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Abstract. Breakthrough Sparsity Theorem, derived independently by Donoho and Elad [Proc.
Natl. Acad. Sci. USA, 2003], Gribonval and Nielsen [IEEE Trans. Inform. Theory, 2003]
and Fuchs [IEEE Trans. Inform. Theory, 2004] says that unique sparse solution to NP-Hard
£y -minimization problem can be obtained using unique solution of P-Type ¢ -minimization
problem. In this paper, we derive noncommutative version of their result using frames for Hilbert
C*-modules.

1. Introduction

Let 7 be a finite dimensional Hilbert space over K (C or R). A finite collection
{ Tj}'j’-z | in S is said to be a frame (also known as dictionary) [2,15] for 7 if there
are a,b > 0 such that

allhl* < X [(h, 1) [P < bR, Vhe .
j=1

A frame {7;}]_, for J is said to be normalized if ||7j|| =1 forall 1 < j <n. Note
that any frame can be normalized by dividing each element by its norm. Given a frame
{7j}}_, for S, we define the analysis operator

Adjoint of the analysis operator is known as the synthesis operator whose expression is
07 K" 3 (a))-y = 67 (a))}=y == Y a1, € .
j=1

Given d € K", let ||d||o be the number of nonzero entries in d . Following £, -minimization
problem appears in many of electronic devices.
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PROBLEM 1. Let {1;}}_, be a normalized frame for J. Given h € H, solve
minimize {||d|lo:d € K"}  subjectto 0;d =h.

Recall that ¢ € K" is said to be a unique solution to Problem 1 if it satisfies fol-
lowing two conditions.

(i) Oic=h.
(ii) If d € K" satisfies 0;d = h, then

ldllo > llcllo-

In 1995, Natarajan showed that Problem 1 is NP-Hard [9, 18]. As the operator 6; is
surjective, for a given h € 77, there is a d € K" such that 6;d = h. Thus the central
problem is to say when the solution to Problem 1 is unique. It is well-known that [3,4,7]
following problem is the closest convex relaxation problem to Problem 1.

PROBLEM 2. Let {1;}}_, be a normalized frame for J. Given h € H, solve
minimize {||d||1:d € K"}  subjectto 0;d = h.

There are several linear programmings available to obtain solution of Problem 2
and it is a P-problem [22-24].

Most important result which shows that by solving Problem 2 we also get a so-
lution to Problem 1 is obtained independently by Donoho and Elad [6], Gribonval and
Nielsen [13] and Fuchs [11, 12] is the following.

THEOREM 1. [6,8,11-13,17] (Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity
Theorem) Let {Tj};?Z | be a normalized frame for €. If h € J can be written as
h = 0;c for some c € K" satisfying

1 1
lello< 5 | 1+
2 Ti, T
1<jf?§,§,¢k‘< 7%l

then c is the unique solution to Problem 2 and Problem 1.

Our fundamental motivation comes from the following question: What is the non-
commutative analogue of Theorem 1? This is then naturally connected with the notion
of Hilbert C*-modules which are first introduced by Kaplansky [16] for modules over
commutative C*-algebras and later developed for modules over arbitrary C*-algebras
by Paschke [19] and Rieffel [21]. We end the introduction by recalling the definition of
Hilbert C*-modules.

DEFINITION 1. [16,19,21] Let ./ be a unital C*-algebra. A left module & over
</ is said to be a (left) Hilbert C*-module if there exists a map (-,-) : & x & — & such
that the following hold.



NONCOMMUTATIVE D-E-G-N-F SPARSITY THEOREM 533

() (x,x) >0, Vxe & If x € & satisfies (x,x) =0, then x=0.

(iii)
(iv)
(V) & is complete w.r.t. the norm ||x|| := +/||(x,x)||, Vx € &.

(

(i) (x+y2) = %2+ 12, Wy zes.
(ax,y) = a({x,y), Vx,y € &, Va € o .
(x,

vy = {x)*, Vx,y e &.

