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Abstract. Our field F is algebraically closed. Let Mn be the space of n × n matrices over

F . If (X1, . . . ,Xs) ∈ Ms
n and Xk =

[
x(k)
ij

]
, we say that the triple (i, j, k) labels the entry

x(k)
ij . If P is a collection of labels (i, j, k) , then MP denotes the subspace of Ms

n consisting

of (X1, . . . ,Xs) ∈ Ms
n such that x(k)

ij = 0 for all (i, j, k) ∈ P . We present a method of proving

that certain patterns P , with |P| = n(n− 1)/2 , are universal in the sense that for every s -tuple
(X1, . . . , Xs) ∈ Ms

n there exists S ∈ GLn(F) such that (SX1S−1, . . . , SXsS−1) ∈ MP . We
demonstrate the power of our method on several examples from recent literature.

1. Introduction

The many unresolved questions about simultaneous similarity of matrices and
simultaneous unitary similarity of several complex matrices continue to attract the
interest of researchers, see recent papers [2, 3, 7, 8] on these topics. Some other
important references should be mentioned: Friedland’s paper [4] on the problem of
simultaneous similarity of matrix pairs, Shapiro’s survey paper [10] on unitary similarity
of complex matrices, and the recent book of Radjavi and Rosenthal [9] on simultaneous
triangularization. The particular problem that we consider here has been raised in [7]
(see also [3]), which served as a main motivation for this paper. Let us point out that the
main objective of [7] was (and we quote) “to investigate the zero-patterns that can be
created by unitary similarity in a given matrix, and the zero-patterns that can be created
by simultaneous unitary similarity in a given sequence of matrices”.

Throughout the paper n and s will denote fixed positive integers, F an alge-
braically closed field, and Mn the space of n × n matrices over F . An s -matrix is a
sequence A = (A1, A2, . . . , As) ∈ Ms

n . We are interested in the diagonal conjugation
action (also known as simultaneous similarity) of G = GLn(F) on Ms

n :

SAS−1 = (SA1S
−1, SA2S

−1, . . . , SAsS
−1).

Let Σ denote the set of ordered triples (i, j, k) of integers such that i, j ∈
{1, 2, . . . , n} and k ∈ {1, 2, . . . , s} . If i = j , we say that the triple (i, i, k) ∈ Σ
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is a diagonal triple. By a zero pattern, or just pattern, we mean a subset of Σ . For
each pattern P we define its complementary pattern Pc = Σ \ P . Given a pattern P ,
we denote by MP the subspace of Ms

n consisting of all s -matrices A = (A1, . . . , As)
such that the (i, j) th entry of Ak is 0 if (i, j, k) ∈ P . For each pattern P , we have the
direct decomposition Ms

n = MP ⊕ MPc . Let prP : Ms
n → MPc be the corresponding

projection with ker(prP) = MP .

DEFINITION 1.1. For any pattern P we define the map ϕP : G × MP → Ms
n by

ϕP(S, Y) = SYS−1 . We say that P is universal if ϕP is surjective, i.e., if for each
A ∈ Ms

n there exists S ∈ G such that SAS−1 ∈ MP .

Let us remark that if P contains a diagonal triple, then P is not universal.
The problem of deciding, in general, which patterns are universal is beyond our

reach. We shall consider only some special patterns which were introduced in [7] under
the name of “upper-form patterns”. We say that a pattern P is an upper pattern if
whenever (i, j, k) ∈ P and (i′, j′, k) ∈ Σ satisfy the inequalities i′ � i and j′ � j , then
(i′, j′, k) ∈ P .

Let B denote the Borel subgroup of G consisting of the invertible upper triangular
matrices, and b its Lie algebra consisting of all upper triangular matrices. We denote
by n ⊆ Mn the subspace of strictly lower triangular matrices. Thus, Mn = b ⊕ n . It
is easy to verify that if P is an upper pattern, then the subspace MP is B -stable, i.e.,
SMPS−1 = MP for all S ∈ B .

