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Abstract. In this paper, second order equations of the form z̈(t) + A0z(t) + Dż(t) = 0 are

studied, where A0 is a uniformly positive operator and A
−1/2
0 DA

−1/2
0 is a bounded non-

negative operator in a Hilbert space H . This equation is equivalent to the standard first-order
equation ẋ(t) = Ax(t) , where A has the domain

D(A) =
{[ z

w

]
∈ D(A1/2

0 ) × D(A1/2
0 ) | A0z + Dw ∈ H

}
and is given by

A =

[
0 I

−A0 −D

]
.

The location of the spectrumand the essential spectrumof the semigroupgenerator A is described
under various conditions on the damping operator D . By means of an example it is shown that
in general the spectrum can be quite arbitrary in the closed left half plane.

1. Introduction

The aim of this paper is the study of second order equations of the form

z̈(t) + A0z(t) + Dż(t) = 0. (1)

Here the stiffness operator A0 is a possibly unbounded positive operator on a Hilbert
space H and is assumed to be boundedly invertible, and D , the damping operator,
is an unbounded operator such that A−1/2

0 DA−1/2
0 is a bounded non-negative operator

on H . This second order equation is equivalent to the standard first-order equation
ẋ(t) = Ax(t) , where A : D(A) ⊂ D(A1/2

0 ) × H → D(A1/2
0 ) × H , is given by

A =
[

0 I
−A0 −D

]
,

D(A) =
{[ z

w

]
∈ D(A1/2

0 ) × D(A1/2
0 ) | A0z + Dw ∈ H

}
.

We refer the reader to [25] for a discussion of solutions for equation (1).
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This block operator matrix has been studied in the literature for more than 20 years.
Interest in this particular model is motivated by various problems such as stabilization,
see for example [6], [22], [23], [21], solvability of the Riccati equations [11], minimum-
phase property [17] and compensator problems with partial observations [12].

It is well-known that A generates a C0 -semigroup of contractions in D(A1/2
0 )×H ,

where D(A1/2
0 ) is equipped with the norm x �→ ‖A1/2

0 x‖H , and thus the spectrum of A
is located in the closed left half plane. This goes back to [3] and [20], see also [4], [8].
Several authors have proved independently of each other that the condition

inf
z∈D(A1/2

0 )\{0}

〈A−1/2
0 Dz, A1/2

0 z〉 H

‖z‖2
H

> 0

is sufficient for exponential stability of the C0 -semigroup generated by A , see for
example [3], [4], [5], [8], [14], [15], [24], [26]. Other properties of the C0 -semigroup
such as analyticity have been studied in [3], [4], [8], [9], [13] and [16].

In this paper we are interested in a more detailed study of the location of the
spectrum of A in the left half plane. Under the extra assumption that A0 has a compact
resolvent some results in this direction were obtained in [8] and [19]. In particular, in
this situation A has no non-real essential spectrum. We do not assume that A0 has a
compact resolvent and we show that in general the (essential) spectrum of A can be
quite arbitrary in the closed left half plane. Under various conditions on the damping
operator D we describe the location of the spectrum and the essential spectrum of A.

We will often use the fact that associated to the block operator matrix A there is
the operator pencil

L(s) := s2A−1
0 + sA−1/2

0 DA−1/2
0 + I, s ∈ C.

That is, there is a one to one correspondence between the spectrum of A and the
spectrum of the operator pencil L(·) , see Proposition 2.2 for more details. Thus all
results concerning the spectrum of A have counterparts concerning the spectrum of
L(·) .

We proceed as follows. In Section 2 we introduce the framework and we prove
some preliminary results such as the relation of the spectrum of A to the spectrum of
the corresponding operator pencil. Section 3 is devoted to the spectrum of the operator
A. It is shown that in general the spectrum can be quite general in the closed left half
plane. Sufficient conditions are given to guarantee that certain regions are contained in
the resolvent set of A. The location of the essential spectrum is the subject of Section 4
and finally in Section 5 we determine intervals of the real axis which do not contain
accumulation points of the non-real spectrum. In particular we show that if A0 has a
compact resolvent, then the non-real spectrum cannot accumulate to the real axis.
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2. Framework and preliminary results

Throughout this paper we make the following assumptions.
(A1) The stiffness operator A0 : D(A0) ⊂ H → H is a self-adjoint uniformly

positive operator, i.e. A0 >> 0 , on a Hilbert space H . A scale of Hilbert spaces Hα
is defined as follows: For α � 0 , we define Hα = D(Aα

0 ) equipped with the norm
‖z‖Hα := ‖Aα

0 z‖H and H−α = H∗
α . Here the duality is taken with respect to the pivot

space H , that is, equivalently H−α is the completion of H with respect to the norm
‖z‖H−α = ‖A−α

0 z‖H . Thus A0 extends (restricts) to A0 : Hα → Hα−1 for α ∈ R . We
use the same notation A0 to denote this extension (restriction), but we will mention it
explicitly if A0 is considered as an operator acting between Hα and Hα−1 for some
α ∈ R .

