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ON THE CONVERGENCE OF ALUTHGE SEQUENCE

HUAJUN HUANG AND TIN-YAU TAM

(communicated by Leiba Rodman)

Abstract. For 0 < λ < 1 , the λ -Aluthge sequence {Δm
λ (X)}m∈N converges if the nonzero

eigenvalues of X ∈ Cn×n have distinct moduli, where Δλ (X) := PλUP1−λ if X = UP is a
polar decomposition of X .

1. Introduction

Given X ∈ Cn×n , the polar decomposition [9] asserts that X = UP , where
U is unitary and P is positive semidefinite, and the decomposition is unique if X is
nonsingular. Though the polar decompositionmay not be unique, the Althuge transform
[1] of X :

Δ(X) := P1/2UP1/2

(P1/2XP−1/2 if X is nonsingular) is well defined [17, Lemma 2]. Aluthge transform
has been studied extensively, for example, [1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 17].
Recently Yamazaki [16] established the following interesting result

lim
m→∞

‖Δm(X)‖ = r(X), (1.1)

where r(X) is the spectral radius of X and

‖X‖ := max
‖v‖2=1

‖Xv‖2

is the spectral norm of X . Suppose that the singular values s1(X), . . . , sn(X) and the
eigenvalues λ1(X), . . . , λn(X) of X are arranged in nonincreasing order

s1(X) � s2(X) � · · · � sn(X), |λ1(X)| � |λ2(X)| � · · · � |λn(X)|.

Since ‖X‖ = s1(X) and r(X) := |λ1(X)| , the following result of Ando [3] is an
extension of (1.1).

THEOREM 1.1. (Yamazaki-Ando) Let X ∈ Cn×n . Then

lim
m→∞

si(Δm(X)) = |λi(X)|, i = 1, . . . , n. (1.2)
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Aluthge transform Δ(T) is also defined for Hilbert space bounded linear operator
T [17] and (1.1) remains true [16]. Yamazaki’s result (1.1) provides support for the
following conjecture of Jung et al [11, Conjecture 1.11] for any T ∈ B(H) where B(H)
denotes the algebra of bounded linear operators on the Hilbert space H .

CONJECTURE 1.2. Let T ∈ B(H) . The Aluthge sequence {Δm(T)}m∈N is norm
convergent to a quasinormal Q ∈ B(H) , that is, ‖Δm(T)−Q‖ → 0 as m → ∞ , where
‖ · ‖ is the spectral norm.

It is known [11, Propositioin 1.10] that if the Aluthge sequence of T ∈ B(H)
converges, its limit L is quasinormal, that is, L commutes with L∗L , or equivalently,
UP = PU where L = UP is a polar decomposition of L [9]. However very recently
it is known [7] that Conjecture 1.2 is not true for infinite dimensional Hilbert space.
Chō, Jung and Lee [7, Corollary 3.3] constructed a unilateral weighted shift operator
T : �2(N) → �2(N) such that the sequence {Δm(T)}m∈N does not converge in weak
operator topology. They also constructed [7, Example 3.5] a hyponormal bilateral
weighted shift B : �2(Z) → �2(Z) such that {Δm(B)}m∈N converges in the strong
operator topology, that is, for some L : �2(Z) → �2(Z) , ‖Δm(B)x − Lx‖ → 0 as
m → ∞ for all x ∈ �2(Z) , where ‖x‖ is the norm induced by the inner product.
However {Δm(B)}m∈N does not converge in the norm topology. So the study of
Conjecture 1.2 is reduced to the finite dimensional case Cn×n . Since the three (weak,
strong, norm) topologies coincide and quasinormal and normal coincide [9] in the finite
dimensional case, the limit points of the Aluthge sequence are normal [13, Proposition
3.1], [3, Theorem 1]. Also see [11, Proposition 1.14]. Moreover the eigenvalues of
Δ(X) and the eigenvalues of X are identical, counting multiplicities. So the study of
Conjecture 1.2 is now reduced to the finite dimensional case:

CONJECTURE 1.3. Let X ∈ Cn×n . The Aluthge sequence {Δm(X)}m∈N is con-
vergent to a normal matrix whose eigenvalues are λ1(X), . . . , λn(X) .

Conjecture 1.3 is true when n = 2 [4, p.300] and the proof involves very hard
computation which seems unlikely to be extended in higher dimension. It remains open
for 3 � n . It is also true for some special cases [3] [13, Corollary 3.3], for examples,
(1) if the spectrum of X is a singleton set, or (2) if X is normal (then Δm(X) = X for
all m ).

In this paper we give a partial answer to Conjecture 1.3, that is, it is true if the
nonzero eigenvalues of X ∈ Cn×n have distinct moduli. Such matrices form a dense
set in Cn×n . Indeed our result is also true for λ -Aluthge transform that we are about
to mention.

From now on we only consider X ∈ Cn×n , the finite dimensional case.
Let X = UP be a polar decomposition of X ∈ Cn×n where U is unitary and P

is positive semidefinite. For 0 < λ < 1 , Aluthge [2] introduced a generalized Aluthge
transform (see [5, 11, 14]) and we call it the λ -Aluthge transform:

Δλ (X) := PλUP1−λ
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which is also well defined. Evidently the Aluthge transform Δ is simply Δ 1
2
. Since

P = (X∗X)1/2 , one may write

Δλ (X) = (X∗X)λ/2U(X∗X)(1−λ )/2.

In addition, if X is nonsingular, then Δλ (X) = PλXP−λ and thus similar to X . The
spectrum, counting multiplicities, is invariant under Δλ , denoted by

σ(X) m= σ(Δλ (X)) (1.3)

since σ(XY) m= σ(YX) , where σ(X) denotes the spectrum of X . Moreover Δλ
respects unitary similarity:

Δλ (VXV−1) = VΔλ (X)V−1, V ∈ U(n). (1.4)

The sequence {Δm
λ (X)}m∈N is called the λ -Aluthge sequence of X . By the submulti-

plicativity of the spectral norm, it follows immediately that

‖Δλ (X)‖ � ‖X‖ (1.5)

and thus {‖Δm
λ (X)‖}m∈N is nonincreasing. In [5, Corollary 4.2] Antezana, Massey and

Stojanoff generalized Theorem 1.1: for any X ∈ Cn×n ,

lim
m→∞

‖Δm
λ (X)‖ = r(X), (1.6)

and obtained many other nice results. However (1.6) remains unknown for Hilbert
space operators T .

