maximal Polya-Knopp inequality.

Inequality (2) is nothing but a strong-type inequality for the maximal geometric mean operator G_0 defined for nonnegative functions on $(0, \infty)$ and $x \in (0, \infty)$ by

$$G_0 f(x) = \sup_{b>x} \exp\left(\frac{1}{b} \int_0^b \log f\right),\,$$

where we mean that $\exp\left(\frac{1}{b}\int_0^b \log f\right) = 0$ if f = 0 on $A \subset (0,b)$ with |A| > 0.

^{*} Corresponding author.

Mathematics subject classification (2020): 26D99, 42A99, 42B25.

Keywords and phrases: Geometric maximal operator, maximal Polya-Knopp inequality, Polya-Knopp inequality, weighted inequalities, weights.

This research has been supported in part by Junta de Andalucía (Grant FQM354).

The weighted versions of Polya-Knopp inequality (1) have been widely studied (see, for instance, [7], [10], [11] and [13]). The weighted inequalities for the maximal geometric operator

 $Gf(x) = \sup_{I} \exp\left(\frac{1}{|I|} \int_{I} \log|f|\right),$

where the supremum is taken over all open bounded intervals I containing x, have also been characterized (see [2], [12] and [14]). However, as far as we know, it seems that not much attention has been paid to weighted maximal Polya-Knopp inequalities.

The condition on the weight w that characterizes the one-weight strong-type inequality for G is that $w \in A_{\infty}$. The classical A_{∞} condition can be expressed in several equivalent ways (see, for instance, [6], chapter IV, Corollary 2.13 and Theorem 2.15). In this sense, it is well known that $w \in A_{\infty}$ if and only if $w \in \bigcup_{p>1} A_p$, which turns to be equivalent to condition A_{\exp} , i. e.,

$$\sup_{I} \left(\frac{1}{|I|} \int_{I} w \right) \exp \left(\frac{1}{|I|} \int_{I} \log(w^{-1}) \right) < \infty.$$

However, as Duoandikoetxea, Martín-Reyes and Ombrosi have pointed out in [3] and [4], these equivalences do not hold for other bases. Specifically, this is the case for the basis involved in G_0 . It is therefore interesting to determine which is the A_{∞} -type condition that characterizes the boundedness of G_0 in weighted L^p spaces.

In this paper, we tackle the problem of characterizing the pairs of weights (u, v) for which the inequality

$$\left(\int_0^\infty G_0 f(x)^q u(x) dx\right)^{\frac{1}{q}} \leqslant C \left(\int_0^\infty f(x)^p v(x) dx\right)^{\frac{1}{p}} \tag{3}$$

holds for all nonnegative functions f, with a constant C > 0 independent of f, in the case 1 . We will also deal with the weighted weak-type inequality

$$\sup_{\lambda>0} \lambda \left(\int_{\{x \in (0,\infty): G_0 f(x) > \lambda\}} u(x) dx \right)^{\frac{1}{q}} \leqslant C \left(\int_0^\infty f(x)^p v(x) dx \right)^{\frac{1}{p}}, \tag{4}$$

as well as the relationship between the weighted weak and strong-type inequalities in the case p = q and u = v.

Our results are the following ones. The first one characterizes inequality (3) in the case 1 .

THEOREM 1. Let 1 and let <math>u, v be positive measurable functions on $(0,\infty)$. Then there exists a positive constant C such that inequality (3) holds for all nonnegative functions f on $(0,\infty)$ if and only if

$$C_1 \equiv \sup_{b>0} \frac{1}{h^{\frac{q}{p}}} \int_0^b \left(G_0(\chi_{(0,b)} v^{-1})(x) \right)^{\frac{q}{p}} u(x) dx < \infty.$$

Moreover, the best constant C in (3) verifies $C_1^{\frac{1}{q}} \leqslant C \leqslant 4\left(\frac{1}{p}\right)^{\frac{q}{p}}(p')^{\frac{1}{q}}C_1^{\frac{1}{q}}$, where p' is the conjugate exponent of p.

Our second result characterizes the weak-type inequality (4).

THEOREM 2. Let $0 < p,q < \infty$ and let u, v be positive measurable functions on $(0,\infty)$. Then there exists a positive constant C such that inequality (4) holds for all nonnegative functions f on $(0,\infty)$ if and only if the pair (u,v) verifies condition $A_{0,p,q,exp}$, which means that

$$[u,v]_{A_{0,p,q,exp}} \equiv \sup_{b>0} \frac{1}{b} \left(\int_0^b u \right)^{\frac{p}{q}} \exp \left(\frac{1}{b} \int_0^b \log v^{-1} \right) < \infty.$$

Moreover, the best constant in inequality (4) is $[u,v]_{A_{0,p,q,exp}}^{\frac{1}{p}}$.