We denote the inner product on H by 〈 ·, ·〉 H or 〈 ·, ·〉 , and the duality pairing on
H−α × Hα by 〈 ·, ·〉 H−α×Hα . Note that for (z′, z) ∈ H × Hα , α > 0 , we have

〈 z′, z〉 H−α×Hα = 〈 z′, z〉 H.

(A2) The damping operator D : H 1
2
→ H− 1

2
is a bounded operator such that

A−1/2
0 DA−1/2

0 is a bounded self-adjoint operator in H and satisfies

〈Dz, z〉 H− 1
2
×H 1

2

� 0, z ∈ H 1
2
.

The system (1) is equivalent to the following standard first-order equation

ẋ(t) = Ax(t) (2)

where A : D(A) ⊂ H 1
2
× H → H 1

2
× H , is given by

A =
[

0 I
−A0 −D

]
,

D(A) =
{[ z

w

]
∈ H 1

2
× H 1

2
| A0z + Dw ∈ H

}
.

The operator A itself is not self-adjoint in the Hilbert space H 1
2
×H . However, in [26,

Proof of Lemma 4.5] it is shown that

A∗ = JAJ, with J =
[

I 0
0 −I

]
.

In particular, JA is a self-adjoint operator in H 1
2
×H . For

(
x1

y1

)
,
(

x2

y2

)
∈ H 1

2
×H we

define an indefinite inner product on H 1
2
× H by[(

x1

y1

)
,
(

x2

y2

)]
:=

〈
J
(

x1

y1

)
,
(

x2

y2

)〉
= 〈 x1, x2〉 H 1

2

− 〈 y1, y2〉 . (3)

Then (H 1
2
×H, [., .]) is a Krein space (for the basic theory of Krein spaces and operators

acting therein we refer to [7] and [1]) and A is a self-adjoint operator with respect to
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[., .] . Moreover, see [26, Proof of Lemma 4.5], A has a bounded inverse in H 1
2
× H ,

with

A−1 =
[
−A−1

0 D −A−1
0

I 0

]
, (4)

where A−1
0 D is considered as an operator acting in H 1

2
. This and the self-adjointness

of A in the Krein space (H 1
2
× H, [., .]) imply the following well-known proposition

(cf. [25] and [26, Proof of Lemma 4.5]).

PROPOSITION 2.1. The operator A has a bounded inverse and the spectrum of A
is symmetric with respect to the real line.

Throughout this paper we will use the following notation. For a closed densely
defined linear operator S on some Banach space X we denote by σp(S) the point
spectrum of S . The approximate point spectrum, σap(S) , consists of all λ for which
there is a sequence {xn}n∈N in D(S) such that

‖xn‖ = 1 and ‖(S − λ I)xn‖ → 0 as n → ∞

(see for example [10, page 242]). We point out that the point spectrum is a subset of
the approximate point spectrum. We set

r(S) := C\σap(S).

A point μ ∈ r(S) is called of regular type for S . It follows that for every μ ∈ r(S) the
range of S − μI is closed. Moreover, there exists M > 0 such that for x ∈ D(S)

‖Sx− μx‖ � M‖x‖ (5)

holds. We define

nul S := dim ker S and def S := codim ran S,

these being finite numbers or ∞ . The operator S is called Fredholm if the above
quantities are finite, i.e. the dimension of the kernel of S and the codimension of the
range of S are finite. The set

σess(S) := {λ ∈ C | S − λ I is not Fredholm}

is called the essential spectrum of S . Moreover, by σp,norm(S) we denote the set of
all λ ∈ C which are isolated points of σ(S) and normal eigenvalues of S , that is, the
corresponding Riesz-Dunford projection is of finite rank. Recall that for a self-adjoint
operator in a Hilbert space we have

σess(S) = σ(S) \ σp,norm(S).