2. Noncommutative Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity Theorem

Observe that the notion of frames is needed for Theorem 1. Thus we want noncom-
mutative frames. These are introduced in 2002 by Frank and Larson in their seminal
paper [10]. We begin by recalling the definition of noncommutative frames for Hilbert
C*-modules. This notion is already well-developed in parallel with Hilbert space frame
theory [1, 14,20]. In the paper, we consider only finite rank modules.

DEFINITION 2. [10] Let & be a Hilbert C*-module over a unital C*-algebra
o/ . A collection { TJ _ in & is said to be a (modular) frame for & if there are real
a,b > 0 such that

Exr, Tj,x) < b(x,x), Vxed.

A collection { Tj};?: | in a Hilbert C*-module & over unital C*-algebra <7 with
identity 1 is said to have unit inner product if

<"L'j7"L'j> =1, V1 <]<n

Let </ be a unital C*-algebra. For n € N, let /" be the standard left Hilbert C*-
module over &/ with inner product

{(a )J 1 ( Zaf Jo j 17(b )/ e

Hence norm on 7" is

Nl—

” al j 1”2 = ) al)?:l S

Lo

We define

C@)joill =X llajll, ¥(a;)j-y € ™.
j=1
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A frame {7;}"_, for & gives the modular analysis morphism
0r: &2 x> Ox = ((x, 7)) € "
and the modular synthesis morphism
0; " > (a;)} — 0:(a;)j— = 2 ajTj € 6.
=1

With these notions, we generalize Problems 1 and 2. In the entire paper, & denotes a
finite rank Hilbert C*-module over a unital C*-algebra <7 .

PROBLEM 3. Let {7;}}_| be a unit inner product frame for &. Given x € &,
solve

minimize {||d||o:d € "}  subjectto 0}d =x.

PROBLEM 4. Let {’L'j};le be a unit inner product frame for &. Given x € &,
solve

minimize {||d||,:d € &/}  subjectto  0;d = x.

A very powerful property used to show Theorem 1 is the notion of null space
property (see [5,17]). We now define the same property for Hilbert C*-modules. We use
following notations. Let {e;}_, be the canonical basis for &/". Given M C {1,...,n}
and d = (d;)j_, € /", define

dM = 2 djej.
JEM

In the entire paper, the cardinality of M C {1,...,n} is denoted by o(M).

DEFINITION 3. A unit inner product frame {7;}}_; for & is said to have the
(modular) null space property (we write NSP) of order k € {1,...,n} if for every M C
{1,...,n} with o(M) < k, we have

1 *
lldum|1 < §||d||1, vd € ker(6;),d # 0.
We first relate NSP with Problem 4.

THEOREM 2. Let {7; ;?:1 be a unit inner product frame for & and let 1 <k < n.
The following are equivalent.

() If x € & can be written as x = ;¢ for some ¢ € /" satisfying ||c||o <k, then ¢
is the unique solution to Problem 4.

(ii) {7;}}_, satisfies the NSP of order k.
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Proof.

(i) = (i) Let M C {1,...,n} with o(M) < k and let d € ker(6;),d # 0. Then
we have

0= 0;d = 0;(dy +duc) = 0;(du) + 05 (due)
which gives
Oz (du) = 67 (—de).
Define ¢ :=dy € &/" and x := 0;(dy). Then we have ||c|jo < o(M) < k and
x=0jc=0;(—dye).
By assumption (i), we then have
llelly = lldalle < || = dumelly = lldue |1

Rewriting previous inequality gives
1
ldullr <lldlli = lidmlls = lldullr < S lldl]r-

Hence {1;}’_, satisfies the NSP of order .