The next result shows that when p = q and u = v, the weighted weak and strong-type maximal Polya-Knopp inequalities are equivalent. The result is the next one.

THEOREM 3. Let q be a real number with $0 < q < \infty$ and let w be a positive measurable function on $(0,\infty)$. Then the following statements are equivalent:

(i) There exists a positive constant K_q such that inequality

$$\left(\int_0^\infty G_0 f(x)^q w(x) dx\right)^{\frac{1}{q}} \leqslant K_q \left(\int_0^\infty f(x)^q w(x) dx\right)^{\frac{1}{q}}$$

holds for all nonnegative functions f on $(0, \infty)$.

(ii) There exists a positive constant C_q such that inequality

$$\left(\int_{\{x\in(0,\infty):G_0f(x)>\lambda\}}w(x)dx\right)^{\frac{1}{q}}\leqslant \frac{C_q}{\lambda}\left(\int_0^\infty f(x)^qw(x)dx\right)^{\frac{1}{q}}$$

holds for all nonnegative functions f on $(0,\infty)$ and all $\lambda > 0$.

(iii) There exists a positive constant K_1 such that inequality

$$\int_0^\infty G_0 f(x) w(x) dx \leqslant K_1 \int_0^\infty f(x) w(x) dx$$

holds for all nonnegative functions f on $(0, \infty)$.

(iv) There exists a positive constant C_1 such that inequality

$$\int_{\{x \in (0,\infty): G_0 f(x) > \lambda\}} w(x) dx \leqslant \frac{C_1}{\lambda} \int_0^\infty f(x) w(x) dx$$

holds for all nonnegative functions f on $(0,\infty)$ and all $\lambda > 0$.

(v) The weight w verifies condition $A_{0,exp}$, which means that

$$[w]_{A_{0,exp}} \equiv \sup_{b>0} \left(\frac{1}{b} \int_0^b w\right) \exp\left(\frac{1}{b} \int_0^b \log w^{-1}\right) < \infty.$$

Furthermore, the best constants K_q , C_q , K_1 and C_1 in (i), (ii), (iii) and (iv) verify

$$1 = C_1 = C_a^q \leqslant K_1 = K_a^q = e$$

if $[w]_{A_{0,exp}} = 1$, and

$$[w]_{A_{0,exp}} = C_1 = C_q^q \leqslant K_1 = K_q^q \leqslant [w]_{A_{0,exp}}^{p_0} \left(\frac{p_0}{p_0 - 1}\right)^{p_0}$$

if $[w]_{A_{0,exp}} > 1$, where p_0 is the only real number greater than 1 which is solution of the equation

$$1 + \log[w]_{A_{0,exp}} + \log\left(\frac{p}{p-1}\right) = \frac{p}{p-1}.$$

Observe that, by Jensen's inequality,

$$\left(\frac{1}{b}\int_0^b w\right) \exp\left(\frac{1}{b}\int_0^b \log w^{-1}\right) \geqslant \exp\left(\frac{1}{b}\int_0^b \log w\right) \exp\left(\frac{1}{b}\int_0^b \log w^{-1}\right) = 1$$

for all b > 0, and then $[w]_{A_{0,\exp}} \ge 1$. Observe also that $[w]_{A_{0,\exp}} = 1$ if and only if w is a constant a.e. function. It is clear that if w is constant a.e., then $[w]_{A_{0,\exp}} = 1$. For the converse, if $[w]_{A_{0,\exp}} = 1$, then, as we have just seen,

$$\left(\frac{1}{b} \int_0^b w\right) \exp\left(\frac{1}{b} \int_0^b \log w^{-1}\right) = 1$$

for all b > 0, i. e.,

$$\frac{1}{b} \int_0^b w = \exp\left(\frac{1}{b} \int_0^b \log w\right)$$

for all b > 0. This is a case of equality in Jensen's inequality and since the exponential function is strictly convex, necessarily w is constant a.e.

Now, we include a theorem for power weights which is a straightforward consequence of Theorems 1 and 2. It reads as follows.

Theorem 4. Let
$$u, v : (0, \infty) \to \mathbb{R}$$
, $u(x) = x^{\alpha}$, $v(x) = x^{\beta}$.

