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MEROMORPHIC SOLUTIONS OF LINEAR

DIFFERENTIAL SYSTEMS, PAINLEVÉ TYPE FUNCTIONS

LEV SAKHNOVICH

(communicated by Leiba Rodman)

Abstract. We consider the n × n matrix linear differential systems in the complex plane. We
find necessary and sufficient conditions under which these systems have meromorphic funda-
mental solutions. Using the operator identity method we construct a set of systems which have
meromorphic solutions. We prove that the well known operator with the sine kernel generates a
class of meromorphic Painlevé type functions. The fifth Painlevé function belongs to this class.
Hence we obtain a new and simple proof that the fifth Painlevé function is meromorphic.

1. Introduction

Let us consider the n×n matrix system of the form

dW
dx

= A(x) W, (1.1)

where A(x) is the n × n matrix function. Further we assume that the matrix function
A(x) is holomorphic and single valued in a punctured neighborhood of a point x0 .

Every fundamental solution W(x) of system (1.1) has the form (see [2, 25])

W(x) = S(x) (x − x0)Φ, (1.2)

where the matrix S(x) is holomorphic and single valued in the domain 0 < |x−x0| < ρ
and Φ is a constant matrix.

DEFINITION 1.1. (See [2, 25] . ) The point x0 is called a regular point of system
(1.1) if the corresponding matrix S(x) is either holomorphic in a neighborhood of x0

or has a pole in x0 .

DEFINITION 1.2. We shall say that the regular point x0 of system (1.1) is strongly
regular if Φ = 0 in formula (1.2) .
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We use the following transformation

W(x) = F(x) Y(x), (1.3)

where

F(x) =
m∑

k=�

f k(x − x0)k, (1.4)

f k are constant n × n matrices, det F(x) �= 0 , x �= x0. Then system (1.1) takes the
form

dY
dx

= B(x)Y,

where

B(x) = F−1(x) A(x) F(x) − F−1(x)
dF
dx

.

The following theorem gives the condition of regularity .
THEOREM 1.1. (Horn’s theorem (see [2]) The point x0 is regular for system (1.1)

if and only if there exists transformation (1.3) such that the corresponding matrix B(x)
has the form

B(x) =
B1(x)
x − x0

,

where B1(x) is holomorphic in the domain 0 � |x − x0| < ρ.

The conditions of Horn’s theorem are necessary conditions of the strong regularity.
In the present paper we give necessary and sufficient conditions of strong regularity.

Separately we consider the case when the entries of A(x) are meromorphic func-
tions.

If x0 is a strongly regular point, then we say that the corresponding fundamental
solution is strongly regular at x0 .

DEFINITION 1.3. We say that the fundamental solution W(x) of system (1.1) is
global strongly regular if this solution is strongly regular for all singular points of A(x) .

It is easy to see that the global strong solution is meromorphic. We apply the obtained
results to the canonical differential systems [19] with the spectral parameter ρ :

dW(x, ρ)
dx

=
[
P(x) + ρQ(x)

]
W(x, ρ). (1.5)

We investigate in detail the special case when n = 2 , P(x) = 0 , and

Q(x) =
[

0 r−2(x)
r2(x) 0

]
. (1.6)

Now we shall explain the connection of system (1.5), (1.6) with the classical second
order equations. The solution of this system

U(x, ρ) = col
[
u1(x, ρ), u2(x, ρ)

]
satisfies the relations

du1

dx
= iρ r−2(x) u2(x, ρ),

du2

dx
= iρ r2(x) u1(x, ρ).



MEROMORPHIC SOLUTIONS OF LINEAR DIFFERENTIAL SYSTEMS, PAINLEVÉ TYPE FUNCTIONS 89

System (1.5), (1.6) reduces to two equations of the second order.

− d
dx

r2(x)
du1

dx
= ρ2r2(x) u1(x, ρ), (1.7)

− d
dx

r−2(x)
du2

dx
= ρ2r−2(x) u2(x, ρ). (1.8)

Let us note that equations (1.7) and (1.8) are mutually dual [7, 11, 20] and play an
important role in a number of theoretical and applied problems (prediction theory [15],
vibration of a thin straight rod [5], generalized string equation [19]).

Using the operator identity method [19] we construct classes r(x) such that the
corresponding equations (1.7) and (1.8) have meromorphic solutions in respect to x
for all ρ . In particular we construct a class of the rational functions r(x) with this
property.

The operator identity method allows to construct an analytic continuation of r2(x)
from half-axis (0,∞) onto the complex plane. We have applied this approach to the
third and the fifth Painlevé functions. In particular we have obtained a new and simple
proof that the fifth Painlevé function is meromorphic (see [10]).

REMARK 1.1. The global Fuchsian theory (see [2, 25]) requires that the regularity
condition be met at infinity as well. In our approach this condition can fail for x = ∞ .
Thus our theory can be applied to the important examples (see Sections 8–10) in which
classical Fuchsian theory does not work.

REMARK 1.2. The meromorphic solutions of the differential systems play an
important role in the spectral theory in the space with indefinite metric [17].

2. Conditions of strong regularity

Taking into account Horn’s theorem we begin with the matrix function A(x) which
can be represented in the form

A(x) =
a−1

x − x0
+ a0 + a1(x − x0) + . . . , (2.1)

where ak are n× n matrices. We investigate the case when x0 is either a regular point
of W(x) or a pole. Hence the following relation

W(x) =
∑
k�m

bk(x − x0)k, bm �= 0, (2.2)

is true. Here bk are n × n matrices. We note that m can be negative. From formulas
(1.1), (2.1) and (2.2) we deduce that

(k + 1) bk+1 =
∑

j+�=k

ajb�, (2.3)

where j � −1 , � � m. Relation (2.3) can be rewritten in the recurrent form[
(k + 1)In − a−1

]
bk+1 =

∑
j+�=k

ajb�, k � m, (2.4)
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where j � 0 , � � m . When k = m − 1 we have

(mIn − a−1) bm = 0. (2.5)

From relation (2.5) we deduce the following assertion.
PROPOSITION 2.1. (necessary condition) If the solution of system (1.1) has form

(2.2) then m is an eigenvalue of a−1 .

