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ORDER REDUCTION OF DISCRETE–TIME ALGEBRAIC RICCATI

EQUATIONS WITH SINGULAR CLOSED LOOP MATRIX

AUGUSTO FERRANTE1 AND HARALD K. WIMMER

(communicated by Zlatko Drmač)

Abstract. We study the general discrete-time algebraic Riccati equation and deal with the case
where the closed loop matrix corresponding to an arbitrary solution is singular. In this case
the extended symplectic pencil associated with the DARE has 0 as a characteristic root and
the corresponding spectral deflating subspace gives rise to a subspace where all solutions of the
DARE coincide. This allows for a reduction of the original DARE to an equation of smaller size.

1. Introduction

In this paper we consider a discrete-time algebraic Riccati equation (DARE)

D(X) = D(X; F, G, Q, R, S) (1.1)

= X − F∗XF + (G∗XF + S)∗(R + G∗XG)−1(G∗XF + S)− Q = 0

where F ∈ Cn×n , S ∈ Cm×n , G ∈ Cn×m , Q = Q∗ ∈ Cn×n , R = R∗ ∈ Cm×m .
It is well known (see e.g. [3], [1], [12], [10]) that algebraic Riccati equations play an
important role in theories of control, filtering and estimation. Here we are concerned
with hermitian solutions of (1.1), and we assume that a hermitian solution of (1.1)
exists. We refer to [12], [4] for existence results on DAREs. No assumptions on the
definiteness of Q or R are made. If X = X∗ we put

FX = F − G(R + G∗XG)−1(G∗XF + S). (1.2)

If X is a solution of (1.1) then FX is the the closed loop matrix associated with X .
Suppose FX is singular. Let U0 := Ker (FX)n be the generalized eigenspace corre-
sponding to the eigenvalue 0 of FX . This space, which can be defined independently
of X , will play a crucial role in our study. It is the purpose of our paper to employ
the space U0 to set up an equivalent DARE (E) of order n − dimU0 such that each
solution X of (1.1) can be obtained from a corresponding solution XE of the reduced
equation (E). That order reduction will be derived in Section 3.. It will be shown in
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Section 2. that U0 does not depend on a particular solution X and that all solutions of
(1.1) coincide on U0 . We determine U0 using the extended symplectic pencil

M − sL =

⎡
⎣ F 0 G

Q I S∗

S 0 R

⎤
⎦ − s

⎡
⎣ I 0 0

0 F∗ 0
0 G∗ 0

⎤
⎦ (1.3)

associated with the DARE (1.1).

2. The space U0

The following result is essential for the proposed order reduction.

PROPOSITION 2.1. Let X and Y be solutions of (1.1). Then

Ker (FX)n = Ker (FY)n.

Let U0 = Ker (FX)n . Set Δ = X − Y . Then

U0 ⊆ KerΔ, (2.1)

and
FX = FY on U0. (2.2)

The proof of the proposition requires two lemmas.

LEMMA 2.2. Let X, Y ∈ Cn×n be hermitian and set Δ = X − Y . Then

D(X) − D(Y) = Δ− F∗
YΔFX. (2.3)

Proof. We have

FY − FX = G(R + G∗XG)−1 ·[
(G∗XF + S) − (R + G∗XG)(R + G∗YG)−1(G∗YF + S)

]
.

Because of R + G∗XG = R + G∗YG + G∗ΔG we obtain

FY − FX = G(R + G∗XG)−1 ·
[
G∗ΔF − G∗Δ(R + G∗YG)−1(G∗YF + S)

]
= G(R + G∗XG)−1G∗ΔFY .

Hence
FX = FY − G(R + G∗XG)−1G∗ΔFY . (2.4)

From [1, p.382] it is known that

D(X) − D(Y) = Δ− F∗
YΔFY + F∗

YΔG(R + G∗XG)−1G∗ΔFY . (2.5)

Now (2.3) follows from (2.5) and (2.4). �
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LEMMA 2.3. Let X ∈ Cn×n be hermitian. Then

X − F∗
XXFX = D(X) +

[
I − Z∗] [

Q S∗

S R

] [
I

−Z

]
(2.6)

where
Z = (R + G∗XG)−1(G∗XF + S). (2.7)

Proof. Set

Λ(X) =
[
−X + F∗XF + Q S∗ + F∗XG

S + G∗XF R + G∗XG

]
.

Then a straightforward computation yields

[
I − Z∗]Λ(X)

[
I
−Z

]
= −D(X).