We associate with the block operator matrix A the operator pencil

L(s) := s2A−1
0 + sA−1/2

0 DA−1/2
0 + I, s ∈ C.

Here L(s) is considered as a bounded operator acting on H .
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PROPOSITION 2.2. Let s ∈ C . The range of A − sI is closed if and only if L(s)
has a closed range. Moreover, we have

σ(A) = {s ∈ C | 0 ∈ σ(L(s))},
σp(A) = {s ∈ C | 0 ∈ σp(L(s))},
σess(A) = {s ∈ C | 0 ∈ σess(L(s))}.

If s ∈ C \ σess(A) then

nul (A− sI) = nulL(s) and def (A− sI) = defL(s).

Proof. The operators A and L(0) are boundedly invertible (cf. Proposition 2.1)
and the assertions of Proposition 2.2 are true for the case s = 0 .

In the sequel we assume s 
= 0 . We consider the operator pencil

M(s) := −A−1
0 D − sI − 1

s
A−1

0 , s ∈ C \ {0}.

Here M(s) is considered as a bounded operator acting on H 1
2
. We have

A−1 − sI =
[

I 1
s A

−1
0

0 I

] [
M(s) 0

0 −sI

] [
I 0

− 1
s I I

]
. (6)

The first and the third matrix of the right hand side of the above equation (6) considered
as operators acting from H 1

2
× H into H 1

2
× H are isomorphisms. A complex number

s ∈ C , s 
= 0 , belongs to the spectrum, point spectrum or essential spectrum of A if
and only if 1

s belongs to the spectrum, point spectrum or essential spectrum of A−1 ,
respectively. By (6), this is equivalent to the fact that zero belongs to the spectrum,
point spectrum or essential spectrum of M( 1

s ) , respectively. Moreover, we have

nul (A− sI) = nul (A−1 − s−1I) = nulM(s−1) and

def (A− sI) = def (A−1 − s−1I) = defM(s−1).

Observe, that A
1
2
0 maps H 1

2
isometrically onto H . Then the assertions of Proposition

2.2 follow from

L(s) = −sA
1
2
0 M(s−1)A− 1

2
0 , s ∈ C \ {0}. �

COROLLARY 2.3. If D = 0 then σ(A) = σap(A) ⊂ iR . Moreover, iη ∈ σ(A) ,
η ∈ R , if and only if η2 ∈ σ(A0)

Proof. We have
L(s) = s2A−1

0 + I s ∈ C.

Hence, by Proposition 2.2, we have σ(A) ⊂ iR and iη ∈ σ(A) if and only if
η2 ∈ σ(A0) . Thus every point of σ(A) is an element of the boundary of σ(A) , which
proves σ(A) = σap(A) , see [10, page 242]. �
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3. Location of the spectrum of A

The following theorem is well known, see e.g. [3], [20], [4], [8], [14] or [25].

THEOREM 3.1. The operator A is the generator of a strongly continuous semi-
group (T(t))t�0 of contractions on the state space H 1

2
× H .

This guarantees that the spectrum of A is contained in the closed left half plane.
Moreover, by Proposition 2.1, 0 ∈ ρ(A) . However, otherwise the spectrum of A is
quite arbitrary. In particular, it may happen that σ(A) = {s ∈ C | Re s � 0, |s| � ε} ,
ε > 0 , as the following example shows.

EXAMPLE 3.2. Let H = L2(0,∞) , let ε > 0 and let {qj}j∈N ⊂ R be a sequence
satisfying {qj}j∈N = Q . We define a : (0,∞) → R and d : (0,∞) → [0,∞) by

a(x) := qj if j − 1 < x � j, j ∈ N,

and

d(x) :=

⎧⎨⎩
1

x−j+1 − 1 j − 1 < x � j and |qj| � ε,

1
x−j+1 − 1 +

√
ε2 − q2

j j − 1 < x � j and |qj| < ε.

Further, the function a0 : (0,∞) → (0,∞) is defined by a0(x) := a(x)2 + d(x)2 ,
x ∈ (0,∞) . For x ∈ (0,∞) we have

a0(x) = a(x)2 + d(x)2 � ε2. (7)

If d(x) � 2 we have
2d(x) � a(x)2 + d(x)2 (8)

and if d(x) < 2 we have

2d(x) = 2d(x)
ε2

ε2
� 2

ε2
(a(x)2 + d(x)2). (9)

Set
D(A0) := {f ∈ H | a0f ∈ H}.