THEOREM 1.4. [5] Let X ∈ Cn×n and 0 < λ < 1 .
1. Any limit point of the λ -Aluthge sequence {Δm

λ (X)}m∈N is normal, with eigen-
values λ1(X), . . . , λn(X) .

2. limm→∞ si(Δm
λ (X)) = |λi(X)| , i = 1, . . . , n .

3. If X ∈ C2×2 , then {Δm
λ (X)}m∈N converges.

Theorem 1.4(1) is [5, Proposition 4.1]. It reduces to [3, Theorem 1] and [13,
Proposition 3.1] when λ = 1/2 . Theorem 1.4(3) is [5, Theorem 4.6] and is an
extension of [4]. Theorem 1.4(2) can be deduced from (1.6) using compound matrices
via the argument in Ando [3, p.284-285].

It is evident from Theorem 1.4(1) that if the spectrum of X is a singleton set {α} ,
then the λ -Aluthge sequence converges to αIn .

The main goal of the paper is to show that if the nonzero eigenvalues of X ∈ Cn×n

have distinct moduli, then the λ -Aluthge sequence converges. Since such matrices
X form a dense subset in Cn×n , it explains why many numerical experiments result
in convergence. An example is given to show that the λ -Aluthge sequence does not
converge when λ = 1 .
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2. Distinct moduli implies convergence

We list the following notations that we will use in the forthcoming discussion.

Cn×n = the set of all n × n complex matrices

GLn(C) = the general linear group of n × n nonsingular matrices

S(n) = the Lie algebra of n × n skew Hermitian matrices

H(n) = the real vector space of n × n Hermitian matrices

P(n) = the set of n × n positive definite matrices

U(n) = the group of n × n unitary matrices

D(n) = the group of n × n diagonal unitary matrices

D+(n) = the set of all positive diagonal matrices with diagonal

entries in descending order

‖X‖F =
√

tr (X∗X), the Frobenius norm of X ∈ Cn×n

‖X‖ = s1(X), the spectral norm of X ∈ Cn×n

N = {1, 2, . . . , }, the set of natural numbers

The entire paper is to prove the following two results.

THEOREM 2.1. Let 0 < λ < 1 . If the nonzero eigenvalues of X ∈ Cn×n have
distinct moduli, then the λ -Aluthge sequence {Δm

λ (X)}m∈N converges to a normal
matrix with the same eigenvalues (counting multiplicity) as X .

THEOREM 2.2. Let X = U∗(⊕k
i=1Ti)U , where U ∈ U(n) and for each i =

1, . . . , k , either
1. the nonzero eigenvalues of Ti are the same,
2. the nonzero eigenvalues of Ti have distinct moduli,
3. Ti has two nonzero eigenvalues, or
4. Δq

λ (Ti) is normal for some q ∈ N .
Then the λ -Aluthge sequence {Δm

λ (X)}m∈N converges.

Theorem2.2 combinesTheorem2.1 and some known convergence results for n×n
matrices in the literature.

EXAMPLE 2.3. Suppose that 0 < λ < 1 .
1. Let

X =

⎡
⎣ a ∗ ∗

0 b ∗
0 0 c

⎤
⎦⊕ A,

where |a|, |b|, |c| are distinct and matrix A has a singleton spectrum. The λ -Althuge
sequence {Δm

λ (X)}m∈N converges.
2. It is possible that X is not normal but Δq

λ (X) is normal for some q ∈ N . Let

X =

⎡
⎣ 1 0 1

0 1 2
0 0 0

⎤
⎦ .
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Then X is not normal and X is similar to I2⊕ [ 0 ] . By the proof of [5, Corollary 4.16],

Δλ (X) = U∗
[

S 0
0 0

]
U

for some U ∈ U(3) and S ∈ GL2(C) . By [5, Proposition 4.14(2)], S has only one
eigenvalue 1 with trivial Jordan structure. So S = I2 and Δλ (X) is normal. Therefore,
Δλ (X) = Δ2

λ (X) = · · · , and {Δm
λ (X)}m∈N converges to Δλ (X) .

The idea of proving Theorem2.1 is to show that {Δm
λ (X)}m∈N is a Cauchy sequence

via the Frobenius norm. As a finite dimensional normed space, Cn×n is complete and
thus {Δm

λ (X)}m∈N converges. The proof does not reveal the explicit form of the limit.
We will establish a few lemmas in order to prove Theorem 2.1. The following

lemma can be obtained from [11, Proposition 1.10] and the remark on [11, p.445] since
normal and quasinormal coincide in Cn×n .

LEMMA 2.4. Let 0 < λ < 1 and X ∈ Cn×n . Then X is normal if and only if
Δλ (X) = X .

Given a normal matrix A ∈ GLn(C) , we may write the spectral decomposition of
A in the following fashion

A = V∗DθDV,

where V ∈ U(n) , Dθ ∈ D(n) , and D ∈ D+(n) . Indeed,

D = diag (|λ1(A)|, . . . , |λn(A)|), Dθ = diag (eiθ1 , . . . , eiθn)

such that λj(A) = eiθj |λj(A)| , j = 1, . . . , n .
The following lemma provides a representation of a sequence in GLn(C) which

converges to a normal matrix A ∈ GLn(C) whose eigenvalues are the same if they have
the same moduli. We will only use a special case of the lemma in the proof of our main
theorem, namely, when A has distinct eigenvalue moduli.

LEMMA 2.5. Let {Xm}m∈N ⊂ GLn(C) be a sequence which converges to a
normal matrix A ∈ GLn(C) . Write

A = V∗DθDV,

where V ∈ U(n) , Dθ ∈ D(n) , and D ∈ D+(n) . Suppose that eigenvalues of A are
identical if they have the same moduli. Then for each m ∈ N , there are Vm ∈ U(n) ,
Bm ∈ S(n) , Dm ∈ D+(n) such that

Xm = V∗
meBmDθDmVm, (2.1)

satisfying
1. limm→∞ Dm = D.
2. limm→∞ Bm = 0 .