Note that if P is an upper pattern, with |P| > n(n− 1)/2 , then P is not universal
for dimension reason. Indeed, let us consider the space MP as a left B -module and
form the associated fibre bundle G×B MP (see [1, Section 5]). This fibre bundle is the
geometric quotient of G× MP for the B -action b · (S, X) = (Sb−1, bXb−1) . The map
ϕP : G × MP → Ms

n induces a morphism ψP : G ×B MP → Ms
n , and we have

dim(G ×B MP) = dim(n) + sn2 − |P| < sn2.

Consequently, ψP (and also ϕP ) is not surjective, i.e., P is not universal.
Let us say that an upper pattern P is feasible if it contains no diagonal triples and

|P| = n(n − 1)/2 . Our main result, Theorem 2.4, gives a simple characterization of
the universal feasible patterns. This is proved in the next section. In Section 3. we
demonstrate the power of our main result by giving quick uniform proofs for most of
the results proved in the recent paper [7]. In particular, Example 3.2 provides a simple
proof of a theorem of Pati [8] which asserts that every 4×4 complex matrix is unitarily
similar to a tridiagonal matrix, see [7] for details.

Let In denote the identity matrix in Mn . For X, Y ∈ Mn let [X, Y] = XY − YX .
All topological notions refer to the Zariski topologies of Ms

n and G .
We thank John Holbrook for sending us the preprint [7]. We also thank the referee

for his suggestion to include more details for the convenienceof the reader (in particular,
on the short proof of Pati’s theorem).
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2. Main result and proof

From now on P will denote a fixed feasible pattern and, to simplify notation,
we write ϕ instead of ϕP . We denote by dϕ(S0,X) the differential of ϕ at the point
(S0, X) ∈ G × MP , where X = (X1, . . . , Xs) ∈ MP . The tangent space of G × MP at
the point (In, X) can be identified with the product Mn × MP . We also identify the
tangent space of Ms

n at the point ϕ(In, X) = X with Ms
n . With these identifications in

force, this differential is a linear map

dϕ(In,X) : Mn × MP → Ms
n. (2.1)

The image of the tangent vector (Z, U) ∈ Mn × MP is given by

dϕ(In,X)(Z, U) = ([Z, X1], . . . , [Z, Xs]) + U ∈ Ms
n. (2.2)

Since ([Z, X1], . . . , [Z, Xs]) ∈ MP for Z ∈ b , it follows that

dϕ(In,X)(b × MP) = MP. (2.3)

The following two lemmas are needed for the proof of our main result.

LEMMA 2.1. If the differential dϕ(S0,X) is surjective for some point (S0, X) ∈
G × MP , then the differential dϕ(In,X) is also surjective.

Proof. Define the invertiblemorphisms α : G×MP → G×MP and β : Ms
n → Ms

n

by α(S, Z) = (S−1
0 S, Z) and β(Y) = S0YS−1

0 , respectively. Since β ◦ ϕ ◦ α = ϕ , we
have

dβX ◦ dϕ(In,X) ◦ dα(S0,X) = dϕ(S0,X).

Now the assertion of the lemma follows from the fact that α and β (and their differ-
entials) are isomorphisms. �

The second lemma is due to R. Steinberg [11, Lemma 2, p. 68] (see also [5,
Corollary 3.2.12 (a)]).

LEMMA 2.2. Let G be an affine algebraic group acting on a variety V . Let H
be a closed subgroup of G and U ⊆ V be a closed subset of V , invariant under the
action of H . Assume that the homogeneous space G/H is a complete variety. Then
G · U is closed.

For u, v ∈ {1, 2, . . . , n} let Euv ∈ Mn be the matrix with (u, v) th entry 1 and all
other entries 0. The matrices Euv for all u, v ∈ {1, . . . , n} form a basis of Mn to which
we refer as the standard basis of Mn . One defines similarly the standard basis of Ms

n .
For each X = (X1, . . . , Xs) ∈ MP , denote by WX the subspace of MPc spanned

by the s -matrices

prP ([Euv, X1], . . . , [Euv, Xs]) , n � u > v � 1.