(i) If 1 , then inequality (3) holds if and only if

(a)
$$\alpha + 1 > 0$$
 and $\alpha + 1 = \frac{q}{p}(\beta + 1)$ when $\beta < 0$;

(b)
$$\alpha + 1 = \frac{q}{p}(\beta + 1)$$
 when $\beta \geqslant 0$.

(ii) If $0 , then inequality (4) holds if and only if <math>\alpha + 1 > 0$ and $\alpha + 1 = \frac{q}{p}(\beta + 1)$.

Finally, we will apply the results on G_0 in order to characterize the weighted inequality

$$\int_{\mathbb{R}^n} \mathscr{G}f(x)w(x)dx \leqslant C \int_{\mathbb{R}^n} f(x)w(x)dx,$$

where \mathscr{G} is the operator defined for nonnegative functions on \mathbb{R}^n by

$$\mathscr{G}f(x) = \sup_{b \ge 1} \exp\left(\frac{1}{b} \int_0^b \log(f(xt)) dt\right).$$

The result for \mathscr{G} is the next one.

THEOREM 5. Let w be a positive weight on \mathbb{R}^n . Then, the following statements are equivalent:

(i) There exists a positive constant K_1 such that inequality

$$\int_{\mathbb{R}^n} \mathscr{G}f(x)w(x)dx \leqslant K_1 \int_{\mathbb{R}^n} f(x)w(x)dx$$

holds for all nonnegative functions f on \mathbb{R}^n .

(ii) There exists a positive constant C_1 such that inequality

$$\int_{\{x \in \mathbb{R}^n: \mathcal{G}_f(x) > \lambda\}} w(x) dx \leqslant \frac{C_1}{\lambda} \int_{\mathbb{R}^n} f(x) w(x) dx$$

holds for all nonnegative functions f on \mathbb{R}^n and all $\lambda > 0$.

(iii) The weight w verifies condition $\tilde{A}_{0,exp}$, which means that

$$[w]_{\tilde{A}_{0,exp}} \equiv ess \sup_{x \in \mathbb{R}^n} \left(\int_0^1 w(tx) t^{n-1} dt \right) \exp \left(\int_0^1 \log(w^{-1}(tx) t^{1-n}) dt \right) < \infty.$$

Furthermore, the best constants K_1 and C_1 verify

$$1\leqslant C_1\leqslant K_1\leqslant e$$

if $[w]_{\tilde{A}_0,exp} = 1$, and

$$[w]_{\tilde{A}_{0,exp}} \leqslant C_1 \leqslant K_1 \leqslant [w]_{\tilde{A}_{0,exp}}^{p_0} \left(\frac{p_0}{p_0 - 1}\right)^{p_0}$$

if $[w]_{\tilde{A}_{0,exp}} > 1$, where p_0 is the only real number greater than 1 which is solution of the equation

$$1 + \log[w]_{\tilde{A}_{0,exp}} + \log\left(\frac{p}{p-1}\right) = \frac{p}{p-1}.$$

We will prove Theorems 1, 2, 3 and 5 in the next sections.

2. Proof of Theorem 1

Assume that (3) holds. It is equivalent to

$$\int_0^\infty \left(G_0(fv^{-1})(x) \right)^{\frac{q}{p}} u(x) dx \leqslant C^q \left(\int_0^\infty f(x) dx \right)^{\frac{q}{p}}. \tag{5}$$

Let b > 0 and $f = \chi_{(0,b)}$. Then (5) implies

$$\int_{0}^{b} \left(G_{0}(\chi_{(0,b)} v^{-1})(x) \right)^{\frac{q}{p}} u(x) dx \leqslant C^{q} b^{\frac{q}{p}},$$

and since this inequality holds for all b > 0, we get $C_1 \le C^q$.

Assume now that $C_1 < \infty$. Let f be a nonnegative function on $(0,\infty)$. We can suppose that f=0 outside an interval (0,c). Since the function G_0f is nonincreasing, then for every $k \in \mathbb{Z}$ the set $O_k = \{x \in (0,\infty) : G_0f(x) > 2^k\}$ is an interval $(0,b_k)$, where b_k verifies $2^k = \exp\left(\frac{1}{b_k} \int_0^{b_k} \log f\right)$. Thus, by Jensen's inequality