Proof. Since limm→∞ Xm = A , we have

lim
m→∞

Dθ
−1VXmV∗ = D. (2.2)
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Let
Dθ

−1VXmV∗ = UmDmLm (2.3)

be a singular value decomposition of Dθ
−1VXmV∗ , where Um, Lm ∈ U(n) and Dm ∈

D+(n) (Um and Lm are not unique in general). Since Dm ∈ D+(n) contains the
singular values of Xm , by the continuity of singular values

lim
m→∞

Dm = D. (2.4)

Rewrite (2.3) in the fashion of polar decomposition

Dθ
−1VXmV∗ = (UmLm)(L∗

mDmLm) ∈ GLn(C) (2.5)

where UmLm ∈ U(n) , L∗
mDmLm ∈ P(n) . The polar decomposition

π : U(n) × H(n) → GLn(C), π(U, H) = U expH. (2.6)

is a diffeomorphism [15, p.238]. Due to (2.2) and (2.5)

lim
m→∞

UmLm = In, (2.7)

and
lim

m→∞
L∗

m(log Dm)Lm = logD

so that
lim

m→∞
L∗

mDmLm = D. (2.8)

By (2.4),
lim

m→∞
‖L∗

m(D − Dm)Lm‖ = lim
m→∞

‖D − Dm‖ = 0. (2.9)

By (2.8) and (2.9),

lim
m→∞

L∗
mDLm = lim

m→∞
L∗

mDmLm + lim
m→∞

L∗
m(D − Dm)Lm = D. (2.10)

Therefore,

lim
m→∞

‖D − LmDL∗
m‖ = lim

m→∞
‖L∗

m(D − LmDL∗
m)Lm‖ (2.11)

= lim
m→∞

‖L∗
mDLm − D‖ = 0 by (2.10).

This shows that
D = lim

m→∞
LmDL∗

m. (2.12)

Write
D = diag (|λ1(A)|, . . . , |λn(A)|), Dθ = diag (eiθ1 , . . . , eiθn)

such that λj(A) = eiθj |λj(A)| , j = 1, . . . , n . Recall that eigenvalues of A are identical
if they have the same moduli, that is, |λk(A)| = |λj(A)| implies eiθk = eiθj . By
Lagrange interpolation theorem, it amounts to say that Dθ = p(D) for some polynomial
p(x) ∈ C[x] . By (2.12),

lim
m→∞

LmDθL
∗
m = lim

m→∞
Lmp(D)L∗

m (2.13)

= lim
m→∞

p(LmDL∗
m) = p(D) = Dθ .
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Now

Xm = V∗DθUmDmLmV by (2.3) (2.14)

= V∗L∗
m[(LmDθL

∗
m)(LmUm)D−1

θ ]DθDmLmV.

Denote Cm := (LmDθL∗
m)(LmUm)D−1

θ . By (2.7),

lim
m→∞

‖LmUm − In‖ = lim
m→∞

‖L∗
m(LmUm − In)Lm‖ (2.15)

= lim
m→∞

‖UmLm − In‖ = 0.

So limm→∞ LmUm = In and thus with (2.13),

lim
m→∞

Cm =
(

lim
m→∞

LmDθL
∗
m

)(
lim

m→∞
LmUm

)
D−1
θ = In. (2.16)

Notice that Cm ∈ U(n) . The exponential map exp : Cn×n → GLn(C) [10, p.149] is
onto and satisfies

U(n) = exp S(n). (2.17)

Though the exponential map exp : S(n) → U(n) is not bijective, it gives a diffeomor-
phism [10, p.104]

ϕ : N0 → N1

between a neighborhood N0 of 0 ∈ S(n) and a neighborhood N1 of In ∈ U(n) . Due
to (2.17), (2.16) and the diffeomorphism ϕ , for each m ∈ N , there exists Bm ∈ S(n)
such that

Cm = eBm and lim
m→∞

Bm = 0. (2.18)

By (2.14),
Xm = V∗

meBmDθDmVm,

where Vm := LmV ∈ U(n) , as desired. �
We now use Lemma 2.5 to establish the following lemma.

LEMMA 2.6. Suppose that the eigenvalues of X ∈ GLn(C) have distinct eigen-
value moduli

|λ1(X)| > |λ2(X)| > · · · > |λn(X)| > 0.

Denote

Dθ := diag

(
λ1(X)
|λ1(X)| , · · · ,

λn(X)
|λn(X)|

)
D := diag (|λ1(X)|, · · · , |λn(X)|) .

Then for a fixed 0 < λ < 1 ,

Δm
λ (X) = V∗

metmAmDθDmVm (2.19)

for some Dm ∈ D+(n) , Am ∈ S(n) , Vm ∈ U(n) , tm � 0 such that
1. limm→∞ Dm = D.
2. limm→∞ tm = 0 .
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3. For each m ∈ N , min{‖Am‖, ‖D1−λ
m AmDλ−1

m ‖} = 1 .

Proof. We write Xm := Δm
λ (X) . Notice that if Xm can be expressed in the form

(2.19), then by Theorem 1.4(2), property (1) holds by the continuity of singular values
since Dm ∈ D+(n) contains the singular values of Xm .

We now consider the following two cases:
Case 1: Some element of {Xm}m∈N is normal. Let Xk be the first normal matrix

in the sequence. Then by Lemma 2.4

Xk = Xk+1 = Xk+2 = · · ·

Since Xk is normal and have the same spectrum of X , we may write Xk = V∗DθDV
for some V ∈ U(n) . Hence for all m � k ,

Xm = V∗
metmAmDθDmVm,

where Dm = D , Am = In , tm = 0 and Vm = V . It is clear that (1), (2), and (3) are
true.

Case 2: None of the elements in {Xm}m∈N is normal. By Theorem 1.4(1) the
limit points of {Xm}m∈N are normal and are located in the orbit O of the diagonal DθD
under unitary similarity

O := {V∗DθDV | V ∈ U(n)}.