We denote by M the greatest integer eigenvalue of the matrix a−1 . Using relation
(2.5) we obtain the assertion.

PROPOSITION 2.2. (sufficient condition) If the matrix system[
(k + 1)In − a−1

]
bk+1 =

∑
j+�=k

ajb�, (2.6)

where m � k+1 � M has a solution bm, bm+1, . . . , bM and bm �= 0 then system (1.1)
has a solution of form (2.2) .

We consider the system of equations

dY
dx

= −YA(x), (2.7)

where Y(x) has the form

Y(x) =
∑
k�p

ck(x − x0)k, cp �= 0. (2.8)

Formulas (2.1), (2.7) and (2.8) imply that

(k + 1)ck+1 = −
∑
j+�=k

c�aj, (2.9)

where j � −1 , � � p. We rewrite relation (2.9) in the form

ck+1[(k + 1)In + a−1] = −
∑
j+�=k

c�aj,

where j � 0 , � � p. In the same way as Propositions 2.1 and 2.2 we obtain the
following results.

PROPOSITION 2.3. If the solution of system (2.7) has form (2.8) then −p is an
eigenvalue of a−1 .

PROPOSITION 2.4. Let −P be the smallest integer eigenvalue of the matrix a−1 .
If the matrix system

ck+1
[
(k + 1)In + a−1

]
= −

∑
j+�=k

c�aj,

where p � k + 1 � P has a solution cp �= 0, cp+1, . . . , cP , then system (1.1) has a
solution of form (2.2) .
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REMARK 2.1. If W(x) is a fundamental solution of system (1.1), then Y(x) =
W−1(x) is a fundamental solution of system (2.7).

PROPOSITION 2.5. If W(x) and W−1(x) satisfy relations (1.1) , (2.1) and (2.7) ,
(2.8) , respectively, then m and −p are eigenvalues of the matrix a−1 . The corre-
sponding matrix a−1 is either scalar or has at least two different integer eigenvalues.

Proof . Let the matrix a−1 not be a scalar one. Then it follows from relation (2.5)
that

det bm = 0. (2.10)

Let us suppose that a−1 doesn’t have integer eigenvalues different from m . In view of
Propositions 2.1 and 2.3 the equality p = −m is true. From relations (2.2), (2.8) and
the equality

W(x) W−1(x) = In

we have bmcm = In which contradicts relation (2.10). This proves the proposition. �

3. Integer eigenvalues

We consider again differential system (1.1), where A(x) has form (2.1). Let T be
a constant matrix such that

T−1a−1T = b−1,

where b−1 is Jordan matrix, i. e. b−1 has the following structure

b−1 = diag (J1, J2, . . . , Js), s � n .

Here Jk = λkIk + Hk , 1 � k � s , and

Hk =

⎡⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
0 0 0 . . . 0

⎤⎥⎥⎥⎥⎦ .

We reduce system (1.1) to the form

dV
dx

= B(x)V,

where W(x) = TV , B(x) = T−1A(x)T . Now we describe the “shearing” transforma-
tion ( see [25], Ch. 5) which lowers the eigenvalue λs of the matrix b−1 by one, while
leaving the others unchanged.

We denote by q the order of Jordan matrix Js and represent B(x) in the form

B(x) =
1

x − x0

[
b̃−1 0
0 Js

]
+ B̃(x), (3.1)

where B̃(x) is holomorphic at x0 and

b̃−1 = diag (J1, J2, . . . , Js−1).
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The “shearing” transformation is defined by the relation (see [2, 25])

V = S(x)U. (3.2)

Here

S(x) =
[

In−q 0
0 (x − x0)Iq

]
. (3.3)

Using (3.2) we deduce that
dU
dx

= C(x)U,

where

C(x) = S−1(x) B(x) S(x) − S−1(x)
d
dx

S(x).

It follows from (3.1) and (3.3) that

c−1 =
[

b̃−1 0
Γ Js − Iq

]
.

It is easy to see that the matrix c−1 has the same eigenvalues as b−1 except that the
eigenvalue λs has been decreased by unity.

THEOREM 3.1. If the fundamental solution of system (1.1) is strongly regular
then all the eigenvalues of the corresponding matrix a−1 are integers.

Proof . Using a finite number of pairs of constant and “shearing” transformations
we can reduce system (1.1) to the system

d
dx

W̃(x) = Ã(x) W̃(x), (3.4)

where all the integer eigenvalues of ã−1 coincidewith the smallest integer eigenvalue of
a−1 , the non integer eigenvalues of a−1 and ã−1 coincide. If the fundamental solution
W(x) of system (1.1) is strongly regular then the fundamental solution W̃(x) of system
(3.4) is strongly regular as well. If ã−1 has non integer eigenvalues then according
to Proposition 2.5 the matrix ã−1 has at least two different integer eigenvalues. The
theorem is proved. �

REMARK 3.1. In paper [21] we consider the Knizhnik-Zamolodnikov system of
linear differential equations. The coefficients of this system are rational functions.
Using the results of Sections 1–3 we prove that under some conditions the solution of
the KZ system is rational matrix function too. This assertion confirms partially the
conjecture of Chervov-Talalaev [3].

4. Examples

EXAMPLE 4.1. V. Katsnelson and D. Volok [14] investigated the case when the
point x0 is a simple pole of W(x) and a holomorphicpoint of the inversematrix function
W−1(x) . They proved that in this case

a2
−1 = −a−1, a−1a0a−1 = −a0a−1. (4.1)
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It follows from the first of the relations (4.1) that the eigenvalues of a−1 are equal −1
or 0 . From Proposition 2.2 we deduce the assertion.