$$\int_{0}^{\infty} G_{0}f(x)^{q}u(x)dx = \sum_{k \in \mathbb{Z}} \int_{\{x \in (0,\infty): 2^{k} < G_{0}f(x) \leqslant 2^{k+1}\}} G_{0}f(x)^{q}u(x)dx
= \sum_{k \in \mathbb{Z}} \int_{b_{k+1}}^{b_{k}} G_{0}f(x)^{q}u(x)dx \leqslant 2^{q} \sum_{k \in \mathbb{Z}} \int_{b_{k+1}}^{b_{k}} 2^{kq}u(x)dx
= 2^{q} \sum_{k \in \mathbb{Z}} \left(\exp\left(\frac{1}{b_{k}} \int_{0}^{b_{k}} \log f\right) \right)^{q} \int_{b_{k+1}}^{b_{k}} u
= 2^{q} \sum_{k \in \mathbb{Z}} \left(\exp\left(\frac{1}{b_{k}} \int_{0}^{b_{k}} \log(fv^{\frac{1}{p}}) \right) \right)^{q} \left(\exp\left(\frac{1}{b_{k}} \int_{0}^{b_{k}} \log v^{-1} \right) \right)^{\frac{q}{p}} \int_{b_{k+1}}^{b_{k}} u
\leqslant 2^{q} \sum_{k \in \mathbb{Z}} \left(\frac{1}{b_{k}} \int_{0}^{b_{k}} fv^{\frac{1}{p}} \right)^{q} \left(\exp\left(\frac{1}{b_{k}} \int_{0}^{b_{k}} \log v^{-1} \right) \right)^{\frac{q}{p}} \int_{b_{k+1}}^{b_{k}} u
= 2^{q} \sum_{k \in \mathbb{Z}} \left(T(fv^{\frac{1}{p}})(k) \right)^{q} \gamma_{k},$$
(6)

where, for a nonnegative function h on $(0, \infty)$,

$$Th(k) = \frac{1}{b_k} \int_0^{b_k} h$$
 and $\gamma_k = \left(\exp\left(\frac{1}{b_k} \int_0^{b_k} \log v^{-1} \right) \right)^{\frac{q}{p}} \int_{b_{k+1}}^{b_k} u.$

If we prove that the operator T is bounded from $L^{\infty}(0,\infty)$ to $l^{\infty}(\{\gamma_k\})$ and that T is also bounded from $L^1(0,\infty)$ to $l^{\frac{q}{p},\infty}(\{\gamma_k\})$, then by Marcinkiewicz's interpolation theorem the operator T will be bounded from $L^p(0,\infty)$ to $l^q(\{\gamma_k\})$.

The operator T is bounded from $L^{\infty}(0,\infty)$ to $l^{\infty}(\{\gamma_k\})$ with constant equal to 1. Indeed, observe that we use the weight $\{\gamma_k\}$ as a measure, not as a multiplier, and then, since $l^{\infty} \subset l^{\infty}(\{\gamma_k\})$ with $\|\{x_k\}\|_{l^{\infty}(\{\gamma_k\})} \leq \|\{x_k\}\|_{l^{\infty}}$ for all $\{x_k\} \in l^{\infty}$, we have

$$\|\{Th(k)\}\|_{l^{\infty}(\{\gamma_{k}\})} \leqslant \|\{Th(k)\}\|_{l^{\infty}} \leqslant \|h\|_{L^{\infty}(0,\infty)}.$$

Let us prove now that T is of weak-type $(1, \frac{q}{p})$. Let $\lambda > 0$ and $O_{\lambda} = \{k \in \mathbb{Z} : Th(k) > \lambda\}$. Then,

 $\sum_{k \in O_{\lambda}} \gamma_k = \lim_{j \to -\infty} \sum_{\{k \geqslant j: Th(k) > \lambda\}} \gamma_k.$

We define $F_j = \{k \geqslant j : Th(k) > \lambda\}$. These sets verify $F_j \subset F_{j-1}$ and also $\{F_j\} \nearrow O_\lambda$ when $j \to -\infty$. Let us fix j and the corresponding F_j . Let $j_0 = \min F_j$. If $k \in F_j$, then $k \geqslant j_0$, which implies that $b_k \leqslant b_{j_0}$. Now, if $x \in (b_{k+1}, b_k)$ and $k \in F_j$, we have

$$\exp\left(\frac{1}{b_k} \int_0^{b_k} \log v^{-1}\right) \leqslant G_0(\chi_{(0,b_{j_0})} v^{-1})(x).$$