Writing Λ(X) as

Λ(X) =
[
−X 0
0 0

]
+

[
F∗

G∗

]
X [ F G ] +

[
Q S∗

S R

]

and taking into account that

[ F G ]
[

I
−Z

]
= FX

we readily obtain (2.6). �

Proof of Proposition 2.1. If T ∈ Cn×n is nonsingular and F̃ = T−1FT , G̃ =
T−1G , Q̃ = T∗QT , S̃ = ST , R̃ = R , and X̃ = T∗XT , then D(X; F, G, Q, R, S) = 0
is equivalent to D(X̃; F̃, G̃, Q̃, R̃, S̃) = 0 . Moreover F̃X̃ = T−1FXT , and if Ũ0 =
Ker (F̃X̃)n then Ũ0 = T−1U0 . Suppose dimU0 = t > 0 . Choose T such that

T−1FXT =
[

N ∗
0 ∗

]

where N ∈ Ct×t is nilpotent. Then U0 = TIm

[
It
0

]
and Ũ0 = Im

[
It
0

]
. Thus we

can assume without loss of generality

FX =
[

N ∗
0 AX

]
, N nilpotent, AX nonsingular, (2.8)

and

U0 = Im

[
It
0

]
. (2.9)

Let

X =
[

W1 W∗
21

W21 X2

]
(2.10)

be partitioned in correspondence with (2.8).
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Then (2.1) and (2.2) mean that

Y =
[

W1 W∗
21

W21 Y2

]
and FY =

[
N ∗
0 AY

]
, (2.11)

where AY is nonsingular. Let Δ = X−Y = [Δ1 Δ2] be partitioned accordingly. Then
Lemma 2.2 yields Δ− F∗

YΔFX = 0 . Hence Δ1 − F∗
YΔ1N = 0 , and we obtain

Δ1 = F∗
YΔ1N = (F∗

Y)2Δ1N
2 = · · · = (F∗

Y)nΔ1N
n.

Since N is nilpotent, it follows that Δ1 = 0 . Thus we have (2.1). Note that

FY − FX = G(R + G∗YG)−1G∗ΔFX.

Therefore (2.8) and Δ = [0 Δ2] imply FX − FY = [0 ∗] . Hence FY has the form
given by (2.11). Moreover we have

Ker (FY)n ⊇ Ker (FX)n. (2.12)

Interchanging the roles of X and Y yields equality in (2.12). Hence the matrix AY in
(2.11) is nonsingular. �

We now give a description of the subspace U0 in terms of the extended symplectic
pencil (1.3). If X is a solution then (see also Lemma 2.5) we have

det (M − sL) = det (FX − sI) det (I − sF∗
X) det (R + G∗XG). (2.13)

Hence det (M − sL) is not the zero polynomial. We call

σ(M − sL) = {λ ∈ C | det (M − λL) = 0}
the set of characteristic roots of M−sL . Because of (2.13) the spectrum of FX satisfies

σ(FX) ⊆ σ(M − sL). (2.14)

Clearly, the matrix FX is nonsingular if and only if 0 /∈ σ(M − sL) , or equivalently,
if and only if det M �= 0 .

Now let γ be a simple positively oriented curve in the complex plane such that
λ = 0 is the only element of σ(M − sL) in the interior of γ . Then (2.14) implies that

P0 =
1

2πi

∫
γ
(sI − FX)−1 ds. (2.15)

is the Riesz projector ([2, p. 66], [8, p. 64]) on the generalized eigenspace Ker (FX)n .
Hence U0 = ImP0 . Define

Θ =
1

2πi

∫
γ
(sL − M)−1 L ds.

From [7, p.50] we know that the map Θ : C2n+m → C2n+m is a projection. In
accordance with [12, p.25] we call S0 = ImΘ the spectral deflating subspace of
M − sL associated with s = 0 . Clearly, S0 is contained in the stable deflating
subspace of M − sL . The subsequent lemma shows that

S0 = Im
1

2πi

∫
γ
(sL − M)−1 ds. (2.16)
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LEMMA 2.4. If λ = 0 is the only element of σ(M− sL) contained in the interior
of γ then

Im
1

2πi

∫
γ
(sL − M)−1 L ds = Im

1
2πi

∫
γ
(sL − M)−1 ds. (2.17)

Proof. Note that sL − M is a regular matrix pencil in the sense of [6]. Thus there
exist nonsingular complex (2n + m) × (2n + m) matrices A, B such that

A(sL − M)B =
[

sI − N 0
0 sL̂2 − M̂2

]
,

and N ∈ Ct×t is nilpotent and 0 /∈ σ(M̂2 − sL̂2) . Then

1
2πi

∫
γ
(sI − N)−1 ds = It and

1
2πi

∫
γ
(sL̂2 − M̂2)−1 ds = 0.

