
Mathematical
Inequalities

& Applications

Volume 28, Number 3 (2025), 531–539 doi:10.7153/mia-2025-28-33

NONCOMMUTATIVE DONOHO–ELAD–GRIBONVAL–NIELSEN–FUCHS

SPARSITY THEOREM

K. MAHESH KRISHNA

Dedicated to my PostDoc advisor Prof. B. V. Rajarama Bhat

(Communicated by I. Perić)

Abstract. Breakthrough Sparsity Theorem, derived independently by Donoho and Elad [Proc.
Natl. Acad. Sci. USA, 2003], Gribonval and Nielsen [IEEE Trans. Inform. Theory, 2003]
and Fuchs [IEEE Trans. Inform. Theory, 2004] says that unique sparse solution to NP-Hard
�0 -minimization problem can be obtained using unique solution of P-Type �1 -minimization
problem. In this paper, we derive noncommutative version of their result using frames for Hilbert
C*-modules.

1. Introduction

Let H be a finite dimensional Hilbert space over K (C or R). A finite collection
{τ j}n

j=1 in H is said to be a frame (also known as dictionary) [2, 15] for H if there
are a,b > 0 such that

a‖h‖2 �
n

∑
j=1

|〈h,τ j〉|2 � b‖h‖2, ∀h ∈ H .

A frame {τ j}n
j=1 for H is said to be normalized if ‖τ j‖ = 1 for all 1 � j � n . Note

that any frame can be normalized by dividing each element by its norm. Given a frame
{τ j}n

j=1 for H , we define the analysis operator

θτ : H � h �→ θτh := (〈h,τ j〉)n
j=1 ∈ K

n.

Adjoint of the analysis operator is known as the synthesis operator whose expression is

θ ∗
τ : K

n � (a j)n
j=1 �→ θ ∗

τ (a j)n
j=1 :=

n

∑
j=1

a jτ j ∈ H .

Given d ∈Kn , let ‖d‖0 be the number of nonzero entries in d . Following �0 -minimization
problem appears in many of electronic devices.
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PROBLEM 1. Let {τ j}n
j=1 be a normalized frame for H . Given h ∈ H , solve

minimize {‖d‖0 : d ∈ K
n} subject to θ ∗

τ d = h.

Recall that c ∈ Kn is said to be a unique solution to Problem 1 if it satisfies fol-
lowing two conditions.

(i) θ ∗
τ c = h .

(ii) If d ∈ Kn satisfies θ ∗
τ d = h , then

‖d‖0 > ‖c‖0.

In 1995, Natarajan showed that Problem 1 is NP-Hard [9, 18]. As the operator θ ∗
τ is

surjective, for a given h ∈ H , there is a d ∈ Kn such that θ ∗
τ d = h. Thus the central

problem is to say when the solution to Problem 1 is unique. It is well-known that [3,4,7]
following problem is the closest convex relaxation problem to Problem 1.

PROBLEM 2. Let {τ j}n
j=1 be a normalized frame for H . Given h ∈ H , solve

minimize {‖d‖1 : d ∈ K
n} subject to θ ∗

τ d = h.

There are several linear programmings available to obtain solution of Problem 2
and it is a P-problem [22–24].

Most important result which shows that by solving Problem 2 we also get a so-
lution to Problem 1 is obtained independently by Donoho and Elad [6], Gribonval and
Nielsen [13] and Fuchs [11, 12] is the following.

THEOREM 1. [6, 8, 11–13, 17] (Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity
Theorem) Let {τ j}n

j=1 be a normalized frame for H . If h ∈ H can be written as
h = θ ∗

τ c for some c ∈ Kn satisfying

‖c‖0 <
1
2

⎛
⎝1+

1
max

1� j,k�n, j �=k
|〈τ j,τk〉|

⎞
⎠ ,

then c is the unique solution to Problem 2 and Problem 1.

Our fundamental motivation comes from the following question: What is the non-
commutative analogue of Theorem 1? This is then naturally connected with the notion
of Hilbert C*-modules which are first introduced by Kaplansky [16] for modules over
commutative C*-algebras and later developed for modules over arbitrary C*-algebras
by Paschke [19] and Rieffel [21]. We end the introduction by recalling the definition of
Hilbert C*-modules.

DEFINITION 1. [16,19,21] Let A be a unital C*-algebra. A left module E over
A is said to be a (left) Hilbert C*-module if there exists a map 〈·, ·〉 : E ×E →A such
that the following hold.
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(i) 〈x,x〉 � 0, ∀x ∈ E . If x ∈ E satisfies 〈x,x〉 = 0, then x = 0.

(ii) 〈x+ y,z〉 = 〈x,z〉+ 〈y,z〉 , ∀x,y,z ∈ E .

(iii) 〈ax,y〉 = a〈x,y〉 , ∀x,y ∈ E , ∀a ∈ A .

(iv) 〈x,y〉 = 〈y,x〉∗ , ∀x,y ∈ E .

(v) E is complete w.r.t. the norm ‖x‖ :=
√‖〈x,x〉‖ , ∀x ∈ E .