Then, by definition of C_1 ,

$$\sum_{k \in F_{j}} \gamma_{k} = \sum_{k \in F_{j}} \int_{b_{k+1}}^{b_{k}} \left(\exp\left(\frac{1}{b_{k}} \int_{0}^{b_{k}} \log v^{-1} \right) \right)^{\frac{q}{p}} u(x) dx$$

$$\leq \sum_{k \in F_{j}} \int_{b_{k+1}}^{b_{k}} \left(G_{0}(\chi_{(0,b_{j_{0}})} v^{-1}) \right)^{\frac{q}{p}} u(x) dx$$

$$\leq \int_{0}^{b_{j_{0}}} \left(G_{0}(\chi_{(0,b_{j_{0}})} v^{-1}) \right)^{\frac{q}{p}} u(x) dx \leq C_{1} b_{j_{0}}^{\frac{q}{p}}$$

$$\leq C_{1} \left(\frac{1}{\lambda} \int_{0}^{b_{j_{0}}} h \right)^{\frac{q}{p}} \leq \frac{C_{1}}{\lambda^{\frac{q}{p}}} \left(\int_{0}^{\infty} h \right)^{\frac{q}{p}}.$$

This proves that T is of weak-type $(1,\frac{q}{p})$ with constant $C_1^{\frac{p}{q}}$, which implies the boundedness of T from $L^p(0,\infty)$ to $l^q(\{\gamma_k\})$ with constant $2\left(\frac{1}{p}\right)^{\frac{q}{p}}(p')^{\frac{1}{q}}C_1^{\frac{1}{q}}$ (see [5], Theorem (6.28), for the behaviour of constants in Marcinkiewicz interpolation theorem). Now, applying this fact in (6), we get

$$\left(\int_0^\infty G_0 f(x)^q u(x) dx\right)^{\frac{1}{q}} \leqslant 2 \left(\sum_{k \in \mathbb{Z}} \left(T(fv^{\frac{1}{p}})(k)\right)^q \gamma_k\right)^{\frac{1}{q}}$$
$$\leqslant 4 \left(\frac{1}{p}\right)^{\frac{q}{p}} (p')^{\frac{1}{q}} C_1^{\frac{1}{q}} \left(\int_0^\infty f^p v\right)^{\frac{1}{p}},$$

which finishes the proof.

3. Proof of Theorem 2

Assume that (4) holds, which is clearly equivalent to

$$\sup_{\lambda>0}\lambda\left(\int_{\{x\in(0,\infty):G_0f(x)>\lambda\}}u(x)dx\right)^{\frac{p}{q}}\leqslant C^p\int_0^\infty f(x)v(x)dx. \tag{7}$$

Let b > 0, $0 < \alpha < 1$, $\lambda = \alpha \exp\left(\frac{1}{b} \int_0^b \log v^{-1}\right)$ and $f = v^{-1} \chi_{(0,b)}$. If $x \in (0,b)$, then $G_0f(x) > \lambda$, which shows that $(0,b) \subset \{x : G_0f(x) > \lambda\}$. Then, by (7), we have

$$\alpha \exp\left(\frac{1}{b} \int_0^b \log v^{-1}\right) \left(\int_0^b u\right)^{\frac{p}{q}} \leqslant C^p b.$$

Letting α tend to 1 and taking supremum in b>0, we get $[u,v]_{A_{0,p,q,\exp}}\leqslant C^p$. Assume now that $[u,v]_{A_{0,p,q,\exp}}<\infty$. Let $f\geqslant 0$ and $\lambda>0$. We may assume that there exists $b_0>0$ such that f(x)=0 for all $x>b_0$. This implies that $G_0f(x)=0$ for all $x>b_0$. Since G_0f is a nonincreasing function, $O_\lambda=\{x\in(0,\infty):G_0f(x)>\lambda\}=0$ $(0,b_\lambda), \text{ with } \exp\left(\frac{1}{b_1}\int_0^{b_\lambda}\log f\right)=\lambda$. Then, by definition of $A_{0,p,q,\exp}$ and Jensen's inequality, we have