Let
Xm = UmDmVm (2.20)

be a singular value decomposition of Xm , where Dm ∈ D+(n) , Um, Vm ∈ U(n) . We
can rewrite (2.20) in the following fashion:

Xm = V∗
m(VmUmD−1

θ )DθDmVm

= V∗
meBmDθDmVm by (2.17) (2.21)

where eBm = VmUmD−1
θ for some Bm ∈ S(n) . Notice that the matrix Dm ∈ D+(n)

is uniquely defined by Xm , but Vm ∈ U(n) and Bm ∈ S(n) are not unique. For each
m ∈ N , denote

Sm := {B ∈ S(n) | there is V ′
m ∈ U(n) such that Xm = V ′∗

m eBDθDmV ′
m}.

The set Sm is closed, since if {B(i)}i∈N ⊂ Sm and limi→∞ B(i) = B , then

Xm = (V(i))∗eB(i)
DθDmV(i)

for some {V(i)}i∈N ⊂ U(n) . Since U(n) is compact, the sequence {V(i)}i∈N has at
least one limit point V ∈ U(n) . So Xm = V∗eBDθDmV and thus B ∈ Sm .

Since Sm is closed, we choose Bm ∈ Sm in (2.21) once and for all in the way that
‖Bm‖ is minimal (the choice Bm still may not be unique). Since each Xm is not normal,
Bm 	= 0 . Write Bm = tmAm , that is, Am := Bm

tm
, and adjust tm > 0 appropriately, one

has
min{‖Am‖, ‖D1−λ

m AmDλ−1
m ‖} = 1.
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So property (3) is satisfied.
It remains to prove property (2), i.e., limm→∞ tm = 0 , or equivalently,

lim
m→∞

Bm = 0, (2.22)

since ‖Bm‖ = tm‖Am‖ � tm and limm→∞ Dm = D . Suppose on the contrary that
(2.22) is not true. There would exist ε > 0 and a subsequence {Bmi}i∈N where

‖Bmi‖ � ε, for all i ∈ N. (2.23)

By (1.5) the subsequence {Xmi}i∈N is bounded above by ‖X‖ . Thus {Xmi}i∈N has a
convergent subsequence {Xm′

i
}i∈N . By Theorem1.4(1) limi→∞ Xm′

i
is a normal matrix

of spectrum σ(X) , that is,
lim

i→∞
Xm′

i
= V∗DθDV

for some V ∈ U(n) . By Lemma 2.5, we may write

Xm′
i
= V∗

m′
i
e
Em′

i DθDm′
i
Vm′

i

where Vm′
i
∈ U(n) , Em′

i
∈ Sm , and limi→∞ ‖Em′

i
‖ = 0 . Thiswould force limi→∞ ‖Bm′

i
‖

= 0 because of the choice of Bm and would contradict (2.23). So (2.22) and thus prop-
erty (2) are established. �

LEMMA 2.7. Suppose {T�}m
�=0 ⊂ Cn×n . For any m ∈ N ,

m∑
�=0

(
m
�

)
(−1)�T� =

m∑
�=1

(
m − 1
� − 1

)
(−1)� (T� − T�−1) .

Proof. Recall the combinatorial identity(
m
�

)
=

(
m − 1
� − 1

)
+

(
m − 1

�

)
,

in which we adopt the usual convention:
(m

�

)
= 0 if m < � or � < 0 . So

m∑
�=0

(
m
�

)
(−1)�T� =

m∑
�=0

(
m − 1
� − 1

)
(−1)�T� +

m∑
�=0

(
m − 1

�

)
(−1)�T�

=
m∑

�=1

(
m − 1
� − 1

)
(−1)�T� +

m−1∑
�=0

(
m − 1

�

)
(−1)�T�

=
m∑

�=1

(
m − 1
� − 1

)
(−1)�T� +

m∑
�=1

(
m − 1
� − 1

)
(−1)�−1T�−1

=
m∑

�=1

(
m − 1
� − 1

)
(−1)�(T� − T�−1). �
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LEMMA 2.8. Let A, D ∈ Cn×n . For m ∈ N ,

∥∥∥∥∥
m∑

�=0

(
m
�

)
(−1)�Am−�D2A�

∥∥∥∥∥
F

� 2m−1
∥∥D2A − AD2

∥∥
F
‖A‖m−1.

Proof. Applying Lemma 2.7 with T� = Am−�D2A� , we have

∥∥∥∥∥
m∑

�=0

(
m
�

)
(−1)�Am−�D2A�

∥∥∥∥∥
F

=

∥∥∥∥∥
m∑

�=1

(
m − 1
� − 1

)
(−1)�

(
Am−�D2A� − Am−�+1D2A�−1

)∥∥∥∥∥
F

=

∥∥∥∥∥
m∑

�=1

(
m − 1
� − 1

)
(−1)�Am−�

(
D2A − AD2

)
A�−1

∥∥∥∥∥
F

�
m∑

�=1

(
m − 1
� − 1

)∥∥Am−�
(
D2A − AD2

)
A�−1

∥∥
F

�
m∑

�=1

(
m − 1
� − 1

)
‖A‖m−� ∥∥D2A − AD2

∥∥
F
‖A‖�−1

= 2m−1
∥∥D2A − AD2

∥∥
F
‖A‖m−1 by

m∑
�=1

(
m − 1
� − 1

)
= 2m−1,

where the last inequality is obtained by using the inequalities ‖AB‖F � ‖A‖‖B‖F and
‖AB‖F � ‖A‖F‖B‖ . �

LEMMA 2.9. Let D = diag (d1, . . . , dn) with positive d1, . . . , dn and A ∈ S(n) .
For m ∈ N ,

∥∥∥∥∥
m∑

�=0

(
m
�

)
(−1)�D1−λA�D2λAm−�D1−λ

∥∥∥∥∥
F

� 2m−1
∥∥∥D1−λAD1+λ − D1+λAD1−λ

∥∥∥
F

∥∥∥Dλ−1AD1−λ
∥∥∥m−1

(2.24)