PROPOSITION 4.1. Let conditions (4.1) be fulfilled. Then system (1.1) has a
strongly regular solution, where m = −1 .

Proof . In the case under consideration we have m = −1 , M = 0 . Hence system
(2.6) takes the form

(In + a−1)b−1 = 0, −a−1b0 = a0b−1. (4.2)

Comparing the first relations of (4.1) and (4.2) we obtain the equality

b−1 = a−1c,

where c is an arbitrary invertible matrix. It follows from the second relation of (4.1)
that

b0 = a0a−1c

satisfies the second equality of (4.2). The proposition is proved. �
EXAMPLE 4.2. Let us consider the case when A(x) has a pole of the second order.

We suppose that the matrix A(x) has the form

A(x) =
[

a11(x) a12(x)
a21(x) a22(x)

]
, (4.3)

where

a11(x) = α0 + α1(x − x0) + . . . , (4.4)
a22(x) = β0 + β1(x − x0) + . . . , (4.5)

a12(x) = γ−2(x − x0)−2 + γ−1(x − x0)−1 + . . . , (4.6)

a21(x) = μ2(x − x0)2 + μ3(x − x0)3 + . . . . (4.7)

We introduce the matrix function

Ã(x) = F−1(x) A(x) F(x) − F−1(x)
d
dx

F(x), (4.8)

where

F(x) =

⎡⎣ 1
x − x0

0

0 1

⎤⎦
It is easy to see that the matrix function V(x) = F−1 (x)W(x) satisfies the equation

d
dx

V = Ã(x)V.

It is important that the matrix function Ã(x) has a pole of the first order. Indeed it
follows from formulas (4.3)–(4.8) that

Ã(x) =
ã−1

x − x0
+ ã0 + . . . ,
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where

ã−1 =
[

1 γ−2

0 0

]
, ã0 =

[
α0 γ−1

0 β0

]
.

We shall consider the case when

V(x) =
∑
k�m

b̃k(x − x0)k, b̃m �= 0 ,

is true. Here b̃k are n × n matrices.

PROPOSITION 4.2. Let the matrix A(x) have the form defined by relations (4.4)–
(4.7) . Then system (1.1) has a strongly regular solution if and only if

γ−2(α0 − β0) = γ−1. (4.9)

Proof . In this case we have m = 0 , M = 1 . From equality

ã−1b̃0 = 0

we deduce that b̃0 has the following form

b̃0 =
[
−sγ−2 −tγ−2

s t

]
.

In view of (2.4) we have
(Im − ã−1)b̃1 = ã0b̃0 . (4.10)

Equation (4.10) has a solution b̃1 if and only if relation (4.9) is fulfilled. From
Proposition 2.2 we deduce the desired assertion. �

COROLLARY 4.1. In addition to the conditions of Proposition 4.2 we suppose
that α0 = β0 . System (1.1) has a strongly regular solution if and only if γ−1 = 0 .

5. Differential Systems with spectral parameter

We consider the differential system with the parameter ρ :

dW(x, ρ)
dx

=
[
P(x) + ρQ(x)

]
W(x, ρ), (5.1)

where the n × n matrix functions P(x) and Q(x) can be represented in the forms

P(x) =
p−1

x − x0
+ p0 + . . . , (5.2)

Q(x) =
q−1

x − x0
+ q0 + . . . . (5.3)

Systems (5.1) play an important role in the spectral theory of the canonical differential
systems with the spectral parameter ρ (see [19]). Due to Theorem 3.1 the following
assertion is true.

PROPOSITION 5.1. (necessary condition) If system (5.1)– (5.3) has a strongly
regular fundamental solution W(x, ρ) for all ρ then all the eigenvalues of the matrix
p−1 + ρq−1 are integer and do not depend on ρ .
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EXAMPLE 5.1. Let n = 2 and

p−1 =
[
λ1 Γ1

0 λ2

]
, q−1 =

[
0 Γ2

0 0

]
.

We assume that λ1 and λ2 are integer numbers. The eigenvalues of the matrix
p−1 + ρq−1 are equal to λ1 and λ2 , i. e. these eigenvalues are integer and do not
depend on ρ .

EXAMPLE 5.2. We consider the system

d
dx

W(x, ρ) = ρA(x) W(x, ρ), (5.4)

where the matrix function A(x) is defined by relations (4.4)–(4.7). We introduce the
matrix

Ã(x, ρ) = ρF−1(x) A(x) F(x) − F−1(x)
d
dx

F(x) ,

where

F(x) =

⎡⎣ 1
x − x0

0

0 1

⎤⎦ .

The matrix function V(x, ρ) = F−1(x) W(x, ρ) satisfies the equation

d
dx

V =
[
P(x) + ρQ(x)

]
V,

where

P(x) = −F−1(x)
d
dx

F(x) =

⎡⎣ 1
x − x0

0

0 1

⎤⎦ , (5.5)

Q(x) = F−1(x) A(x) F(x). (5.6)

It follows from (5.5) and (5.6) that

p−1 =
[

1 0
0 0

]
, p0 =

[
0 0
0 0

]
,

q−1 = ρ
[

0 γ−2

0 0

]
, q0 = ρ

[
α0 γ−1

0 β0

]
.

Condition (4.9) takes the form

ργ−2(α0 − β0) = γ−1.

Using Propositions 4.2 and 5.1 we obtain the following assertion.

PROPOSITION 5.2. Let the matrix function A(x) be defined by relations (4.4)–
(4.7) . System (5.4) has a strongly regular fundamental solution for all ρ if and only
if

α0 = β0, γ−1 = 0.
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6. Global strongly regular solutions

In Sections 1–5 we investigated the strongly regular solutions in a punctured
neighborhood of the singular point x0 . Now we deduce the conditions under which the
solution of system (5.1) is strongly regular for all complex x �= ∞ and all complex
ρ �= ∞ (global strongly regular solution). It is obvious that the global strongly regular
solution is meromorphic in x and entire in ρ .