(i) = (i) Let x € & can be written as x = ;¢ for some ¢ € &/ satisfying ||c||o <
k. Define M := supp(c). Then o(M) = ||c||o < k. By assumption (ii), we then
have

1 .
ldully < Sldlli, v € ker(65), 0. 1)

Let b € /" be such that x = 6;b and b # c¢. Define a:=b—c € &". Then
0;a=0;b—0;c=x—x=0 and hence a € ker(6;),a # 0. Using inequality (1),
we get

1 1
lamllr < Sllalle = llamlls < 5 (llanlls + llamell)
= llamlly < llapses. 2
Using inequality (2) and the information that c is supported on M, we get
161x = Nlelle = bl + llbaelly = llemlls = lleaseln
= llbaally + lloae Iy = llemllr = 1Bl +11(6 = €)maelly = llemlls
= b1 + llasse ||y = llerlls > [1barll + llan |l — llem ]l

> ||bmlly + /(b —c)mll1 — [leam|r
> |lballs = bally + el = [[emlls = 0.

Hence c is the unique solution to Problem 4. [
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Using Theorem 2 we obtain modular version of Theorem 1.

THEOREM 3. Let {Tj};?zl be a unit inner product frame for &. If x € & can be
written as x = 0;c for some ¢ € /" satisfying

1 1
ello< 5 [ 1+ , (3)
2 m Ti, T
1<,/,k§,3fj¢k“< T |

then c is the unique solution to Problem 4.

Proof. We show that {7;}";_; satisfies the NSP of order k := ||c||o. Then Theorem
2 says that c is the unique solution to Problem 4. Let x € & can be written as x = ;¢
for some ¢ € &7" satisfying ||cllo < k. Let M C {1,...,n} with o(M) < k and let
d=(d;)j_, € ker(6;),d # 0. Then we have

0:6:d =0.
For each fixed 1 < k < n, above equation gives
0=(0:0;(d;)j-1,ex) = (07 (d;)}-1, 07 ex)

=(6;(d))i—1 ) = D, dj(tj, )

~.
Il M:
—_

n

=di(t,w)+ D, di(t,w) =di+ Y, di(T;,7).

J=Lj#k j=1,j#k
Therefore
n
Sy di(t, ), V1<k<n
j=1.j#k
By taking norm,
il = Z di(ti )| < Y ldi{T, )l
j=1,j#k j=1,j#k

n

< i dj||||<TjaTk><< max <Tj’Tk>> Y 4l

=Lk ISpksn,j7k =Lk

) (2 ;1| - ||dk||>
)

1}61 Tj7Tk ‘

max "L'j7"L']< H HdHl_”dk” V1<k<n.
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By rewriting above inequality we get

1
1+ ldell < lld][1, VI<k<n. “4)
[ max {7, 70
<jk<n,j#k

Summing inequality (4) over M leads to

1 1

L+ ldmlly = | 1+ A
o max Tl o max el | i
<lldll X, 1= idllio(m).
keM

Finally using inequality (3)

-1

1
lldmlli < | 1+ ||| o(M)
max (7, %) |
1< k<n, jk
-1
1
S T RS d|l1k
1<k
—1
1
=\ " ) Mllielo
1<k kR
1
< =||d||.
5l

Hence {7;}/_, satisfies the NSP of order k. [J

THEOREM 4. (Noncommutative Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity
Theorem) Let {Tj};le be a unit inner product frame for &. If x € & can be written as
x = 0fc for some c € &/ satisfying

1 1
lello <3\ '+ T a0l
1<k

then c is the unique solution to Problem 3.

Proof. Theorem 3 says that ¢ is the unique solution to Problem 4. Let d € 7" be
such that x = 6}d. We claim that ||d||o > ||c||o. If this fails, we must have ||d||o < ||¢]|o-
We then have

1

Ti, T
lg,-‘}clé‘,ii#k||< i T |

1
o< 1+
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Theorem 3 again says that d is also the unique solution to Problem 4. Therefore we
must have ||c||; < ||d||; and ||c||; > ||d|| which is a contradiction. So claim holds and
we have [|d|jo > [|c[lo. O
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