It follows from (7), (8) and (9) that the operators A0 : D(A0) ⊂ H → H and
D : H 1

2
→ H− 1

2
, defined by

(A0f )(x) := a0(x)f (x), x ∈ (0,∞), f ∈ D(A0),
(Dg)(x) := 2d(x)g(x), x ∈ (0,∞), g ∈ H 1

2
,

satisfy (A1) and (A2). Since

((s2A−1
0 + sA−1/2

0 DA−1/2
0 + I)f )(x) =

(
s2 + 2sd(x) + a(x)2 + d(x)2

a(x)2 + d(x)2

)
f (x),

Proposition 2.2 implies

{−d(x) ± ia(x) | x ∈ [0,∞)} ⊂ σ(A).

Thus σ(A) = σess(A) = {s ∈ C | Re s � 0, |s| � ε} .
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Nextwe give sufficient conditions guaranteeing that σ(A) is contained in a smaller
subset of C than in the above example. We define the following constants:

β := inf
z∈H 1

2
\{0}

〈Dz, z〉 H− 1
2
×H 1

2

‖z‖2
H

,

γ := sup
z∈H 1

2
\{0}

〈Dz, z〉 H− 1
2
×H 1

2

‖z‖2
H

,

δ := inf
z∈H 1

2
\{0}

〈Dz, z〉 H− 1
2
×H 1

2

‖z‖2
H 1

2

.

By definition we have β , δ ∈ [0,∞) , γ ∈ [0,∞] , and it is easy to see that δ � β � γ .
It is well-known (see e.g. [3], [4], [5], [8], [14], [15], [24], [26]), that if β > 0 then A
generates an exponentially stable semigroup on H 1

2
× H . In particular, there exists a

constant ω < 0 such that σ(A) ⊂ {s ∈ C | Re s � ω} . For the constant ω there are
quite a few upper estimates available. For example, in [8] it is shown that

ω � max

{
−β

2
, max{Re s | s ∈ σ(A)}

}
,

and [5] proves

ω � max

{
−β

2
,−‖A−1‖−1

}
.

We improve these estimates as follows.

THEOREM 3.3. We have
1. If β > 0 then {

λ ∈ C | Re λ > −β
2

, Imλ 
= 0

}
⊂ ρ(A).

2. If γ < ∞ then {
λ ∈ C | Re λ < − γ

2
, Imλ 
= 0

}
⊂ ρ(A).

3. If δ > 0 then

σ(A) ⊂
{
λ ∈ C | |λ +

1
δ
| � 1

δ

}
∪ (−∞, 0).

4. If 〈Dz, z〉 2
H− 1

2
×H 1

2

� 4‖z‖2
H‖z‖2

H 1
2

, z ∈ H 1
2
, then

σ(A) ⊂ (−∞, 0).

Under the extra assumption that A0 has a compact resolvent and that the operator
D is A0 -compact, Part 1 and Part 2 of Theorem 3.3 can be found in [19]. The proof of
Theorem 3.3 will be given at the end of this section. We show first that the first two
statement of the theorem in general cannot be improved.
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EXAMPLE 3.4. Let 0 < β � γ < ∞ be arbitrarily. We define the function
d : (0,∞) → [0,∞) by

d(x) :=
1
2
(β + (γ − β)(x − j + 1)) if j − 1 < x � j, j ∈ N.

Let H , a , a0 , A0 and D be defined as in Example 3.2. Again, (A1) and (A2) hold.
An easy calculation shows that

β = inf
z∈H 1

2
\{0}

〈Dz, z〉 H− 1
2
×H 1

2

‖z‖2
H

and γ = sup
z∈H 1

2
\{0}

〈Dz, z〉 H− 1
2
×H 1

2

‖z‖2
H

.

Then, as in Example 3.2, we have{
λ ∈ C | Imλ 
= 0,−1

2
γ � Re λ � −1

2
β
}

⊂ σ(A).

The following lemma is needed for the proof of Theorem 3.3.

LEMMA 3.5. Let λ = μ + iσ with σ ∈ R , μ � 0 and λ 
= 0 . Assume that

there exists a sequence
{(

xn

yn

)}
n∈N

in D(A) with∥∥∥(
xn

yn

)∥∥∥
H 1

2
×H

= 1 and lim
n→∞

∥∥∥(λ I −A)
(

xn

yn

)∥∥∥
H 1

2
×H

= 0. (10)

Then we have
1. ‖yn − λxn‖H 1

2

→ 0 as n → ∞ .

2. lim infn→∞ ‖xn‖H 1
2

> 0 .