Hence

1
2πi

∫
γ
(sL − M)−1 L ds =

1
2πi

∫
γ
B

[
sI − N 0

0 sL̂2 − M̂2

]−1

A · A−1

[
I 0
0 L̂2

]
B−1ds

= B

[
I 0
0 0

]
B−1,

and
1

2πi

∫
γ
(sL − M)−1 ds = B

[
I 0
0 0

]
A,

which implies (2.17). �

The following result [9] will be used to establish the link between U0 to S0 .

LEMMA 2.5. Let X be a solution of (1.1). Define Z as in (2.7), and D =
G(R + G∗XG)−1 , and

K =

⎡
⎣ I 0 −G(R + G∗XG)−1

0 I 0
0 0 I

⎤
⎦

⎡
⎣ I 0 0

0 I −Z∗

0 0 I

⎤
⎦

⎡
⎣ I 0 0

F∗X I 0
G∗X 0 I

⎤
⎦ ,

and

Σ =

⎡
⎣ I 0 0
−X I 0
−Z 0 I

⎤
⎦ . (2.18)

Then

K(M − sL)Σ =

⎡
⎣FX − sI +sD 0

0 I − sF∗
X 0

0 −sG∗ R + G∗XG

⎤
⎦ . (2.19)

The next theorem shows that we can obtain U0 from S0 by projecting each vector
x = [vT , zT , wT ]T ∈ S0 onto its first component v ∈ Cn .
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THEOREM 2.6. Let X be a solution of (1.1) and let P0 and Σ be defined by (2.15)
and (2.18). Set Π = [In 0n×n 0n×m ] . Then

S0 = Im

⎡
⎣ I
−X
−Z

⎤
⎦P0 (2.20)

and
U0 = ΠS0. (2.21)

Proof. From (2.16) and (2.19) we obtain

S0 = Im
1

2πi

∫
γ
(M − sL)−1K−1 ds

= ImΣ
1

2πi

∫
γ

⎡
⎣ FX − sI +sD 0

0 I − sF∗
X 0

0 −sG∗ R + G∗XG

⎤
⎦
−1

ds. (2.22)

Note that ⎡
⎣FX − sI +sD 0

0 I − sF∗
X 0

0 −sG∗ R + G∗XG

⎤
⎦
−1

=

⎡
⎣ (FX − sI)−1 (FX − sI)−1(−sD)(I − sF∗

X)−1 0
0 (I − sF∗

X)−1 0
0 (R + G∗XG)−1 sG∗ (I − sF∗

X)−1 (R + G∗XG)−1

⎤
⎦ .

Since s = 0 is not a pole of (I − sF∗
X)−1 we have

1
2πi

∫
γ
(I − sF∗

X)−1ds =
1

2πi

∫
γ
s(I − sF∗

X)−1ds = 0. (2.23)

We now focus on H(s) = (−sD)(I − sF∗
X)−1 and consider an expansion

H(s) =
∞∑
ν=0

sνHν. (2.24)

Because of
σ(I − sF∗

X) = {λ ∈ C | λ �= 0 , λ̄−1 ∈ σ(FX)}
the series (2.24) converges if |s| < 1/ρ(FX) . Hence, for s in the interior of γ we have

H(s) =
∞∑
ν=0

(FX − sI)νGν with Gν = (−1)ν
∞∑
κ=0

(
ν + κ
κ

)
Fκ

XHν+κ .

Therefore

1
2πi

∫
γ
(FX − sI)−1(−sD)(I − sF∗

X)−1 ds =
1

2πi

∫
γ
(FX − sI)−1G0 ds.
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From (2.22) and (2.23) we obtain

S0 = ImΣ
1

2πi

∫
γ

⎡
⎣ (FX − sI)−1 (FX − sI)−1G0 0

0 0 0
0 0 0

⎤
⎦ ds

= Im

⎡
⎣ I
−X
−Z

⎤
⎦ 1

2πi

∫
γ
(FX − sI)−1ds,

which yields (2.20). It is obvious that (2.20) implies (2.21). �

COROLLARY 2.7. Assume U0 = Im [It 0]T . Let

X =
[

W1 W∗
21

W21 X2

]

be a solution of (1.1) such that W1 ∈ Ct×t and W21 ∈ C(n−t)×t , and let Z = (R +
G∗XG)−1(G∗XF + S) = [Z1 Z2] be partitioned accordingly. Then

S0 = Im

⎡
⎢⎢⎢⎢⎣

−It
0

W1

W21

Z1

⎤
⎥⎥⎥⎥⎦ . (2.25)

Based on Proposition 2.1 one can solve the DARE (1.1) in two steps. Assuming
(2.9), the blocks W1, W21 in (2.10) can be computed from the spectral deflating subspace
of the pencil M − sL associated with λ = 0 . The second step concerns X2 . Using
W1, W21 one can set up a DARE (E) of reducedorderwhere λ = 0 is not a characteristic
root of the associated pencil. Each solution of (E) will then yield an admissible block
X2 in (2.10).