$$\left(\int_{O_{\lambda}} u\right)^{\frac{p}{q}} = \left(\int_{0}^{b_{\lambda}} u\right)^{\frac{p}{q}} \exp\left(\frac{1}{b_{\lambda}} \int_{0}^{b_{\lambda}} \log f\right) \\
= \frac{1}{\lambda} \left(\int_{0}^{b_{\lambda}} u\right)^{\frac{p}{q}} \exp\left(\frac{1}{b_{\lambda}} \int_{0}^{b_{\lambda}} \log(fv)\right) \exp\left(\frac{1}{b_{\lambda}} \int_{0}^{b_{\lambda}} \log v^{-1}\right) \\
\leqslant \frac{[u,v]_{A_{0,p,q,\exp}}}{\lambda} b_{\lambda} \exp\left(\frac{1}{b_{\lambda}} \int_{0}^{b_{\lambda}} \log(fv)\right) \\
\leqslant \frac{[u,v]_{A_{0,p,q,\exp}}}{\lambda} \int_{0}^{b_{\lambda}} fv \\
\leqslant \frac{[u,v]_{A_{0,p,q,\exp}}}{\lambda} \int_{0}^{b_{\lambda}} fv,$$

which proves (7) with constant $[u,v]_{A_{0,p,q,exp}}$ or, equivalently, (4) with constant $[u,v]_{A_{0,p,q,\exp}}^{\frac{1}{p}}.$

4. Proof of Theorem 3

We only have to prove $(v) \Rightarrow (iii)$, because $(i) \Leftrightarrow (iii)$, $(ii) \Leftrightarrow (iv)$ and $(iii) \Rightarrow (iv)$ are clear and $(iv) \Rightarrow (v)$ has been proved in theorem 2.

Assume that (v) holds. Let $f \ge 0$, $x \in (0, \infty)$ and b > x. Then, by (v) and Jensen's inequality

$$\begin{split} \exp\left(\frac{1}{b}\int_{0}^{b}\log f\right) &= \exp\left(\frac{1}{b}\int_{0}^{b}\log(fw)\right) \exp\left(\frac{1}{b}\int_{0}^{b}\log w^{-1}\right) \\ &\leqslant [w]_{A_{0,\exp}} \exp\left(\frac{1}{b}\int_{0}^{b}\log(fw)\right) \frac{b}{\int_{0}^{b}w} \leqslant [w]_{A_{0,\exp}} \frac{\int_{0}^{b}fw}{\int_{0}^{b}w} \\ &\leqslant [w]_{A_{0,\exp}} N_{w}f(x), \end{split} \tag{9}$$

where N_w is the maximal operator defined by

$$N_w f(x) = \sup_{b>x} \frac{\int_0^b |f| w}{\int_0^b w}.$$

As an immediate consequence of (9), we get that $G_0f(x) \leq [w]_{A_{0,\exp}}N_wf(x)$. Since the operator N_w is bounded in $L^p(w)$ for all p > 1 with norm $\frac{p}{p-1}$, we have

$$\int_0^\infty G_0 f(x)^p w(x) dx \leqslant [w]_{A_{0,\exp}}^p \int_0^\infty N_w f(x)^p w(x) dx$$
$$\leqslant [w]_{A_{0,\exp}}^p \left(\frac{p}{p-1}\right)^p \int_0^\infty f(x)^p w(x) dx,$$

which is equivalent to

$$\int_0^\infty G_0 f(x) w(x) dx \leqslant [w]_{A_{0,\exp}}^p \left(\frac{p}{p-1}\right)^p \int_0^\infty f(x) w(x) dx. \tag{10}$$

If $[w]_{A_{0,\exp}} = 1$, then letting p tend to ∞ , we get

$$\int_0^\infty G_0 f(x) w(x) dx \leqslant e \int_0^\infty f(x) w(x) dx.$$

If $[w]_{A_{0,\exp}} > 1$, then the function $\varphi(p) = [w]_{A_{0,\exp}}^p \left(\frac{p}{p-1}\right)^p$ has absolute minimum on $(1,\infty)$ and its minimum value is $\varphi(p_0)$, where p_0 is the only real number greater than 1 which is solution of the equation

$$1 + \log[w]_{A_{0,\exp}} + \log\left(\frac{p}{p-1}\right) = \frac{p}{p-1}.$$

Therefore, we have

$$\int_0^\infty G_0 f(x) w(x) dx \leqslant [w]_{A_{0,\exp}}^{p_0} \left(\frac{p_0}{p_0 - 1}\right)^{p_0} \int_0^\infty f(x) w(x) dx,$$

as we wished to prove.