� 2m−1
∥∥D2A − AD2

∥∥
F

∥∥∥Dλ−1AD1−λ
∥∥∥m−1

. (2.25)

Proof. Clearly we have

∥∥∥Dλ−1AD1−λ
∥∥∥ =

∥∥∥−(
D1−λADλ−1

)∗∥∥∥ .
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Applying Lemma 2.7 with T� = D1−λA�D2λAm−�D1−λ , we have∥∥∥∥∥
m∑

�=0

(
m
�

)
(−1)�D1−λA�D2λAm−�D1−λ

∥∥∥∥∥
F

=

∥∥∥∥∥
m∑

�=1

(
m − 1
� − 1

)
(−1)�

(
D1−λA�D2λAm−�D1−λ − D1−λA�−1D2λAm−�+1D1−λ

)∥∥∥∥∥
F

=

∥∥∥∥∥
m∑

�=1

(
m − 1
� − 1

)
(−1)�D1−λA�−1

(
AD2λ − D2λA

)
Am−�D1−λ

∥∥∥∥∥
F

=
∥∥∥ m∑

�=1

(
m − 1
� − 1

)
(−1)�

(
D1−λADλ−1

)�−1 (
D1−λAD1+λ − D1+λAD1−λ

)
(
Dλ−1AD1−λ

)m−� ∥∥∥
F

�
m∑

�=1

(
m − 1
� − 1

)∥∥∥D1−λADλ−1
∥∥∥�−1 ∥∥∥D1−λAD1+λ − D1+λAD1−λ

∥∥∥
F

∥∥∥Dλ−1AD1−λ
∥∥∥m−�

= 2m−1
∥∥∥D1−λAD1+λ − D1+λAD1−λ

∥∥∥
F

∥∥∥Dλ−1AD1−λ
∥∥∥m−1

,

where the last inequality is obtained by using the inequalities ‖AB‖F � ‖A‖‖B‖F and
‖AB‖F � ‖A‖F‖B‖ . So we have inequality (2.24).

The (i, j) -entry of D1−λAD1+λ −D1+λAD1−λ is aij(d1−λ
i d1+λ

j − d1+λ
i d1−λ

j ) and
the (i, j) -entry of D2A − AD2 is aij(d2

i − d2
j ) . We claim that

|d1−λ
i d1+λ

j − d1+λ
i d1−λ

j | � |d2
i − d2

j |. (2.26)

For definiteness, suppose di � dj(> 0) . Then |d1−λ
i d1+λ

j − d1+λ
i d1−λ

j | = d1+λ
i d1−λ

j −
d1−λ

i d1+λ
j for 0 < λ < 1 and |d2

i − d2
j | = d2

i − d2
j , and

d2
i − d2

j − (d1+λ
i d1−λ

j − d1−λ
i d1+λ

j ) = (d1+λ
i + d1+λ

j )(d1−λ
i − d1−λ

j ) � 0.

Hence (2.26) is established and∥∥∥D1−λAD1+λ − D1+λAD1−λ
∥∥∥

F
�

∥∥D2A − AD2
∥∥

F

so that (2.25) follows. �
Given X ∈ Cn×n , define

f (X) := ‖X∗X − XX∗‖F

which is interpreted as a measure of how close X to a normal matrix. For example,
f (X) = 0 if and only if X is normal. We interpret that X is close to a normal matrix if
f (X) is small. Notice that f is constant on the orbit of X under unitary similarity, that
is,

f (X) = f (UXU∗), U ∈ U(n). (2.27)
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The notation g(t) = O(tk) for a real value function g means

lim
t→0

∣∣g(t)
tk

∣∣ � M

for some constant M .

LEMMA 2.10. Let 0 < λ < 1 . Suppose that

X = V∗etADθDV ∈ GLn(C)

is not normal, where A ∈ S(n) , V ∈ U(n) , D = diag (d1, · · · , dn) ∈ D+(n) , and

Dθ = diag (eiθ1 , · · · , eiθn), θ1, · · · , θn ∈ R.

Suppose further 0 < t < 1 and min{‖A‖, ‖D1−λADλ−1‖} � 1 . Then

f (Δλ (X))
f (X)

�

√√√√∑n
i,j=1 |aij|2 (di − dj)2(dλi d1−λ

j + d1−λ
i dλj )2∑n

i,j=1 |aij|2 (d2
i − d2

j )2
+ O(t) (2.28)

� α + O(t) (2.29)

where the bounds for O(t) ’s in (2.28) and (2.29) are independent of X , and

α := max
1�i<j�n

dλi d1−λ
j + d1−λ

i dλj
di + dj

. (2.30)

Moreover, α < 1 whenever d1, · · · , dn are distinct.

Proof. By (1.4) and (2.27)

f (Δλ (X))
f (X)

=
f (Δλ (VXV∗))

f (VXV∗)
=

f (Δλ (etADθD))
f (etADθD)

. (2.31)

Since X is not normal, the denominator

f (etADθD) = f (X) > 0. (2.32)

Since Dθ ∈ D(n) and D ∈ D+(n) commute, we have

f (etADθD) =
∥∥D2 − etAD2e−tA

∥∥
F

=

∥∥∥∥∥D2 −
( ∞∑

k=0

tkAk

k!

)
D2

[ ∞∑
k=0

(−1)ktkAk

k!

]∥∥∥∥∥
F

=

∥∥∥∥∥t
(
D2A − AD2

)
−

∞∑
m=2

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�Am−�D2A�

]∥∥∥∥∥
F

.
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We consider the second term of the last expression. Since 0 < t < 1 , one has t2 � tm

for all m � 2 . Since ‖A‖ � 1 ,∥∥∥∥∥
∞∑

m=2

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�Am−�D2A�

]∥∥∥∥∥
F

�
∞∑

m=2

t2

m!

∥∥∥∥∥
m∑

�=0

(
m
�

)
(−1)�Am−�D2A�

∥∥∥∥∥
F

by t2 � tm

� t2
∞∑

m=2

2m−1

m!

∥∥D2A − AD2
∥∥

F
by Lemma 2.8

= t2
(e2 − 3)

2

∥∥D2A − AD2
∥∥

F

= O
(
t2
) ∥∥D2A − AD2

∥∥
F
.