2. Noncommutative Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity Theorem

Observe that the notion of frames is needed for Theorem 1. Thus we want noncom-
mutative frames. These are introduced in 2002 by Frank and Larson in their seminal
paper [10]. We begin by recalling the definition of noncommutative frames for Hilbert
C*-modules. This notion is already well-developed in parallel with Hilbert space frame
theory [1, 14, 20]. In the paper, we consider only finite rank modules.

DEFINITION 2. [10] Let E be a Hilbert C*-module over a unital C*-algebra
A . A collection {τ j}n

j=1 in E is said to be a (modular) frame for E if there are real
a,b > 0 such that

a〈x,x〉 �
n

∑
j=1

〈x,τ j〉〈τ j,x〉 � b〈x,x〉, ∀x ∈ E .

A collection {τ j}n
j=1 in a Hilbert C*-module E over unital C*-algebra A with

identity 1 is said to have unit inner product if

〈τ j,τ j〉 = 1, ∀1 � j � n.

Let A be a unital C*-algebra. For n ∈ N , let A n be the standard left Hilbert C*-
module over A with inner product

〈(a j)n
j=1,(b j)n

j=1〉 :=
n

∑
j=1

a jb
∗
j , ∀(a j)n

j=1,(b j)n
j=1 ∈ A n.

Hence norm on A n is

‖(a j)n
j=1‖2 :=

∥∥∥∥∥
n

∑
j=1

a ja
∗
j

∥∥∥∥∥
1
2

, ∀(a j)n
j=1 ∈ A n.

We define

‖(a j)n
j=1‖1 :=

n

∑
j=1

‖a j‖, ∀(a j)n
j=1 ∈ A n.
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A frame {τ j}n
j=1 for E gives the modular analysis morphism

θτ : E � x �→ θτx := (〈x,τ j〉)n
j=1 ∈ A n

and the modular synthesis morphism

θ ∗
τ : A n � (a j)n

j=1 �→ θ ∗
τ (a j)n

j=1 :=
n

∑
j=1

a jτ j ∈ E .

With these notions, we generalize Problems 1 and 2. In the entire paper, E denotes a
finite rank Hilbert C*-module over a unital C*-algebra A .

PROBLEM 3. Let {τ j}n
j=1 be a unit inner product frame for E . Given x ∈ E ,

solve

minimize {‖d‖0 : d ∈ A n} subject to θ ∗
τ d = x.

PROBLEM 4. Let {τ j}n
j=1 be a unit inner product frame for E . Given x ∈ E ,

solve

minimize {‖d‖1 : d ∈ A n} subject to θ ∗
τ d = x.

A very powerful property used to show Theorem 1 is the notion of null space
property (see [5,17]). We now define the same property for Hilbert C*-modules. We use
following notations. Let {e j}n

j=1 be the canonical basis for A n . Given M ⊆ {1, . . . ,n}
and d = (d j)n

j=1 ∈ A n , define

dM := ∑
j∈M

dje j.

In the entire paper, the cardinality of M ⊆ {1, . . . ,n} is denoted by o(M) .

DEFINITION 3. A unit inner product frame {τ j}n
j=1 for E is said to have the

(modular) null space property (we write NSP) of order k ∈ {1, . . . ,n} if for every M ⊆
{1, . . . ,n} with o(M) � k , we have

‖dM‖1 <
1
2
‖d‖1, ∀d ∈ ker(θ ∗

τ ),d �= 0.

We first relate NSP with Problem 4.

THEOREM 2. Let {τ j}n
j=1 be a unit inner product frame for E and let 1 � k � n.

The following are equivalent.

(i) If x ∈ E can be written as x = θ ∗
τ c for some c ∈ A n satisfying ‖c‖0 � k , then c

is the unique solution to Problem 4.

(ii) {τ j}n
j=1 satisfies the NSP of order k .
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Proof.

(i) =⇒ (ii) Let M ⊆ {1, . . . ,n} with o(M) � k and let d ∈ ker(θ ∗
τ ),d �= 0. Then

we have

0 = θ ∗
τ d = θ ∗

τ (dM +dMc) = θ ∗
τ (dM)+ θ ∗

τ (dMc)

which gives

θ ∗
τ (dM) = θ ∗

τ (−dMc).

Define c := dM ∈ A n and x := θ ∗
τ (dM) . Then we have ‖c‖0 � o(M) � k and

x = θ ∗
τ c = θ ∗

τ (−dMc).

By assumption (i), we then have

‖c‖1 = ‖dM‖1 < ‖−dMc‖1 = ‖dMc‖1.

Rewriting previous inequality gives

‖dM‖1 < ‖d‖1−‖dM‖1 =⇒ ‖dM‖1 <
1
2
‖d‖1.

Hence {τ j}n
j=1 satisfies the NSP of order k .