3. If σ 
= 0 , then we have

〈A−1
0 Dxn, xn〉 H 1

2

+
2μ

μ2 + σ2
‖xn‖2

H 1
2

→ 0, n → ∞, (11)

〈A−1
0 Dxn, xn〉 H 1

2

+ 2μ‖xn‖2 → 0, n → ∞, (12)

and
〈A0xn, xn〉 H− 1

2
×H 1

2

− (μ2 + σ2)‖xn‖2 → 0, n → ∞, (13)

4. If σ = 0 , then we have

‖xn‖2
H 1

2

+ μ〈A−1
0 Dxn, xn〉 H 1

2

+ μ2‖xn‖2 → 0, n → ∞.

Proof. (10) implies

‖yn − λxn‖H 1
2

→ 0 and (14)

‖A0xn + Dyn + λyn‖ → 0 as n → ∞. (15)
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It follows from (14) that {xn} has no subsequence which converges to zero in H 1
2
.

Thus Part 1 and Part 2 are shown. Combining (14) and (15) we get

〈A0xn, xn〉 H− 1
2
×H 1

2

+ (μ + iσ)〈Dxn, xn〉 H− 1
2
×H 1

2

+ (μ + iσ)2〈 xn, xn〉 → 0, (16)

as n → ∞ . This implies the result for σ = 0 . It remains to show Part 3. Let σ 
= 0 .
Then the imaginary part of (16) tends to zero, i.e.

〈Dxn, xn〉 H− 1
2
×H 1

2

+ 2μ〈 xn, xn〉 = 〈A−1
0 Dxn, xn〉 H 1

2

+ 2μ‖xn‖2 → 0, (17)

as n → ∞ , which proves (12). Further, the real part tends to zero, i.e.

〈A0xn, xn〉 H− 1
2
×H 1

2

+ μ〈Dxn, xn〉 H− 1
2
×H 1

2

+ (μ2 − σ2)〈 xn, xn〉 → 0, (18)

as n → ∞ . Combining (17) and (18), we obtain (13). Finally, (17) together with (13)
implies (11). �

Proof of Theorem 3.3. Let λ = μ + iσ with μ � 0 and σ 
= 0 . Assume that λ
belongs to the spectrum of A. Then, by Proposition 2.1, λ ∈ σ(A) .

Since A is a self-adjoint operator in the Krein space (H 1
2
× H, [., .]) , see (3), it

follows from [7, Theorem VI.6.1] that at least one of the points λ , λ belongs to σap(A) .

Let us assume λ ∈ σap(A) . Then there exists a sequence
{(

xn

yn

)}
n∈N

in D(A) which

satisfies (10). Lemma 3.5 implies lim infn→∞ ‖xn‖H 1
2

> 0 and

〈Dxn, xn〉 H− 1
2
×H 1

2

+ 2μ〈 xn, xn〉 → 0, as n → ∞.

1. Let μ > − β
2 . Then we have

lim
n→∞

〈Dxn, xn〉 H− 1
2
×H 1

2

= lim
n→∞

〈 xn, xn〉 = 0.

Then Lemma 3.5, Part 3, implies

lim
n→∞

〈A0xn, xn〉 H− 1
2
×H 1

2

= lim
n→∞

‖xn‖H 1
2

= 0,

a contradiction.
2. Let μ < − γ

2 . Then we have

lim
n→∞

〈Dxn, xn〉 H− 1
2
×H 1

2

= lim
n→∞

〈 xn, xn〉 = 0.

As in Part 1 this leads to a contradiction.
3. Lemma 3.5, Part 3, implies

−2μ � δ(μ2 + σ2),

and thus the statement follows.
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4. If 〈Dz, z〉 2
H− 1

2
×H 1

2

� 4‖z‖2
H‖z‖2

H 1
2

, z ∈ H 1
2

and σ 
= 0 , it follows from

Lemma 3.5, Part 2 and Part 3, that μ < 0 holds. Moreover, by (13), we
have lim infn→∞ ‖xn‖ > 0 and Lemma 3.5, Part 3, implies

0 � 4‖xn‖2
H‖xn‖2

H 1
2

�

� lim inf
n→∞

(
〈Dxn, xn〉 H− 1

2
×H 1

2

+ (2μ − 2μ)‖xn‖2
)
〈Dxn, xn〉 H− 1

2
×H 1

2

=

= lim inf
n→∞

2μ‖xn‖2 · 2μ
μ2 + σ2

‖xn‖2
H 1

2

.

Hence,

1 � μ2

μ2 + σ2 ,

a contradiction to σ 
= 0 . �

4. Location of the essential spectrum of A

In this section we consider the operator A−1
0 D as an operator acting in H 1

2
, that

is, A−1
0 D is a bounded self-adjoint operator acting in H 1

2
. If the operator A0 has a

compact resolvent, then we have the following description of the essential spectrum of
A.