Let us consider the differential system

dW
dx

= ρA(x) W, (6.1)

where the 2 × 2 matrix function A(x) has the form

A(x) =
[

0 r(x)−2

r(x)2 0

]
. (6.2)

Here r(x) is a meromorphic function in the complex plane. We denote by xk , 1 �
k � n � ∞ , and by y� , 1 � � � m � ∞ , the different roots of r(x) and of r−1(x) ,
respectively. Proposition 5.2 implies the following result.

THEOREM 6.1. Let all the roots xk and y� of r(x) and of r−1(x) , respectively, be
simple. The fundamental solution W(x, ρ) of system (6.1) , (6.2) is strongly regular
for all x and ρ if and only if

r(xk) = 0, r′(xk) �= 0, r′′(xk) = 0, (1 � k � n), (6.3)

q(y�) = 0, q′(y�)�=0, q′′(y�) = 0, (1 � � � m), q(x) = r−1(x). (6.4)
The following assertions can be proved by the direct calculation.

PROPOSITION 6.1. The functions
I) r1(x) = x ,

II) r2(x) = sin x
satisfy all the conditions of Theorem 6.1 . The corresponding xk and y� are defined by
the relations:

I) n = 1 , m = 0 , x1 = 0 ,
II) xk = kπ , y� = �π + π/2 , −∞ < k, � < ∞ .

REMARK 6.1. Examples close to the case r2(x) = sin x are contained in the book
by Kamke ([12], p. 408).

PROPOSITION 6.2. If r(x) is a polynomial and deg r(x) � 2 then r(x) does not
satisfy conditions (6.3) .

PROPOSITION 6.3. The functions

r3(x) =
x − λ1

x − λ2
, λ1 �= λ2,

r4(x) =
(x − λ1)(x − λ2)

x − μ1
, λ1 �= λ2, λ1,2 �= μ1

do not satisfy conditions (6.3) , (6.4) .
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PROPOSITION 6.4. The elliptic functions (see [1] )

r5(x) =
sn(x)
dn(x)

, r6(x) =
sn(x)
cn(x)

, r7(x) =
cn(x)
dn(x)

satisfy conditions (6.3) and (6.4) . Hence the the corresponding systems (6.1) , (6.2)
have strongly regular fundamental solutions.

This fact is important by investigating the systems of linear differential equations
with elliptic coefficients (see [8]).

Theorem 6.1 and Propositions 6.1–6.4 lead to the following problems.

PROBLEM 6.1. To construct meromorphic functions r(x) which satisfy conditions
(6.3) and (6.4) .

PROBLEM 6.2. To construct rational functions r(x) which satisfy conditions (6.3)
and (6.4) .

These problems will be investigated in the next sections.
The connection of system (6.1), (6.2) with the classical second order equations is

explained in the introduction.

7. Operator Identity

To solve Problems 6.1 and 6.2 we use the operator identity method (see [19]). We
introduce the operators

Af = i
∫ x

0
f (t) dt, f (x) ∈ L2(0, a),

and

Sf = f (x) +
∫ a

0
f (t) k(x − t) dt,

where the function k(x) , (−a � x � a) , is continuous and

k(x) = k(−x) = k(x). (7.1)

We use the following operator identity

AS − SA� = i(Φ1Φ�
2 + Φ2Φ�

1).

Here the operators Φ1 and Φ2 are defined by the relations

Φ1g = M(x)g, Φ2g = g,

where

M(x) =
∫ x

0
k(u) du +

1
2

, 0 � x � a. (7.2)

Thus the operators Φ1 and Φ2 map the one-dimensional space of constant numbers g
into L2(0, a) . Let us consider the operator

Sξ f = f (x) +
∫ ξ

0
f (t) k(x − t) dt, f (x) ∈ L2(0, ξ), 0 � ξ � a. (7.3)
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We introduce the operator

Pξ f (x) = f (x), 0 < x < ξ � a,

and
Pξ f (x) = 0, ξ < x < a.

Let us formulate the following results (see [17]).

THEOREM 7.1. We assume that there are points 0 < x1 < x2 < . . . having no
limit points in [0, a] and such that the operator Sξ is invertible on L2(0, ξ) for each
ξ ∈ [0, a)/{x1, x2, . . . } .

Then the matrix function

B(ξ) = Π�S−1
ξ PξΠ, Π = [Φ1,Φ2], (7.4)

is continuous and nondecreasing in each of the intervals (xk, xk+1) . The matrix function

W(ξ , ρ) = I2 + iρJΠ�S−1
ξ Pξ(I − ρA)−1Π (7.5)

is a fundamental solution for the system

W(ξ , ρ) = I2 + iρJ
∫ ξ

0

[
dB(t)

]
W(t, ρ), (7.6)

where

J =
[

0 1
1 0

]
. (7.7)

(The set of the points 0 < x1 < x2 < . . . can be either finite or infinite.)

THEOREM 7.2. Let B(x) be constructed by (7.4) . Then B(x) is continuously
differentiable in the intervals between the singularities , and in these intervals

H(ξ) = B′(ξ) =
[
h�

i (ξ) hj(ξ)
]2

1
, (7.8)

where

h1(ξ) = M(ξ) +
∫ ξ

0
Γξ (ξ , t) M(t) dt, (7.9)

h2(ξ) = 1 +
∫ ξ

0
Γξ (ξ , t) dt. (7.10)

We use here the formula

S−1
ξ f = f (x) +

∫ ξ

0
Γξ (x, t) f (t) dt.