3. The reduced DARE

Let X be a solution of (1.1). Assume U0 as in (2.9) such that

X =
[

W1 W∗
21

W21 X2

]
, (3.1)

and let the blocks W1 and W21 be computed from the deflating subspace S0 and
(2.25). We focus on the matrix X2 . We set up a DARE D2(X2) = 0 for X2 and
consider an associated pencil M2 − sL2 .

Set

W̃ =
[

W1 W∗
21

W21 0

]

such that

X = W̃ +
[

0
I

]
X2 [ 0 I ] .
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Let

F =
[

F1 F12

F21 F2

]
, G =

[
G1

G2

]
, Q =

[
Q1 Q∗

21
Q21 Q2

]
, S∗ =

[
S∗1
S∗2

]

be partitioned conformably. Define

R2 = R + G∗W̃G, Ŝ2 = G∗W̃

[
F12

F2

]
+ S2, Q̂2 = [F∗

12 F∗
2 ] W̃

[
F12

F2

]
+ Q2.

Recall

FX =
[

N ∗
0 AX

]
(3.2)

with N is nilpotent and AX nonsingular.

PROPOSITION 3.1. The block X2 in (3.1) is a solution of

D2(X2) = X2 − F∗
2 X2F2(G∗

2X2F2 + Ŝ2)∗

+(R2 + G∗
2X2G2)−1(G∗

2X2F2 + Ŝ2) − Q̂2 = 0. (3.3)

Let
F2X2

= F2 − G2(R2 + G∗
2X2G2)−1(G∗

2X2F2 + Ŝ2),

be the associated closed loop matrix. If AX is given as in (3.2) then F2X2
= AX and

F2X2
is nonsingular. Let M2 − sL2 be the pencil associated with (3.3). Then

0 /∈ σ(M2 − sL2). (3.4)

Moreover, if [
Q S∗

S R

]
� 0 (3.5)

then W1 � 0 .

Proof. The matrix X2 is a solution of [0 I] D(X)[0 I]T = 0 . We have

[0 I]F∗XF

[
0
I

]
= [0 I]F∗W̃F

[
0
I

]
+ [0 I]F∗

[
0
I

]
X2[0 I]F

[
0
I

]

= [F∗
12 F∗

2 ] W̃
[

F12

F2

]
+ F∗

2X2F2,

and

(G∗XF + S)
[

0
I

]
= G∗W̃

[
F12

F2

]
+ G∗

2X2F2 + S2 = Ŝ2 + G∗
2X2F2, (3.6)

and
R + G∗XG = (R + G∗W̃G) + G∗

2X2G2 = R2 + G∗
2X2G2.

Thus it is obvious that X2 satisfies (3.3). From

FX = F −
[

G1

G2

]
(R2 + G∗

2X2G2)−1(GXF∗ + S)
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and (3.6) we obtain

AX = [0 I]FX

[
0
I

]
= F2X2

.

Therefore F2X2
is nonsingular and we have (3.4).

Now assume (3.5). Then Lemma 2.3 implies

X − F∗
XXFX =

[
I − Z∗] [

Q S∗

S R

] [
I
−Z

]
.

Therefore W1 satisfies a Stein equation W1 − N∗W1N = C1 with C1 � 0 . Hence
W1 � 0 . �

4. Related earlier work

The starting point for our investigation is the order reduction the DARE

X − F∗XF + F∗XG(R + G∗XG)−1G∗XF − Q = 0 (4.1)

in [5]. Suppose the matrix F is singular and

KerF = Im

[
I
0

]
, (4.2)

and let

Q =
[

Q1 Q∗
21

Q21 Q2

]

be partitioned conformably. Then, according to [5], each solution X of (4.1) is of the
form

X =
[

Q1 Q∗
21

Q21 X2

]
,

and X2 satisfies a reduced equation of type (1.1). In the case of the DARE (4.1) the use
of symplectic matrix pencils and deflating subspaces for the DARE (4.1) can be traced
back to [13]. The pencil approach was extended in [14] and [11] to the general DARE
(1.1).
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