Since

‖B‖F − ‖C‖F � ‖B + C‖F � ‖B‖F + ‖C‖F, B, C ∈ Cn×n, (2.33)

the denominator can be written as

f (etADθD) =
(
t + O(t2)

) ∥∥D2A − AD2
∥∥

F
. (2.34)

On the other hand, the numerator is

f (Δλ (etADθD)) = f (Dλ etADθD
1−λ )

=
∥∥∥D1−λD−1

θ e−tAD2λ etADθD
1−λ − Dλ etAD2−2λ e−tADλ

∥∥∥
F

=

∥∥∥∥∥D1−λD−1
θ

[ ∞∑
k=0

(−1)ktkAk

k!

]
D2λ

( ∞∑
k=0

tkAk

k!

)
DθD

1−λ

−Dλ

( ∞∑
k=0

tkAk

k!

)
D2−2λ

[ ∞∑
k=0

(−1)ktkAk

k!

]
Dλ

∥∥∥∥∥
F

.

Set B := D−1
θ ADθ . Then

f (Δλ (etADθD)) =

∥∥∥∥∥D1−λ

[ ∞∑
k=0

(−1)ktkBk

k!

]
D2λ

( ∞∑
k=0

tkBk

k!

)
D1−λ

−Dλ

( ∞∑
k=0

tkAk

k!

)
D2−2λ

[ ∞∑
k=0

(−1)ktkAk

k!

]
Dλ

∥∥∥∥∥
F

=

∥∥∥∥∥
∞∑

m=0

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�D1−λB�D2λBm−�D1−λ

]

−
∞∑

m=0

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�DλAm−�D2−2λA�Dλ

]∥∥∥∥∥
F
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=
∥∥∥t

(
D1+λBD1−λ − D1−λBD1+λ − DλAD2−λ + D2−λADλ

)

+
∞∑

m=2

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�D1−λB�D2λBm−�D1−λ

]

−
∞∑

m=2

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�DλAm−�D2−2λA�Dλ

]∥∥∥∥∥
F

.

We now examine the middle term of the last expression. When 0 < t < 1 ,∥∥∥∥∥
∞∑

m=2

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�D1−λB�D2λBm−�D1−λ

]∥∥∥∥∥
F

�
∞∑

m=2

t2

m!

∥∥∥∥∥
m∑

�=0

(
m
�

)
(−1)�D1−λB�D2λBm−�D1−λ

∥∥∥∥∥
F

�
∞∑

m=2

t2

m!
2m−1

∥∥D2B − BD2
∥∥

F
by Lemma2.9 and ‖Dλ−1AD1−λ‖ � 1

= t2
(e2 − 3)

2

∥∥D−1
θ D2ADθ − D−1

θ AD2Dθ
∥∥

F
since B := D−1

θ ADθ

= O(t2)
∥∥D2A − AD2

∥∥
F
.

Likewise we examine the last term. Replacing λ by 1 − λ in Lemma 2.9 and using
the identity

(m
�

)
=

( m
m−�

)
, we get∥∥∥∥∥

∞∑
m=2

tm

m!

[
m∑

�=0

(
m
�

)
(−1)�DλAm−�D2−2λA�Dλ

]∥∥∥∥∥
F

= O(t2)
∥∥D2A − AD2

∥∥
F
.

From the above computations,

f (Δλ (etADθD))

= t
∥∥∥D1+λBD1−λ − D1−λBD1+λ − DλAD2−λ + D2−λADλ

∥∥∥
F

+O(t2)
∥∥D2A − AD2

∥∥
F

= t
∥∥∥D1+λD∗

θADθD
1−λ − D1−λD∗

θADθD
1+λ − DλAD2−λ + D2−λADλ

∥∥∥
F

+O(t2)
∥∥D2A − AD2

∥∥
F

. (2.35)

Denote

P :=
∥∥∥D1+λD∗

θADθD
1−λ − D1−λD∗

θADθD
1+λ − DλAD2−λ + D2−λADλ

∥∥∥
F

Q :=
∥∥D2A − AD2

∥∥
F

.

Then Q > 0 in view of (2.32) and (2.34). Substituting (2.34) and (2.35) into (2.31),

f (Δλ (X))
f (X)

=
tP + O(t2)Q
(t + O(t2))Q

=
P
Q

+
−O(t2)P + O(t2)Q

(t + O(t2))Q
. (2.36)
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By direct computation,

P
Q

=

∥∥∥[ ei(θj−θi)d1+λ
i aijd

1−λ
j − ei(θj−θi)d1−λ

i aijd1+λ
j − dλi aijd

2−λ
j + d2−λ

i aijdλj
]
n×n

∥∥∥
F∥∥[ d2

i aij − aijd2
j ]n×n

∥∥
F

=

√√√√√∑n
i,j=1 |aij|2

∣∣∣ei(θj−θi)(d1+λ
i d1−λ

j − d1−λ
i d1+λ

j ) + d2−λ
i dλj − dλi d2−λ

j

∣∣∣2∑n
i,j=1 |aij|2 (d2

i − d2
j )2

Notice that the two terms in the above expressions

d1+λ
i d1−λ

j − d1−λ
i d1+λ

j = didj

[(
di

dj

)λ

−
(

dj

di

)λ
]

d2−λ
i dλj − dλi d2−λ

j = didj

[(
di

dj

)1−λ

−
(

dj

di

)1−λ
]

are of the same sign, that is, both positive, negative, or zero. Thus

P
Q

�

√√√√∑n
i,j=1 |aij|2 (d1+λ

i d1−λ
j − d1−λ

i d1+λ
j + d2−λ

i dλj − dλi d2−λ
j )2∑n

i,j=1 |aij|2 (d2
i − d2

j )2

=

√√√√∑n
i,j=1 |aij|2 (di − dj)2(dλi d1−λ

j + d1−λ
i dλj )2∑n

i,j=1 |aij|2 (di − dj)2(di + dj)2
(2.37)

�

√√√√√√ max
1�i,j�n

di �=dj
aij �=0

(dλi d1−λ
j + d1−λ

i dλj )2

(di + dj)2
(2.38)

� max
1�i<j�n

dλi d1−λ
j + d1−λ

i dλj
di + dj

= α. (2.39)

The inequality (2.38) comes from the fact that

a1 + · · · + ak

b1 + · · · + bk
� max

1�i�k

ai

bi
if ai > 0 and bi > 0 for 1 � i � k .