(ii) =⇒ (i) Let x∈ E can be written as x = θ ∗
τ c for some c∈A n satisfying ‖c‖0 �

k . Define M := supp(c) . Then o(M) = ‖c‖0 � k . By assumption (ii), we then
have

‖dM‖1 <
1
2
‖d‖1, ∀d ∈ ker(θ ∗

τ ),d �= 0. (1)

Let b ∈ A n be such that x = θ ∗
τ b and b �= c . Define a := b− c ∈ A n . Then

θ ∗
τ a = θ ∗

τ b−θ ∗
τ c = x−x = 0 and hence a ∈ ker(θ ∗

τ ),a �= 0. Using inequality (1),
we get

‖aM‖1 <
1
2
‖a‖1 =⇒ ‖aM‖1 <

1
2
(‖aM‖1 +‖aMc‖1)

=⇒ ‖aM‖1 < ‖aMc‖1. (2)

Using inequality (2) and the information that c is supported on M , we get

‖b‖1−‖c‖1 = ‖bM‖1 +‖bMc‖1−‖cM‖1−‖cMc‖1

= ‖bM‖1 +‖bMc‖1−‖cM‖1 = ‖bM‖1 +‖(b− c)Mc‖1−‖cM‖1

= ‖bM‖1 +‖aMc‖1−‖cM‖1 > ‖bM‖1 +‖aM‖1−‖cM‖1

� ‖bM‖1 +‖(b− c)M‖1−‖cM‖1

� ‖bM‖1−‖bM‖1 +‖cM‖1−‖cM‖1 = 0.

Hence c is the unique solution to Problem 4. �
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Using Theorem 2 we obtain modular version of Theorem 1.

THEOREM 3. Let {τ j}n
j=1 be a unit inner product frame for E . If x ∈ E can be

written as x = θ ∗
τ c for some c ∈ A n satisfying

‖c‖0 <
1
2

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠ , (3)

then c is the unique solution to Problem 4.

Proof. We show that {τ j}n
j=1 satisfies the NSP of order k := ‖c‖0 . Then Theorem

2 says that c is the unique solution to Problem 4. Let x ∈ E can be written as x = θ ∗
τ c

for some c ∈ A n satisfying ‖c‖0 � k . Let M ⊆ {1, . . . ,n} with o(M) � k and let
d = (d j)n

j=1 ∈ ker(θ ∗
τ ),d �= 0. Then we have

θτ θ ∗
τ d = 0.

For each fixed 1 � k � n , above equation gives

0 = 〈θτ θ ∗
τ (d j)n

j=1,ek〉 = 〈θ ∗
τ (d j)n

j=1,θ
∗
τ ek〉

= 〈θ ∗
τ (d j)n

j=1,τk〉 =
n

∑
j=1

d j〈τ j,τk〉

= dk〈τk,τk〉+
n

∑
j=1, j �=k

d j〈τ j,τk〉 = dk +
n

∑
j=1, j �=k

d j〈τ j,τk〉.

Therefore

dk = −
n

∑
j=1, j �=k

d j〈τ j,τk〉, ∀1 � k � n.

By taking norm,

‖dk‖ =

∥∥∥∥∥
n

∑
j=1, j �=k

d j〈τ j,τk〉
∥∥∥∥∥�

n

∑
j=1, j �=k

‖d j〈τ j,τk〉‖

�
n

∑
j=1, j �=k

‖d j‖‖〈τ j,τk〉‖ �
(

max
1� j,k�n, j �=k

‖〈τ j,τk〉‖
) n

∑
j=1, j �=k

‖d j‖

=
(

max
1� j,k�n, j �=k

‖〈τ j,τk〉‖
)( n

∑
j=1

‖d j‖−‖dk‖
)

=
(

max
1� j,k�n, j �=k

‖〈τ j,τk〉‖
)

(‖d‖1−‖dk‖) , ∀1 � k � n.
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By rewriting above inequality we get⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠‖dk‖ � ‖d‖1, ∀1 � k � n. (4)

Summing inequality (4) over M leads to⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠‖dM‖1 =

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠ ∑

k∈M

‖dk‖

� ‖d‖1 ∑
k∈M

1 = ‖d‖1o(M).

Finally using inequality (3)

‖dM‖1 �

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠

−1

‖d‖1o(M)

�

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠

−1

‖d‖1k

=

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠

−1

‖d‖1‖c‖0

<
1
2
‖d‖1.

Hence {τ j}n
j=1 satisfies the NSP of order k . �

THEOREM 4. (NoncommutativeDonoho-Elad-Gribonval-Nielsen-FuchsSparsity
Theorem) Let {τ j}n

j=1 be a unit inner product frame for E . If x ∈ E can be written as
x = θ ∗

τ c for some c ∈ A n satisfying

‖c‖0 <
1
2

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠ ,

then c is the unique solution to Problem 3.

Proof. Theorem 3 says that c is the unique solution to Problem 4. Let d ∈ A n be
such that x = θ ∗

τ d . We claim that ‖d‖0 > ‖c‖0 . If this fails, we must have ‖d‖0 � ‖c‖0 .
We then have

‖d‖0 <
1
2

⎛
⎝1+

1
max

1� j,k�n, j �=k
‖〈τ j,τk〉‖

⎞
⎠ .
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Theorem 3 again says that d is also the unique solution to Problem 4. Therefore we
must have ‖c‖1 < ‖d‖1 and ‖c‖1 > ‖d‖1 which is a contradiction. So claim holds and
we have ‖d‖0 > ‖c‖0 . �
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