THEOREM 4.1. If the operator A−1
0 is compact, then

σess(A) =
{
λ ∈ C\{0} | 1

λ
∈ σess(−A−1

0 D)
}

⊂ (−∞, 0).

Here A−1
0 D is considered as an operator acting in H 1

2
.

For a special choice of the damping operator this theorem can be found in [19].

Proof. By Lemma 2.1 we have 0 ∈ ρ(A) , hence

σess(A) = {λ ∈ C\{0} | 1/λ ∈ σess(A−1)}.
It remains to show σess(A−1)\{0} = σess(−A−1

0 D)\{0} . The operator A−1 is given by
(4). The operator I is a compact linear operator from H 1

2
to H , and −A−1

0 is a compact
operator from H to H 1

2
. Since the essential spectrum of an operator remains unchanged

under compact perturbations, we have σess(A−1)\{0} = σess(−A−1
0 D)\{0} . �

The theorem above implies a criterion for the emptiness of the essential spectrum
of A.

COROLLARY 4.2. Assume that A−1
0 is a compact operator and that the operator

D is a compact operator acting from H 1
2

into H− 1
2
. Then

σess(A) = ∅.
In particular, if the operator D is a bounded operator acting from H 1

2
into Hα for

some α > − 1
2 , then σess(A) = ∅ .
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REMARK 4.3. Note that A does not necessarily have a compact resolvent if A0 has
a compact resolvent. Indeed, if we choose A0 = D then, by Theorem 4.1, σess(A) =
{−1} , hence −1 ∈ σess(A−1) and A−1 is not a compact operator.

Without the assumption that A0 has a compact resolvent, it may happen that the
essential spectrum of A is quite arbitrary in the closed left half plane, see Example
3.2. The following theorem shows under weaker assumptions that the non-real essential
spectrum of A is located in a certain strip parallel to the imaginary axis.

THEOREM 4.4. If σess(A−1
0 D) = ∅ then we set α1 := ∞ and γ1 := 0 . If

0 ∈ σess(A−1
0 D) we set γ1 := ∞ . Otherwise, let

α1 :=
1

2‖A−1
0 ‖

min{s ∈ R | s ∈ σess(A−1
0 D)},

and

γ1 := 2
1

min{s ∈ R | s ∈ σess(A−1
0 D)}

.

Here ‖A−1
0 ‖ is the operator norm of A−1

0 considered as an operator acting in H and
A−1

0 D is considered as an operator acting in H 1
2
. Then we have:

1. σess(A) ⊂ (−∞, 0) ∪ {λ ∈ C | Re λ � −α1} .
2. If ρ(A) ∩ {λ ∈ C | Re λ < −γ1, Imλ 
= 0} 
= ∅ , then

σess(A) ⊂ (−∞, 0) ∪ {λ ∈ C | 0 � Re λ � −γ1}.

Proof. We have, by Theorem 3.1, σess(A) ⊂ σ(A) ⊂ {s ∈ C | Re s � 0} .
1. We set

U :=

{
λ ∈ C | 0 � Re λ > −min{s ∈ R | s ∈ σess(A−1

0 D)}
2‖A−1

0 ‖
, Imλ 
= 0

}
.

Let λ ∈ U , λ = μ + iσ . Then −2μ‖A−1
0 ‖ < min{s ∈ R | s ∈ σess(A−1

0 D)}
and

Gλ := span {x ∈ H 1
2
| A−1

0 Dx = νx, ν � −2μ‖A−1
0 ‖} (19)

is a finite dimensional subspace of H 1
2
. Assume that there exists a sequence{(

xn

yn

)}
n∈N

in D(A)∩ (Gλ ×Gλ )⊥ which satisfies (10). Then by Lemma 3.5,

Part 3,
〈A−1

0 Dxn, xn〉 H 1
2

+ 2μ〈 xn, xn〉 → 0, (20)

as n → ∞ . We have {xn} ⊂ G⊥
λ , hence there exists a δ > 0 with

〈A−1
0 Dxn, xn〉 H 1

2

� (−2μ + δ)‖A−1
0 ‖‖xn‖2

H 1
2

� −2μ〈 xn, xn〉 + δ‖A−1
0 ‖‖xn‖2

H 1
2

. (21)
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This, together with lim infn→∞ ‖xn‖H 1
2

> 0 (see Lemma 3.5), contradicts (20).