We remark that H(ξ) has the special form [20]

H(ξ) =
1
2

[
Q(ξ) 1

1 Q−1(ξ)

]
. (7.11)
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It follows from relations (7.6) and (7.7) that

dW(x, ρ)
dx

= iρJH(x) W(x, ρ). (7.12)

Introducing U(x, ρ) = W(2x, ρ)e−ixρ we reduce system (7.12) to the form

dU(x, ρ)
dx

= iρJH1(x) U(x, ρ), (7.13)

where

H1(x) =
[

r2(x) 0
0 r−2(x)

]
, (7.14)

r2(x) = Q(2x).

Let us note that obtained system (7.13), (7.14) coincides with system (6.1), (6.2).

8. Rational r(x)

Let us consider the operator Sξ (see(7.3)), where k(x) satisfies conditions (7.1)
and is a polynomial of degree 2m . The kernel k(x − t) can be represented in the form

k(x − t) =
2m∑
s=0

xsps(t),

where ps(t) are the polynomials, deg ps(t) � (2m − s) . We introduce the matrix

Aξ =
[
δj,s +

(
xs, pj(x)

)
ξ

]2m

0
(8.1)

and the determinant
Δξ = detAξ .

In formula (8.1) we used the notation

(f , g)ξ =
∫ ξ

0
f (t)g(t) dt.

The solution g(x, ξ) of the equation

Sξg = f (x) (8.2)

has the form

g(x, ξ) = f (x) −
2m∑
s=0

cs(ξ) xs, (8.3)

where cs(ξ) = (g, ps)ξ . It follows from (8.2) and Cramer’s rule that

cs(ξ) =
ds(ξ)
Δξ

, (8.4)
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where the determinant ds(ξ) is formed by replacing the column under number s in Δξ
by the column col

[
(f , p0)ξ , (f , p1)ξ , . . . , (f , p2m)ξ

]
.

Using (8.3) and (8.4) we have

g(x) = f (x) +
∫ ξ

0
Γξ (x, t) f (t) dt, (8.5)

where

Γξ (x, t) =
1
Δξ

2m∑
s=0

Ds(ξ , t) xs. (8.6)

Here the determinant Ds(ξ , t) is formed by replacing the column under number s in
Δξ by the column col

[
p0(t), p1(t), . . . , p2m(t)

]
.

The expression

Γξ (0, ξ) =
D0(ξ , ξ)

Δξ
plays an important role in our theory.

From (8.5) and (8.6) we deduce the following assertion.

THEOREM 8.1. If k(x) satisfies conditions (7.1) and is a polynomial then the
corresponding function Q(ξ) (see (7.11) ) is rational.

Proof . Let f (x) = 1 . In this case formula (8.3) gives

g(x, ξ) = 1 +
2m∑
s=0

xsRs(ξ),

where the functions Rs(ξ) are rational. Hence the function g(ξ , ξ) = h2(ξ) is rational
too. The assertion of the theorem follows directly from the equality

Q−1(x) = 2h2
2(x),

which can be obtained from (7.8) and (7.11). �
We denote by ξ1, ξ2, ..., ξn the roots of the polynomial Δξ .

THEOREM 8.2. If k(x) satisfies conditions (7.1) and is a polynomial then the
corresponding matrix function W(ξ , ρ) defined by relation (7.5) is entire in respect to
ρ and meromorphic in respect to ξ with the poles in the points ξ1, ξ2, . . . , ξn .

Proof . According to (7.2) the function M(x) is a polynomial. Hence the function
(I −Aρ)−1M(x) is an entire function of ρ and x . Using (7.5) and (8.6) we deduce the
assertion of the theorem. �

REMARK 8.1. We consider Q(ξ) and W(ξ , ρ) for all the complex ξ �= ξk ,
(1 � k � n) , and for all the complex ρ .

Due to analytic continuation the equality

dW
dξ

= iρJH(ξ) W(ξ , ρ)
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is true for all complex ξ �= ξk , (1 � k � n) , and for all the complex ρ . Here the
matrix function H(ξ) is defined by formula (7.11). Theorems 7.2 and 8.2 imply the
following assertion.

COROLLARY 8.1. The function

r(x) =
1[√

2 h2(2x)
]

is a rational function. The union of the sets of the roots and the poles of r(x) coincides
with the set

1
2
ξ1,

1
2
ξ2, . . . ,

1
2
ξn.

We shall use the relation (see [9], Ch. 4.)

dg(ξ , ξ)
dξ

= Γξ (0, ξ) g(ξ , ξ), g(ξ , ξ) = h2(ξ). (8.7)

From relation (8.7) and Corollary 8.1 we deduce the assertion.

COROLLARY 8.2. If all roots of Δξ are simple then the corresponding function
r(x) satisfies the conditions (6.3) , (6.4) .

EXAMPLE 8.1. Let us consider the case when

k(x) = x2.

In this case we have

p0(t) = t2, p1(t) = −2t, p2(t) = 1.

Hence the determinants Δξ and d0(ξ) are defined by the relations

Δξ =

∣∣∣∣∣∣
1 + ξ 3/3 ξ 4/4 ξ 5/5
−ξ 2 1 − 2ξ 3/3 −ξ 4/4
ξ ξ 2 1 + ξ 3/3

∣∣∣∣∣∣ , (8.8)

d0(ξ) =

∣∣∣∣∣∣
−ξ 2 ξ 4/4 ξ 5/5
2xi 1 − 2ξ 3/3 −ξ 4/4
−1 ξ 2 1 + ξ 3/3

∣∣∣∣∣∣ . (8.9)

It follows from (8.8) and (8.9) that

Δξ =
1

1080
ξ 9 − 1

30
ξ 6 + 1, (8.10)

d0(ξ) = −ξ 2

[(
1 − ξ 3

6

)2

+
ξ 3

2

(
1 − ξ 3

15

)
− ξ 3

5

(
1 − ξ 3

24

)]
.