The expression (2.39) is due to symmetry. The constant α � 1 since

di + dj − dλi d1−λ
j − d1−λ

i dλj = (dλi − dλj )(d1−λ
i − d1−λ

j ) � 0.
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Moreover, α < 1 whenever d1, · · · , dn are distinct. Now P/Q � α � 1 . By (2.36),
O(t2)

t+O(t2) = O(t) , (2.37) and (2.39),

f (Δλ (X))
f (X)

=
P
Q

+ O(t)

�

√√√√∑n
i,j=1 |aij|2 (di − dj)2(dλi d1−λ

j + d1−λ
i dλj )2∑n

i,j=1 |aij|2 (di − dj)2(di + dj)2
+ O(t)

� α + O(t).

The bounds for O(t) ’s are independent of X by scrutinizing the process. �

COROLLARY 2.11. Suppose that X ∈ GLn(C) has distinct eigenvalue moduli

|λ1(X)| > · · · > |λn(X)| > 0.

Suppose that Xm := Δm
λ (X) is not normal for all m ∈ N . Then

lim
m→∞

f (Δλ (Xm))
f (Xm)

� α, (2.40)

where

α := max
1�i<j�n

|λi(X)|λ |λj(X)|1−λ + |λi(X)|1−λ |λj(X)|λ
|λi(X)| + |λj(X)| < 1. (2.41)

Proof. Let Dθ and D be denoted as in Lemma 2.6, that is,

Dθ := diag

(
λ1(X)
|λ1(X)| , · · · ,

λn(X)
|λn(X)|

)
D := diag (|λ1(X)|, · · · , |λn(X)|) .

Then by Lemma 2.6,
Xm = V∗

metmAmDθDmVm,

where Dm ∈ D+(n) , Vm ∈ U(n) , Am ∈ S(n) , tm � 0 such that⎧⎨
⎩

limm→∞ Dm = D

limm→∞ tm = 0

min{‖Am‖, ‖D1−λ
m AmDλ−1

m ‖} = 1.

(2.42)

Denote

Dm := diag (d(m)
1 , · · · , d(m)

n ), (2.43)

αm := max
1�i<j�n

(d(m)
i )λ (d(m)

j )1−λ + (d(m)
i )1−λ (d(m)

j )λ

d(m)
i + d(m)

j

. (2.44)

Since Xm is not normal for all m ∈ N , we have f (Xm) > 0 for all m ∈ N . By Lemma
2.10,

f (Δλ (Xm))
f (Xm)

� αm + O(tm),
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where the bound for O(tm) is independent of Xm . So by (2.42),

lim
m→∞

f (Δλ (Xm))
f (Xm)

� lim
m→∞

αm + lim
m→∞

O(tm) = α,

where α is given in (2.41), and α < 1 since X has distinct eigenvalue moduli. �

LEMMA 2.12. If X ∈ GLn(C) and 0 < λ < 1 , then

‖Δλ (X) − X‖F � (n1/2−λ/4‖X‖1−λ ) f (X)λ/2. (2.45)

Proof. The idea comes from the proof of [5, Theorem 4.6] for the 2× 2 case. Let
X = UP be the polar decomposition of X , where U ∈ U(n) and P ∈ P(n) . Then

‖Δλ (X) − X‖F = ‖(PλU − UPλ )P1−λ‖F

� ‖PλU − UPλ‖F‖P1−λ‖ (2.46)

= ‖Pλ − UPλU∗‖F‖P‖1−λ

= ‖(P2)λ/2 − (UP2U∗)λ/2‖F‖P‖1−λ

= ‖(X∗X)λ/2 − (XX∗)λ/2‖F‖X‖1−λ

� ‖In‖1−λ/2
F ‖X∗X − XX∗‖λ/2

F ‖X‖1−λ (2.47)

= (n1/2−λ/4‖X‖1−λ) f (X)λ/2,

where the inequality (2.46) follows from ‖AB‖F � ‖A‖F‖B‖ and the inequality (2.47)
follows from an inequality of Bhatia and Kittaneh [6] (see [5, Proposition 2.5]). �

Proof of Theorem 2.1.
The proof adopts some nice ideas in the proofs of [5, Theorem 4.6 and Corollary

4.16]. Let Xm := Δm
λ (X) . There are two cases:

Case 1: X is nonsingular with distinct eigenvalue moduli.
We now consider two possibilities:
(i) Xm is normal for some m ∈ N . Then by Lemma 2.4 we have the convergence.
(ii) Xm is not normal for all m ∈ N . Then f (Xm) > 0 for all m ∈ N . We will

show that the sequence {Xm}m∈N is a Cauchy sequence. By Corollary 2.11 for each
ε > 0 with α + ε < 1 , there is Nε ∈ N such that whenever m > Nε ,

f (Δ(Xm))
f (Xm)

< α + ε < 1.

So

f (Xm) = f (XNε)
m−1∏
i=Nε

f (Xi+1)
f (Xi)

� (α + ε)m−Nε f (XNε). (2.48)
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Given m2 > m1 > Nε ,

‖Xm2 − Xm1‖F

�
m2−1∑
i=m1

‖Xi+1 − Xi‖F

�
m2−1∑
i=m1

(
n1/2−λ/4‖Xi‖1−λ

)
f (Xi)λ/2 by Lemma 2.12

�
(
n1/2−λ/4‖X‖1−λ

) m2−1∑
i=m1

f (Xi)λ/2 by (1.5)

�
(
n1/2−λ/4‖X‖1−λ

) m2−1∑
i=m1

(α + ε)(i−Nε)λ/2f (XNε)
λ/2 by (2.48)

=
[
n1/2−λ/4‖X‖1−λ(α + ε)−Nελ/2f (XNε)

λ/2
] m2−1∑

i=m1

(α + ε)iλ/2

� M(α + ε)m1λ/2 → 0 as m1 → ∞,

where M is a constant independent of m1 and m2 :

M := [n1/2−λ/4‖X‖1−λ(α + ε)−Nελ/2f (XNε)
λ/2]

∞∑
i=0

(α + ε)iλ/2

= [n1/2−λ/4‖X‖1−λ(α + ε)−Nελ/2f (XNε)
λ/2]

1
1 − (α + ε)λ/2

.