Therefore for every λ ∈ U there exists a finite dimensional subspace Gλ and a

constant cλ > 0 such that for all
(

x
y

)
in D(A) ∩ (Gλ × Gλ )⊥ we have∥∥∥(A− λ I)

(
x
y

)∥∥∥
H 1

2
×H

� cλ
∥∥∥(

x
y

)∥∥∥
H 1

2
×H

. (22)

Then by Proposition 2.1 and [18, IV.§5.6] it follows that A − λ I is a Fredholm
operator of index 0 for all λ ∈ U and that there exists a discrete set Ξ in U ,
Ξ ⊂ σp,norm(A) , with

U \ Ξ ⊂ ρ(A).
Hence, the first assertion of Theorem 4.4 is proved.

2. The assertion is true if γ1 = ∞ . Let γ1 < ∞ and define then

U :=

{
λ ∈ C | Re λ < − 2

min{s ∈ R | s ∈ σess(A−1
0 D)}

, Imλ 
= 0

}
.

Let λ ∈ U , λ = μ + iσ . Then

− 2μ
μ2 + σ2 < − 2

μ
< min{s ∈ R | s ∈ σess(A−1

0 D)}

and thus

Gλ := span

{
x ∈ H 1

2
| A−1

0 Dx = νx, ν � −2
μ

μ2 + σ2

}
(23)

is a finite dimensional subspace of H 1
2
. Assume that there exists a sequence{(

xn

yn

)}
n∈N

in D(A) ∩ (Gλ × Gλ )⊥ which satisfies (10). Then Lemma 3.5,

Part 3, implies

〈A−1
0 Dxn, xn〉 H 1

2

+
2μ

μ2 + σ2
‖xn‖2

H 1
2

→ 0, (24)

as n → ∞ . We have {xn} ⊂ G⊥
λ , hence there exists a δ > 0 with

〈A−1
0 Dxn, xn〉 H 1

2

�
(
−2

μ
μ2 + σ2

+ δ
)
‖xn‖2

H 1
2

. (25)

This, together with lim infn→∞ ‖xn‖H 1
2

> 0 (see Lemma 3.5, Part 2), contradicts

(24). Therefore for every λ ∈ U there exists a finite dimensional subspace Gλ

and a constant cλ > 0 such that for all
(

x
y

)
in D(A) ∩ (Gλ × Gλ )⊥ we have∥∥∥(A− λ I)

(
x
y

)∥∥∥
H 1

2
×H

� cλ
∥∥∥(

x
y

)∥∥∥
H 1

2
×H

. (26)

By the fact that U ∩ ρ(A) 
= ∅ and [18, IV.§5.6] it follows that A − λ I is a
Fredholm operator of index 0 for all λ ∈ U and that there exists a discrete set
Ξ in U , Ξ ⊂ σp,norm(A) , with

U \ Ξ ⊂ ρ(A). �
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COROLLARY 4.5. Let α1 and γ1 be defined as in Theorem 4.4. If α1 > γ1 then

σess(A) ⊂ (−∞, 0).

An example for α1 > γ1 can be found in Example 5.4.

5. Accumulation points of the non-real spectrum of A

In this section we give sufficient conditions guaranteeing that certain intervals do
not contain any accumulation point of the non-real spectrum of A.

THEOREM 5.1. Set α2 := ∞ if σess(A
1
2
0 ) = ∅ and

α2 := min{s ∈ R | s ∈ σess(A
1
2
0 )}, otherwise.

Moreover, let α1 be defined as in Theorem 4.4. Set α := max{α1,α2} .
Then no point of the interval (−α, 0) is an accumulation point of the non-real

spectrum of A.

As a corollary of Theorem 5.1 we have

COROLLARY 5.2. Assume that A−1
0 is a compact operator. Then no point from

σess(A) is an accumulation point of the non-real spectrum of A.

Proof of Theorem 5.1. First of all we show that no point of the interval (−α1, 0)
is an accumulation point of non-real spectrum. Let [., .] be defined as in (3).

Let λ ∈ (−α1, 0) and choose Gλ as in (19). For every sequence
{(

xn

yn

)}
n∈N

in

D(A) ∩ (Gλ × Gλ )⊥ which satisfies (10) it follows from Lemma 3.5, Part 1 and Part
4, that

lim inf
n→∞

[(
xn

yn

)
,
(

xn

yn

)]
= lim inf

n→∞

(
〈 xn, xn〉 H 1

2

− 〈 yn, yn〉
)

= lim inf
n→∞

(
〈 xn, xn〉 H 1

2

− λ 2〈 xn, xn〉
)

= −λ lim inf
n→∞

(
〈A−1

0 Dxn, xn〉 H 1
2

+ 2λ‖xn‖2
)

.