By setting U = 0 and by taking Z ∈ n in (2.2), we obtain that

WX = prP(dϕ(In,X)(n)).

Let us define the linear map f P,X : n → MPc by

f P,X(Z) = prP([Z, X1], . . . , [Z, Xs]).

Clearly, WX is just the image of f P,X .
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DEFINITION 2.3. We say that a feasible pattern P is regular if WX = MPc for
some X ∈ MP .

We remark that the condition WX = MPc is equivalent to the statement that the
differential (2.1) is surjective.

Our main result is the following theorem.

THEOREM 2.4. Let P be a feasible pattern. If P is regular then it is universal. If
the characteristic of F is 0 , then the converse holds.

Proof. To prove the first assertion, assume that P is regular. Since P is feasible,
the subspace MP ⊆ Ms

n is B -stable. As G/B is a projective variety (and hence
complete), we can apply Lemma 2.2 to deduce that the set

G · MP =
{
SXS−1 : S ∈ G, X ∈ MP

}

is closed.
As P is regular, we may assume that X = (X1, . . . , Xs) ∈ MP is chosen so that

WX = MPc . We claim that the differential dϕ = dϕ(In,X) is surjective. Since MP is
contained in the image of dϕ and

dϕ(Z, 0) = ([Z, X1], . . . , [Z, Xs]) , (2.4)

the vector
prP ([Z, X1], . . . , [Z, Xs])

belongs to the image of dϕ . As WX = MPc , we conclude that the image of dϕ contains
MPc . Since it also contains MP , our claim is proved.

By the differential criterion for dominance (see e.g. [5, Proposition 1.4.15]), ϕ is
a dominant map. Since its image is also closed, ϕ must be surjective. This means that
the pattern P is universal.

To prove the second assertion, assume that the characteristic of F is 0 and that
P is universal. Consequently, the map ϕ is surjective. By [6, Proposition 14.4], there
exists a point (S0, X) ∈ G × MP such that the differential dϕ(S0,X) is surjective. By
Lemma 2.1, the differential dϕ(In,X) is also surjective. From (2.3) and Mn = b ⊕ n

we infer that the vectors (2.4) for Z ∈ n span a complement of MP in Ms
n . Hence,

WX = MPc which means that the pattern P is regular. �

3. An application and examples

In this section we apply our main result to unitary similarity and discuss several
examples.

When F = C (the field of complex numbers), we can apply the main theorem to
the action of the complex unitary group U(n) on Ms

n by simultaneous similarity.

PROPOSITION 3.1. Let F = C and let P be a regular pattern. Then for any
A ∈ Ms

n there exists R ∈ U(n) such that RAR−1 ∈ MP .
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Proof. By Theorem 2.4 there exists S ∈ GLn(C) such that SAS−1 ∈ MP . Now
it suffices to apply Remark 1 in [7]. For the reader’s convenience we repeat this short
argument. Recall that S can be factored as S = TR , where R ∈ U(n) and T ∈ B . It
follows that RAR−1 ∈ T−1MPT = MP . �

We shall now give two examples of regular patterns. The first example gives
another proof of Proposition 2 (and Theorem A.1) in [7].

EXAMPLE 3.2. Let n = 4 and s = 2 . Then the (upper Hessenberg) pattern

P = {(3, 1, 1), (4, 1, 1), (4, 2, 1), (3, 1, 2), (4, 1, 2), (4, 2, 2)}

is regular. Indeed, if we choose X = (X1, X2) ∈ MP , where X1 = E32 + E43 and
X2 = E12 + E21 , then an easy computation shows that WX = MPc .

It is important to point out that this example indeed gives a proof of Pati’s theorem
mentioned in the introduction. Take F = C , n = 4 , s = 2 , and let A ∈ M4 be
arbitrary. Since the pattern P from the example above is regular, Proposition 3.1 shows
that there exists R ∈ U(4) such that R(A, A∗)R−1 ∈ MP . This forces RAR−1 to be
tridiagonal.