So {Xm}m∈N is a Cauchy sequence and thus convergent.
Case 2: X is singular whose nonzero eigenvalues are of distinct moduli.
Let r be the size of the largest Jordan block of X corresponding to the zero

eigenvalue. By [5, Proposition 4.14(1)], the Jordan structure for the zero eigenvalue
in Xr−1 is trivial, that is, all the Jordan blocks of Xr−1 corresponding to the zero
eigenvalue are 1× 1 . By the proof of [5, Corollary 4.16], there is U ∈ U(n) such that

Xr = U∗
[

S 0
0 0

]
U

where S ∈ GLn−r(C) . The eigenvalues of S are the nonzero eigenvalues of X . So S
has distinct eigenvalue moduli and thus {Δm

λ (S)}m∈N converges by Case 1. By (1.4)
and the fact that Δλ (A ⊕ B) = Δλ (A) ⊕ Δλ (B) ,

Xm+r = U∗
[
Δm
λ (S) 0
0 0

]
U.

So {Xm}m∈N converges. �
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Proof of Theorem 2.2.
Using (1.4) and Δλ (A ⊕ B) = Δλ (A) ⊕ Δλ (B) , it is sufficient to consider X = T

where T is of one of the four forms. As in the proof of Theorem 2.1, it is further
reduced to the nonsingular T . Then use Theorem 2.1 to handle (2), Theorem 1.4(1)
and (3) to handle (1) and (3), respectively. As to (4), if Δq

λ (T) is normal for some
q ∈ N , then Δq+m

λ (T) = Δq
λ (T) for all m ∈ N and so {Δm

λ (T)}m∈N converges. �

3. Some remarks

In general when λ 	∈ [0, 1) (the case λ = 0 is trivial), the λ -Aluthge sequence
may not converge. In particular we consider λ = 1 and D(X) := Δ1(X) is called the
Duggal transform [8] of X .

EXAMPLE 3.1. The Duggal sequence {Xm}m∈N := {Dm(X)}m∈N does not con-
verge in general. Indeed {Pm}m∈N may not converge where Xm = UmPm is the polar
decomposition of Xm . For example,

X :=
[
−1 −1
2 1

]
=

[
0 −1
1 0

] [
2 1
1 1

]

X1 =
[

2 1
1 1

] [
0 −1
1 0

]
=

[
0 −1
1 0

] [
1 −1
−1 2

]

X2 =
[

1 −1
−1 2

] [
0 −1
1 0

]
= X, . . .

So {Pm}m∈N and {Xm}m∈N are alternating.

REMARK 3.2. Though the nonlinear map Δλ : Cn×n → Cn×n is continuous [5,
Theorem 3.6] for each 0 < λ < 1 , it is neither injective or surjective. For example, let

N =
[

0 1
0 0

]
. Then Δλ (N) = 0 but there is no A ∈ C2×2 such that Δλ (A) = N by

[5, Proposition 4.14].
Numerical experiences suggest the following

CONJECTURE 3.3. Let 0 < λ < 1 .

‖X∗X − XX∗‖F � ‖Δλ (X)∗Δλ (X) − Δλ (X)Δλ (X)∗‖F (3.1)

for all X ∈ Cn×n .

If the conjecture is true, then {‖X∗
mXm − XmX∗

m‖F}m∈N is always a nonincreasing
sequence convergent to 0 by Theorem 1.4 where Xm := Δm

λ (X) .

REMARK 3.4. One may want to have the representation (2.1) of Xm in Lemma 2.5
for all normal A ∈ GLn(C) :

Xm = V∗
meBmDθDmVm,

such that limm→∞ Bm = 0 . But this is not true in general. The assumption that
eigenvalues of A are identical if they have the same moduli in Lemma 2.5 is equivalent
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to Dθ = p(D) for some polynomial p ∈ C[x] . It is not hard to see that it amounts
to say that Dθ commutes with every permutation matrix commuting with D . In
Lemma 2.5, if Dθ is not a polynomial of D , then the statement does not hold. In
such case, there is a permutation matrix V such that DV = VD but DθV 	= VDθ .
There is {Dm}m∈N ⊂ D+(n) such that each Dm has distinct diagonal entries and
limm→∞ Dm = D . Denote Xm = DθV∗DmV . Then

lim
m→∞

Xm = DθV
∗DV = DθD.

We show by contradiction that Xm ∈ GLn(C) cannot be expressed in the form (2.1). If
(2.1) were true, then Xm would have two polar decompositions

Xm = Dθ(V∗DmV) = (V∗
meBmDθVm)(V∗

mDmVm).

By the uniqueness of polar decomposition of GLn(C) ,

Dθ = V∗
meBmDθVm V∗DmV = V∗

mDmVm. (3.2)

By the second equality of (3.2), V ′
m := VmV∗ commutes with Dm . So V ′

m ∈ D(n)
since Dm has distinct diagonal entries. Then Dθ and V ′

m commute. From the first
equality of (3.2) we get

eBm = VmDθV
∗
mDθ

−1 = V ′
mVDθV

∗V ′∗
m Dθ

−1 = V ′
m(VDθV

∗Dθ
−1)V ′∗

m .

Then we get
lim

m→∞
V ′

m(VDθV
∗Dθ

−1)V ′∗
m = lim

m→∞
eBm = In.

So VDθV∗Dθ
−1 = In . This contradicts VDθ 	= DθV . So the desired representation in

Lemma 2.5 does not hold in this situation.
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[7] M. CHŌ, I. B. JUNG AND W. Y. LEE, On Aluthge transform of p -hyponormal operators, Integral
Equations Operator Theory, 53 (2005), 321–329.
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