The polynomial Δξ has nine different roots

x3
k =

⎧⎪⎨⎪⎩
6, 1 � k � 3,

15 + 9
√

5, 4 � k � 6,

15 − 9
√

5, 7 � k � 9.
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By the direct calculation we prove the following assertion.

PROPOSITION 8.1. The poles of Γξ (0, ξ) coincide with xk , (1 � k � 9) . These
poles are simple and the residues in the points xk , (1 � k � 3) , are equal to 1 and in
the points xk , (4 � k � 9) , are equal to −1 .

From relation (8.10) and Proposition 8.1 we deduce that

h2(x) =

1
6

x3 − 1

1
180

x6 − 1
6

x3 − 1
.

Hence the corresponding function r(x) = 1/
[√

2 h2(2x)
]

is rational and satisfies con-
ditions (6.3) and (6.4) (see Problem 6.2).

9. Exponential r(x)

The following example was considered in the paper [17].

EXAMPLE 9.1. Let the operator Sξ have the form

Sξ f = f (x) + β
∫ ξ

0

[
eiλ (x−t) + e−iλ (x−t)

]
f (t) dt,

where β = β �= 0 , λ > 0. We find

S−1
ξ f = f (x) − K(x) T−1(ξ)

∫ ξ

0
K�(t) f (t) dt,

where K(x) = [eiλx, e−iλx] and

T(ξ) =
[

ξ + β−1 λ−1e−iλξ sin λξ
λ−1eiλξ sinλξ ξ + β−1

]
.

By direct calculation we have

h1(x) =
1

2h2(x)
and

h2(x) =
u(x)
v(x)

,

where

u(x) = x + β−1 − λ−1 sin λ x,

v(x) = x + β−1 + λ−1 sin λ x.

It is easy to see that all the roots and the poles of h2(x) are simple. In the same way as
Corollary 8.2 we deduce the following assertion.
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PROPOSITION 9.1. The corresponding function

r(x) =
2x + β−1 + λ−1 sin 2λ x√
2 (2x + β−1 + λ−1 sin 2λ x)

is rational and satisfies conditions (6.3) and (6.4) .

10. Analytic continuation, Painlevé transcendents

Let us consider the operator

(Sξ f )(x) = f (x) +
∫ ξ

0
k(x, t) f (t) dt (10.1)

on L2(0, ξ) .

THEOREM 10.1. Let the kernel k(x, t) , 0 < x, t < ∞ , have an extension to a
function k(z, w) which is analytic as function of z and w in a region G such that G
contains the set (0,∞) and zt ∈ G whenever z ∈ G, 0 < t < 1 . Then the function

σ(ξ , f , g) = (S−1
ξ f , g)ξ

where f (x) and g(x) are entire functions of x , has an extension to a function σ(z, f , g)
which is analytic in G except at isolated points. All finite singular points of σ(z, f , g)
are poles.

Proof . For small ξ , the operator Sξ differs from the identity operator by an
operator of norm less than one. Therefore Sξ is invertible for 0 � ξ < ε for some
ε > 0 . For each ξ in (0,∞) , define Uξ from L2(0, 1) to L2(0, ξ) by

(Uξ f )(t) =

√
1
ξ

f

(
x
ξ

)
, 0 < x < ξ .

Then Uξ maps L2(0, 1) isometrically onto L2(0, ξ) , and

(U−1
ξ g)(x) =

√
ξ g(tξ), 0 < t < 1.

Hence S̃ξ = U−1
ξ SξUξ is a bounded operator on L2(0, 1) given by

S̃ξ f (x) = f (x) + ξ
∫ 1

0
k(ξx, ξ t) f (t) dt. (10.2)

Clearly Sξ is invertible if and only if S̃ξ is invertible. Write

S̃ξ = I + Tξ . (10.3)

The assumptions of the theorem allow us to define an operator T(z) on L2(0, 1) by

T(z)f = z
∫ 1

0
k(zx, zt) f (t) dt. (10.4)
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The operator T(z) is compact and depends holomorphically on z , and T(z) agrees with
the operator T(ξ) defined by (10.3) when z = ξ is a point of (0,∞) . Since I + T(ξ)
is invertible for small positive ξ , I + T(z) is invertible except at isolated points of G

(see Kato [13] Theorem 1.9 on p. 370) in which
[
I + T(z)

]−1
has the poles.

Hence the function
([

I + T(z)
]−1

xm, xn
)

1
is meromorphic if m and n are non-

negative integers. The assertion of the theorem follows from the relation

(S−1
ξ xm, xn)ξ = ξm+n+1(S̃−1

ξ xm, xn)1. �

REMARK 10.1. Arguments close to Theorem 10.1 are contained in the article [17].

The following kernels satisfy the conditions of Theorem 10.1:

k1(x, t) = γ
sinπ(x − t)
π(x − t)

, γ = γ , (10.5)

k2(x, t) = γ
Ai(x) Ai′(t) − Ai(t) Ai′(t)

x − t
, γ = γ , (10.6)

where Ai(x) is the Airy function.
Let us introduce the functions

φ(x) = Jα(
√

x ), ψ(x) = xφ ′, x � 0,

and the kernel

k3(x, t) = γ
φ(x)ψ(t) − φ(t)ψ(x)

x − t
, γ = γ , (10.7)

where Jα(x) is the Bessel function of order α , (α > −1) .

REMARK 10.2. The sine-kernel k1(x, t) , the Airy-kernel k2(x, t) and the Bessel-
kernel k3(x, t) play an important role in the randommatrix theory (see [6, 16], [22]–[24]).

REMARK 10.3. The region G in the cases k1(x, t) and k2(x, t) is the complex
plane. The region G in the case k3(x, t) is the complex plane cut by the half-axis
[0,∞) .