Using (21) we get

lim inf
n→∞

[(
xn

yn

)
,
(

xn

yn

)]
> 0.

This gives (−α1, 0]∩σ(A) ⊂ σπ+(A) (for a definition of σπ+(A) we refer to [2]) and,
by [2, Theorem 18], it follows that no point of the interval (−α1, 0) is an accumulation
point of non-real spectrum.

We now choose μ ∈ (−α2, 0) and set λ = μ + iσ for some σ 
= 0 . Then

Gλ := span {x ∈ H 1
2
| A

1
2
0 x = νx, ν � −μ} (27)
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is a finite dimensional subspace of H 1
2
. Assume that there exists a sequence

{(
xn

yn

)}
n∈N

in D(A)∩(Gλ×Gλ )⊥ which satisfies (10). Lemma3.5 implies lim infn→∞ ‖xn‖H 1
2

>

0 and
〈A0xn, xn〉 H− 1

2
×H 1

2

− (μ2 + σ2)〈 xn, xn〉 → 0, as n → ∞.

As xn belongs to G⊥
λ , n ∈ N , there exists a δ > 0 with

〈A0xn, xn〉 H− 1
2
×H 1

2

= ‖A
1
2
0 xn‖2 � (μ2 + δ 2)‖xn‖2

and, if |σ| < δ , it follows

lim
n→∞

〈A0xn, xn〉 H− 1
2
×H 1

2

= lim
n→∞

‖xn‖H 1
2

= 0,

a contradiction. Therefore there exists an open neighbourhood V in C of (−α2, 0)
such that for every λ ∈ V \(−α2, 0) there exists a finite dimensional subspace Gλ and

a constant cλ > 0 such that for all
(

x
y

)
in D(A) ∩ (Gλ × Gλ )⊥ relation (22) holds.

Then by Lemma 2.1 and [18, IV.§5.6] there exists a discrete set Ξ̃ in V \ (−α2, 0) with

V \ Ξ̃ ⊂ ρ(A) ∪ (−α2, 0).

We now show that no point of the interval (−α2, 0) is an accumulation point of points
from Ξ̃ . Again, we consider the Krein space (H 1

2
× H, [., .]) defined in (3).

Let λ ∈ (−α2, 0) and choose Gλ as in (27). For every sequence
{(

xn

yn

)}
n∈N

in

D(A) ∩ (Gλ × Gλ )⊥ which satisfies (10) it follows from Lemma 3.5, Part 1,

lim inf
n→∞

[(
xn

yn

)
,
(

xn

yn

)]
= lim inf

n→∞

(
〈 xn, xn〉 H 1

2

− 〈 yn, yn〉
)

= lim inf
n→∞

(
〈A0xn, xn〉 − λ 2〈 xn, xn〉

)
= lim inf

n→∞

(
‖A

1
2
0 xn‖2 − λ 2‖xn‖2

)
> 0,

as xn belongs to G⊥
λ , n ∈ N . This implies (−α2, 0] ∩ σ(A) ⊂ σπ+(A) and, by [2,

Theorem 18], no point of the interval (−α2, 0) is an accumulation point of non-real
spectrum. �

In Section 3. we considered the numbers β , γ and δ . For these quantities we have

δ � β � γ .

The following examples show that there is no such relationship between α1,α2 , β and
γ1 .

EXAMPLE 5.3. Let H be an infinite-dimensional Hilbert space, D = 0 and A0 =
I . Then we have

α1 = 0, α2 = 1,
β
2

= 0 and γ1 = ∞.
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EXAMPLE 5.4. Let H be an infinite-dimensional Hilbert space with orthonormal
basis {en}n∈N . We define the operators A0 and D in L (H) by

A0z := 9
∞∑
n=1

(1 + n−1)〈 z, en〉 en

Dz := 9
∞∑
n=2

(1 + n−1)〈 z, en〉 en

Then we have

α1 =
9
2
, α2 = 3,

β
2

= 0 and γ1 = 2.

EXAMPLE 5.5. Let H and {en} be as in Example 5.4. We define the operators A0

and D in L (H) by

A0z := 〈 z, e1〉 e1 + 9
∞∑
n=2

(1 + n−1)〈 z, en〉 en

Dz := 9
∞∑

n=1

(1 + n−1)〈 z, en〉 en

Then we have

α1 =
1
2
, α2 = 3,

β
2

=
9
2

and γ1 = 2.

Moreover, it turns out that the non-real spectrum of A can only accumulate to ∞ .
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