It is very easy to handle Example 3 from [7].

EXAMPLE 3.3. Let n = 3 and s = 3 . Then the (upper Hessenberg) pattern

P = {(3, 1, 1), (3, 1, 2), (3, 1, 3)}

is regular. Indeed, one can easily verify that for X = (E11, E21, E32) ∈ MP , we have
WX = MPc .

The analogously defined pattern for n = 4 and s = 6 is not universal. This
follows from the following proposition.

PROPOSITION 3.4. Let F have characteristic 0 and let P be a feasible pattern.
Assume that there exist integers u and v such that n � u > v � 1 and u > i and
v > j for all triples (i, j, k) ∈ P . Then P is not universal.

Proof. It suffices to observe that f P,X(Euv) = 0 for all X ∈ MP . �
Next we consider the non-universal pattern from Example 4 of [7].

EXAMPLE 3.5. Let F have characteristic 0 and let n = 4 and s = 3 . Then the
feasible pattern

P = {(3, 1, 1), (4, 1, 1), (3, 1, 2), (4, 1, 2), (3, 1, 3), (4, 1, 3)}

is not universal. Indeed, it is easy to check that for any X = (X1, X2, X3) ∈ MP ,

f P,X(E43) = prP ([E43, X1], . . . , [E43, X3]) = 0.

Consequently, WX is a proper subspace of MPc for all X ∈ MP , i.e., the pattern P is
not regular. By Theorem 2.4, P is not universal.

Let us give yet another very simple example of a feasible pattern which is not
universal.
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EXAMPLE 3.6. Let n = 4 and s = 2 . Then the feasible pattern

P = {(2, 1, 1), (3, 1, 1), (4, 1, 1), (4, 1, 2), (4, 2, 2), (4, 3, 2)}

is not universal.
Choose A = (A1, A2) ∈ M2

4 such that both A1 and A2 have 4 distinct eigenvalues
and no eigenvector of A1 lies in any of the 4 three-dimensional invariant subspaces of
A2 . It is immediate from these properties that there is no S ∈ G such that SAS−1 ∈ MP .
Hence, P is not universal.

For an alternative proof (in case F has characteristic 0), observe that f P,X(E32) = 0
for all X ∈ MP .

In the next example we indicate how one can deduce [7, Theorem A.4] from our
result.

EXAMPLE 3.7. Let n > 4 and s = 2 . Then the feasible pattern

P = {(i, j, 1) : i > j + 1} ∪ {(i, 1, 2) : i > 2} ∪ {(n, 2, 2)}

is universal.
We shall only outline the proof. Let X = (X1, X2) ∈ MP , where

X1 = E11 + E32 + E43 + · · · + En−2,n−3 + En,n−1 + cEn,n, c �= 0, 1;

and X2 = E21 + En−1,2 . It suffices to show that the map f P,X : n → MPc is an
isomorphism. Let us order the standard basis of n as follows:

En,1, En−1,1, . . . , E21, En−1,2;

En,2, En,3, . . . , En,n−1;

En−1,3, En−1,4, . . . , En−1,n−2;

En−2,2, En−2,3, . . . , En−2,n−3;
...

E42, E43;

E32.

Then one can verify that, for each k , f P,X maps the subspace of n spanned by the
first k basis vectors onto a k -dimensional standard subspace of MPc . (By a standard
subspace we mean a subspace spanned by a subset of the standard basis.) We omit this
tedious verification.

Finally, we mention an interesting problem related to our main result. For simplic-
ity, assume that F has characteristic 0. Let P be a universal feasible pattern. The vari-
eties G×BMP and Ms

n have the same dimension and themorphism ψP : G×BMP → Ms
n

induced by ϕP is surjective. For such maps the degree is well defined, see e.g. [6,
Lecture 7, p. 80].

PROBLEM. Compute the degree of the morphism ψP , for any universal feasible
pattern P .
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