EXAMPLE 10.1. (fifth Painlevé transcendent) Let us consider the operator

Stf = f (x) + γ
∫ t

−t
k(x − u) f (u) du, f (u) ∈ L2(−a, a), (10.8)

where |t| � a , γ = γ and

k(x) =
sin xπ

xπ
.

The operator St is invertible (see [6], p. 167), when |γ | � 1 . Hence we have

S−1
t f = f (x) +

∫ t

−t
Γt(x, u, γ ) f (u) du, f (u) ∈ L2(−t, t),
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where the kernel Γt(x, u, γ ) is jointly continuous to the variables x, t, u, γ . Together
with the operator St we shall consider the operator

S̃2tf = f (x) + γ
∫ 2t

0
k(x − v) f (v) dv, f (u) ∈ L2(0, 2t).

The operator
Utf (x) = f (u + t)

maps unitarily the space L2(0, 2t) onto L2(−t, t) . It is easy to see that

U−1
t StUtf = S̃2tf .

We have

S̃−1
2t f = f (x) +

∫ 2t

0
Γ̃2t(x, u, γ ) f (u) du, f (u) ∈ L2(0, 2t),

where
Γ̃2t(x, y, γ ) = Γt(x − t, y − t, γ ). (10.9)

It follows from (10.9) that

Γ̃2t(2t, 2t, γ ) = Γt(t, t, γ ), Γ̃2t(2t, 0, γ ) = Γt(t,−t, γ ).

Now we consider the case when γ = −1 . For brevity we omit the parameter γ = −1
in the notation Γt(x, u,−1) . Following C. Trace and H. Widom [22] we introduce the
functions

r(t) = eitπ +
∫ t

−t
Γt(t, u) eiuπdu (10.10)

and

q(t) = eitπ +
∫ t

0
Γ̃t(t, u) eiuπdu. (10.11)

Relations (10.9) and (10.10), (10.11) imply that

q(2t) = r(t)eitπ . (10.12)

We use the following relation (see [22])

d
dt

[
tR(t, t)

]
=

∣∣r(t)∣∣2, (10.13)

where R(t, t) = Γt(t, t) . From (10.12) and (10.13) we have

tR(t, t) =
1
2

∫ 2t

0

∣∣q(v)
∣∣2dv.

To prove the relation

tR(t, t) =
1
2

(
S̃−1

2t euπ , euπ)
2t

(10.14)

we use the notion of triangular factorization (see [9], Ch. 4; [18]).
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DEFINITION 10.1. The positive operator S acting in L2(0, a) admits a triangular
factorization if it can be represented in the form

S = S−S�
−. (10.15)

Here
QξS

±1
− = QξS

±1
− Qξ ,

where
Qξ = I − Pξ , Pξ f = f (x), 0 � x < ξ ,

and
Pξ f = 0, ξ � x � a, f (x) ∈ L2

k(0, a).

Using M. G. Krein result (see [9], Ch. 4) on the triangular factorization of the
operator S with continuous kernel we obtain the assertion.

THEOREM 10.2. The operator

Sf = f (x) − 1
π

∫ a

0

sinπ(x − t)
x − t

f (t) dt

admits triangular factorization (10.15) and

S−1
− f = f (v) +

∫ v

0
Γ̃v(v, u) f (u) du.

Hence formula (10.11) can be written in the form

q(x) = S−1
− eiuπ . (10.16)

REMARK 10.4. Representation (10.16) of q(x) which contains the factorizing
operator S− plays an essential role in our approach.

We use the notations
D(ξ) = det S̃ξ , (10.17)

σ(x) =
x
π

D′
( x
π

)
/D

( x
π

)
.

It is known (see [22]) that

σ(x) = −2tR(t, t), x = 2πt. (10.18)

Relations (10.14) and (10.18) imply that

σ(x) = −(S̃−1
2t eiuπ , eiuπ)2t, x = 2πt.

We note that the function σ(x) is the fifth Painlevé transcendent (see [22]). Using
Proposition 10.1 and relation (10.18) we have obtained the new proof of the following
well-known fact (see [10]).

COROLLARY 10.1. The fifth Painlevé transcendent σ(ξ) can be extended to the
meromorphic function σ(z) .
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The function σ(ξ) is a solution of the Painlevé equation (P5 in the sigma form,
see [22])

(ξσ ′′)2 + 4(ξσ ′ − σ)(ξσ ′ − σ + σ ′2) = 0. (10.19)

PROPOSITION 10.1. All the poles zk of σ(z) are simple with residues zk.

Proof . Looking at the Laurent expansion of σ(z) at the poles zk we observe by
(10.19) that the principal term of σ(z)has to be zk/(z− zk) . The proposition is proved.

�
According to (10.3) and (10.4) the function D(ξ) can be extended to the entire

function D(z) . From Proposition 10.1 and relation (10.17) we obtain the assertions.

COROLLARY 10.2. All the zeroes of D(z) are simple.

COROLLARY 10.3. All the eigenvalues of T(z) are simple.

EXAMPLE 10.2. (Painlevé type functions) Let us consider the operator Sξ of form
(10.1), where k(x, t) = k1(x, t) . We introduce the functions

σ1(ξ , γ , λ ) = (S−1
ξ f , g)ξ , (10.20)

where f (x) = g(x) = eixλ , λ = λ . Using Theorem10.1 and Corollary 10.3 we obtain
the following assertion.

PROPOSITION 10.2. The function σ1(ξ , γ , λ ) can be extended to the meromorphic
function σ1(z, γ , λ ) , all the poles of σ1(z, γ , λ ) are simple.

DEFINITION 10.2. We call the functions σ1(z, γ , λ ) the Painlevé type functions.

We note that the fifth Painlevé transcendent σ(z) is connected with the functions
of form (10.34) by the relation

σ(z) = −σ1(z/π,−1, π).