5. Proof of Theorem 5

It is clear that (i) implies (ii). Let us see first that (iii) implies (i). We note that $[w]_{\tilde{A}_{0,\exp}} = \mathrm{ess}\sup_{\alpha \in S^{n-1}} [w_{\alpha}(t)t^{n-1}]_{A_{0,\exp}}$, where $w_{\alpha}(t) = w(t\alpha)$ and, as we have seen in Theorem 3,

$$[w_{\alpha}(t)t^{n-1}]_{A_{0,\exp}} = \sup_{b>0} \left(\frac{1}{b} \int_{0}^{b} w_{\alpha}(t)t^{n-1}dt\right) \exp\left(\frac{1}{b} \int_{0}^{b} \log(w_{\alpha}^{-1}(t)t^{1-n})dt\right).$$

Working as in the proof of Theorem 3, we have that

$$\int_0^\infty G_0(f_\alpha)(t)w_\alpha(t)t^{n-1}dt \leqslant [w_\alpha(t)t^{n-1}]_{A_0,\exp}^p \left(\frac{p}{p-1}\right)^p \int_0^\infty f_\alpha(t)w_\alpha(t)t^{n-1}dt,$$

for almost every $\alpha \in S^{n-1}$ and all p > 1 (see (10)). It implies that

$$\int_0^\infty G_0(f_\alpha)(t)w_\alpha(t)t^{n-1}dt \leqslant [w]_{\tilde{A}_0,\exp}^p \left(\frac{p}{p-1}\right)^p \int_0^\infty f_\alpha(t)w_\alpha(t)t^{n-1}dt$$

for almost every $\alpha \in S^{n-1}$ and all p > 1. By integrating on S^{n-1} , we get

$$\int_{\mathbb{R}^n} \mathscr{G}f(x)w(x)dx \leqslant [w]_{\tilde{A}_0,\exp}^p \left(\frac{p}{p-1}\right)^p \int_{\mathbb{R}^n} f(x)w(x)dx$$

for all p > 1, which implies

$$\int_{\mathbb{R}^n} \mathscr{G}f(x)w(x)dx \leqslant [w]_{\tilde{A}_0, \exp}^{p_0} \left(\frac{p_0}{p_0 - 1}\right)^{p_0} \int_{\mathbb{R}^n} f(x)w(x)dx,$$

where p_0 is the absolute minimum of the function $\varphi(p) = [w]_{\tilde{A}_{0,\exp}}^p \left(\frac{p}{p-1}\right)^p$ if $[w]_{\tilde{A}_{0,\exp}} > 1$, and

$$\int_{\mathbb{R}^n} \mathscr{G}f(x)w(x)dx \leqslant e \int_{\mathbb{R}^n} f(x)w(x)dx$$

if $[w]_{\tilde{A}_{0,\exp}} = 1$.

Finally, let us see that (ii) implies (iii). Then, assume that

$$\int_{\{x\in\mathbb{R}^n:\mathcal{G}_f(x)>\lambda\}}w\leqslant \frac{C_1}{\lambda}\int_{\mathbb{R}^n}fw,$$

which is equivalent to the following inequality, by changing into polar coordinates:

$$\int_{S^{n-1}} \int_0^\infty \chi_{\{\alpha t \in \mathbb{R}^n : \mathscr{G}_f(\alpha t) > \lambda\}}(\alpha t) w(\alpha t) t^{n-1} dt d\alpha \leqslant \frac{C_1}{\lambda} \int_{S^{n-1}} \int_0^\infty f(\alpha t) w(\alpha t) t^{n-1} dt d\alpha.$$

By a simple change of variables, it is easy to see that $\mathscr{G}f(\alpha t) = G_0(f_\alpha)(t)$. Then, the last inequality can be written as

$$\int_{S^{n-1}} \int_0^\infty \chi_{\{\alpha t \in \mathbb{R}^n : G_0(f_\alpha)(t) > \lambda\}}(\alpha t) w(\alpha t) t^{n-1} dt d\alpha \leqslant \frac{C_1}{\lambda} \int_{S^{n-1}} \int_0^\infty f_\alpha(t) w(\alpha t) t^{n-1} dt d\alpha.$$

For a fixed $\alpha \in S^{n-1}$, αt verifies $G_0(f_\alpha)(t) > \lambda$ if and only if t verifies $G_0(f_\alpha)(t) > \lambda$. Then, we get

$$\int_{S^{n-1}} \int_{\{t \in (0,\infty): G_0(f_\alpha)(t) > \lambda\}} w_\alpha(t) t^{n-1} dt d\alpha \leqslant \frac{C_1}{\lambda} \int_{S^{n-1}} \int_0^\infty f_\alpha(t) w_\alpha(t) t^{n-1} dt d\alpha. \quad (11)$$

Let $A \subset S^{n-1}$ with positive measure and let $f_{\alpha}(t) = \chi_A(\alpha)h(t)$. Thus, we have that

$$G_0(f_\alpha)(t) = \sup_{b \ge t} \exp\left(\frac{1}{b} \int_0^b \log(\chi_A(\alpha)h(s))ds\right) = G_0h(t)$$

for all $\alpha \in A$. Then, (11) implies that

$$\int_{A}\int_{\{t\in(0,\infty):G_{0}h(t)>\lambda\}}w_{\alpha}(t)t^{n-1}dtd\alpha\leqslant \frac{C_{1}}{\lambda}\int_{A}\int_{0}^{\infty}h(t)w_{\alpha}(t)t^{n-1}dtd\alpha.$$

By differentiation, the inequality above implies that

$$\int_{\{t \in (0,\infty): G_0 h(t) > \lambda\}} w_{\alpha}(t) t^{n-1} dt \leqslant \frac{C_1}{\lambda} \int_0^\infty h(t) w_{\alpha}(t) t^{n-1} dt, \tag{12}$$

for almost every $\alpha \in S^{n-1}$, where the constant C_1 is independent of α and h. Applying Theorem 2, (12) implies that

$$[w_{\alpha}(t)t^{n-1}]_{A_{0,\exp}} \equiv \sup_{b>0} \left(\frac{1}{b} \int_{0}^{b} w_{\alpha}(t)t^{n-1}dt\right) \exp\left(\frac{1}{b} \int_{0}^{b} \log(w_{\alpha}^{-1}(t)t^{1-n})dt\right) \leqslant C_{1},$$

for almost every $\alpha \in S^{n-1}$, and this gives (iii) and also $[w]_{\tilde{A}_{0,\exp}} \leq C_1$.

Acknowledgement. The authors would like to thank the editor and the referee for some suggestions which have improved the final version of the paper.

REFERENCES

- T. CARLEMAN, Sur les fonctions quasi-analytiques, Conférences faites au cinquième congrès des mathématiciens scandinaves (Helsingfors), (1923), 181–196.
- [2] D. CRUZ-URIBE, SFO, AND C. J. NEUGEBAUER, Weighted norm inequalities for the geometric maximal operator, Publ. Mat. 42, 1 (1998), 239–263.
- [3] J. DUOANDIKOETXEA, F. J. MARTÍN-REYES, AND S. OMBROSI, Calderón weights as Muckenhoupt weights, Indiana Univ. Math. J. 62, 3 (2013), 891–910.
- [4] J. DUOANDIKOETXEA, F. J. MARTÍN-REYES, AND S. OMBROSI, On the A_{∞} condition for general bases, Math. Z. **282**, 3–4 (2016), 955–972.
- [5] G. B. FOLLAND, Real Analysis, Modern techniques and their applications, John Wiley and Sons, 1984.
- [6] J. GARCÍA-CUERVA AND J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North-Holland, 1985.
- [7] P. GURKA AND B. OPIC, Weighted inequalities for geometric means, Proc. Amer. Math. Soc. 120, 3 (1994), 771–779.
- [8] K. Knopp, Uber Reihen mit positiven Gliedern, J. London Math. Soc. 1-3, 3 (1928), 205-211.
- [9] A. KUFNER, L. E. PERSSON, AND N. SAMKO, Weighted inequalities of Hardy Type, World Scientific, 2017.
- [10] B. OPIC AND L. PICK, On the geometric mean operator, J. Math. Anal. Appl. 183, 3 (1994), 652–662.
- [11] L. E. PERSSON AND V. D. STEPANOV, Weighted integral inequalities with the geometric mean operator, J. Inequal. Appl. 7, 5 (2002), 727–746.
- [12] X. SHI, Two inequalities related to geometric mean operators, J. Zhejiang Teacher's College 1, (1980), 21–25.
- [13] A. WEDESTIG, Weighted inequalities for the Sawyer two-dimensional Hardy operator and its limiting geometric mean operator, J. Inequal. Appl. 2005;4, (2005), 387–394.
- [14] X. YIN AND B. MUCKENHOUPT, Weighted inequalities for the maximal geometric mean operator, Proc. Amer. Math. Soc. 124, 1 (1996), 75–81.

(Received March 11, 2025)

V. García García Análisis Matemático, Facultad de Ciencias Universidad de Málaga 29071 Málaga, Spain e-mail: victorgarcia2@uma.es

P. Ortega Salvador Análisis Matemático, Facultad de Ciencias Universidad de Málaga 29071 Málaga, Spain e-mail: portega@uma.es