We separately consider the function

σ2(z, γ ) = σ1(z, γ , 0). (10.21)

It follows from (10.20) and (10.21) that

σ2(z) = (S−1
ξ 1, 1)ξ , ξ > 0,

where the operator Sξ and the kernel k(x, y) are defined by relations (10.1) and (10.5),
respectively. We introduce the operators of form (10.8) with the kernels k(x, y) and

k±(x, y) =
1
2

[
k(x, y)±k(−x, y)

]
.

Let us denote the Fredholm determinants corresponding to k(x, y) , k+(x, y) and
k−(x, y) by D(γ , t) , D+(γ , t) and D−(γ , t) , respectively. We use the following
relations (see [16], Ch. 21.)

D(γ , t) = D+(γ , t)D−(γ , t),
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D−(γ , t)
D+(γ , t)

= 1 +
∫ t

−t
Γt(t, y, γ ) dy. (10.22)

It follows from (10.9) and (10.22) that

D−(γ , t)
D+(γ , t)

= 1 +
∫ 2t

0
Γ̃2t(t, y, γ ) dy.

In view of (7.10) and (10.22) the relation

D−(γ , t)
D+(γ , t)

= h2(2t)

is true. Using formulas (10.2)–(10.4) we deduce the assertion.

PROPOSITION 10.3. The functions D−(x, t) and D−(x, t) can be extended to the
entire functions D−(z, t) and D−(z, t) , respectively.

Hence we have

COROLLARY 10.4. The function h2(2t) can be extended to the meromorphic
function

h2(2z) =
D−(γ , z)
D+(γ , z)

.

According to representation (7.5) and Theorem 10.1 equations (1.7) and (1.8)
have the strongly regular solutions u1(x, ρ) and u2(x, ρ) , respectively, when

r−2(x) = 2h2
2(2x). (10.23)

From Theorem 6.1, Corollary10.4 and relation (10.23) we obtain

COROLLARY 10.5. The function

r(z) =
D−(γ , z)
D+(γ , z)

satisfies conditions (6.3) , (6.4) .

EXAMPLE 10.3. (third Painlevé function)Let us consider the operator (10.1), where
k(x, t) is the Bessel kernel.

PROPOSITION 10.4. The operator Sξ defined by relations (10.1) and (10.7) is
invertible on L2(0, ξ) , when |γ | � 1 .

Proof . The kernel k(x, t) has the form k(x, t) = γK(x, t), where

K(x, t) =
1
4

∫ 1

0
φ(xs) φ(ts) ds, φ(x) = Jα(

√
x ). (10.24)

The operator Tξ = Sξ − I has the kernel k(x, t) and is self-adjoint. It follows from
(10.1) and (10.24) that

(Tξ f , f ) =
γ
4

∫ 1

0

∣∣∣∣∣
∫ ξ

0
Jα(

√
xs ) f (x) dx

∣∣∣∣∣
2

ds.
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The last relation can be written in the form

(Tξ f , f ) = γ
∫ 1

0

∣∣F(s)
∣∣2ds, (10.25)

where

F(s) =
∫ √

ξ

0

√
xs Jα(sx) f (x2)

√
2x dx. (10.26)

The Hankel transformation (10.26) is unitary. So we have

∣∣(Tξ f , f )
∣∣ � |γ |

∫ ∞

0
|F(s)|2ds = |γ |

∫ ξ

0

∣∣f (x)
∣∣2dx. (10.27)

Hence ||Tξ || � |γ | . If |γ | < 1 then the operator Sξ is invertible. We shall consider
separately the case when γ = ±1 . Let us assume that ||Tξ || = 1. In this case we have
for some f the equality

Tξ f = ±f , ||f || �= 0. (10.28)

From relations (10.25), (10.27) and (10.28) we deduce that

F(s) = 0, s > 1.

But the function F(s) is analytic when Re s > 0 . Hence the equality F(s) = 0 ,
(s > 0) , is true. It means that ||f (x)|| = 0 . We have obtained a contradiction, i. e.
||Tξ || < 1 . The proposition is proved. �

The operator S−1
ξ has the form

S−1
ξ f = f (x) +

∫ ξ

0
Γξ (x, t)f (t)dt.

We consider the functions

q(ξ) = φ(ξ) +
∫ ξ

0
Γξ (ξ , t) φ(t) dt, (10.29)

We shall use the following relations (see [23])[
sR(s)

]′ =
1
4

q2(s) (10.30)

R(t) = − d
dt

log det St.

Using M. G. Krein result (see [9], Ch. 4) on the triangular factorization of the operator
S with continuous kernel we obtain the assertion.

THEOREM 10.3. The operator Sa defined by (10.1) , (10.7) when α � 0 admits
triangular factorization (10.15) and

S−1
− f = f (v) +

∫ v

0
Γv(v, u) f (u) du.
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Formula (10.29) can be written in the form

q(x) = S−1
− φ. (10.31)

We introduce the notation
σ(s) = sR(s, s).

Relations (10.30) and (10.31) imply that

σ(x) =
1
4

(
S−1
ξ φ, φ

)
ξ . (10.32)

Further we consider only the important case when γ = −1 , α � 0 .
We note that in this case the function σ(x) is the third Painlevé transcendent (see

[22]). Using Proposition 10.1 and relation (10.32) we obtain the following fact (see
[10]).

COROLLARY 10.6. The third Painlevé transcendent σ(ξ) can be extended to the
function σ(z) which is analytic in G except at isolated points. All finite singular points
in G are poles. (The domain G is defined in Remark 10.3 .)

The function σ(ξ) is a solution of the Painlevé equation

(ξσ ′′)2 + σ ′(σ − ξσ ′)(4σ ′ − 1) − α2σ ′2 = 0. (10.33)

PROPOSITION 10.5. All the poles zk of σ(z) are simple with residues zk .

Proof . Looking at the Laurent expansion of σ(z) at the poles zk we observe by
(10.33) that the principal term of σ(z) has to be zk/(z− zk) . The proposition is proved.
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