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ON THE CONVERGENCE OF ALUTHGE SEQUENCE

HUAJUN HUANG AND TIN-YAU TAM

(communicated by Leiba Rodman)

Abstract. For 0 < A < 1, the A -Aluthge sequence {AY(X)},,cy converges if the nonzero

eigenvalues of X € Cjx, have distinct moduli, where A (X) := PrUP'=A if X = UP isa
polar decomposition of X .

1. Introduction

Given X € C,x,, the polar decomposition [9] asserts that X = UP, where

U is unitary and P is positive semidefinite, and the decomposition is unique if X is
nonsingular. Though the polar decomposition may not be unique, the Althuge transform
[1] of X:

A(X) := PY2up'/?
(P'/2XP~'/2 if X is nonsingular) is well defined [17, Lemma 2]. Aluthge transform
has been studied extensively, for example, [1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 17].
Recently Yamazaki [16] established the following interesting result

lim {|A"(X)|| = r(X), (1.1)

m—00

where r(X) is the spectral radius of X and

X[ :== max [IXv]]
[Iv[l2=1

is the spectral norm of X. Suppose that the singular values s;(X),...,s,(X) and the
eigenvalues A;(X),...,4,(X) of X are arranged in nonincreasing order

s1(X) 2 2(X) = -+ = si(X), MX)[ = X)) = - = |A(X)].
Since ||X|| = s1(X) and r(X) := |A(X)|, the following result of Ando [3] is an
extension of (1.1).
THEOREM 1.1. (Yamazaki-Ando) Let X € C,x,,. Then
lim s;(A"(X)) = |[L(X)|, i=1,...,n. (1.2)
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Aluthge transform A(T) is also defined for Hilbert space bounded linear operator
T [17] and (1.1) remains true [16]. Yamazaki’s result (1.1) provides support for the
following conjecture of Jung et al [11, Conjecture 1.11] for any T € B(H) where B(H)
denotes the algebra of bounded linear operators on the Hilbert space H .

CONJECTURE 1.2. Let T € B(H). The Aluthge sequence {A™(T)}men is norm
convergent to a quasinormal Q € B(H), thatis, |A™(T)— Q|| — 0 as m — oo, where
| - || is the spectral norm.

It is known [11, Propositioin 1.10] that if the Aluthge sequence of T € B(H)
converges, its limit L is quasinormal, that is, L commutes with L*L, or equivalently,
UP = PU where L = UP is a polar decomposition of L [9]. However very recently
it is known [7] that Conjecture 1.2 is not true for infinite dimensional Hilbert space.
Cho, Jung and Lee [7, Corollary 3.3] constructed a unilateral weighted shift operator
T : ,(N) — ¢,(N) such that the sequence {A"(T)}nen does not converge in weak
operator topology. They also constructed [7, Example 3.5] a hyponormal bilateral
weighted shift B : ¢,(Z) — ¢»(Z) such that {A"(B)}nen converges in the strong
operator topology, that is, for some L : (,(Z) — 6(Z), ||A"(B)x — Lx|| — O as
m — oo for all x € ¢,(Z), where ||x| is the norm induced by the inner product.
However {A™(B)}nen does not converge in the norm topology. So the study of
Conjecture 1.2 is reduced to the finite dimensional case C,x, . Since the three (weak,
strong, norm) topologies coincide and quasinormal and normal coincide [9] in the finite
dimensional case, the limit points of the Aluthge sequence are normal [13, Proposition
3.1], [3, Theorem 1]. Also see [11, Proposition 1.14]. Moreover the eigenvalues of
A(X) and the eigenvalues of X are identical, counting multiplicities. So the study of
Conjecture 1.2 is now reduced to the finite dimensional case:

CONJECTURE 1.3. Ler X € C,x,. The Aluthge sequence {A"(X)}men is con-
vergent to a normal matrix whose eigenvalues are A (X), ..., A,(X).

Conjecture 1.3 is true when n = 2 [4, p.300] and the proof involves very hard
computation which seems unlikely to be extended in higher dimension. It remains open
for 3 < n. Itis also true for some special cases [3] [13, Corollary 3.3], for examples,
(1) if the spectrum of X is a singleton set, or (2) if X is normal (then A"(X) = X for
all m).

In this paper we give a partial answer to Conjecture 1.3, that is, it is true if the
nonzero eigenvalues of X € C,x, have distinct moduli. Such matrices form a dense
setin C,x, . Indeed our result is also true for A -Aluthge transform that we are about
to mention.

From now on we only consider X € C,,, the finite dimensional case.

Let X = UP be a polar decomposition of X € C,, where U is unitary and P
is positive semidefinite. For 0 < A < 1, Aluthge [2] introduced a generalized Aluthge
transform (see [3, 11, 14]) and we call it the A -Aluthge transform:

A (X) :== PPUP'™
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which is also well defined. Evidently the Aluthge transform A is simply A% . Since
P = (X*X)'/2, one may write

A (X) = (XXM PU(xx) (R,

In addition, if X is nonsingular, then A; (X) = P*XP~* and thus similar to X. The
spectrum, counting multiplicities, is invariant under A, , denoted by

o(X) = (A1 (X)) (1.3)
since o(XY) = o(YX), where o(X) denotes the spectrum of X. Moreover A
respects unitary similarity:

A VXV = VA (X)VTL Ve Un). (1.4)

The sequence {A}(X)},en is called the A -Aluthge sequence of X . By the submulti-
plicativity of the spectral norm, it follows immediately that

182 (O < 11X] (1.5)

and thus {||A7(X)||}men is nonincreasing. In [5, Corollary 4.2] Antezana, Massey and
Stojanoff generalized Theorem 1.1: for any X € C,.x,,,

Tim (A7 (X) | = r(X), (1.6)
and obtained many other nice results. However (1.6) remains unknown for Hilbert
space operators 7 .

THEOREM 1.4. [5]Let X € C,x,, and 0 < A < 1.
1. Any limit point of the A -Aluthge sequence {A}(X)}nen is normal, with eigen-
values A1(X), ..., y(X).
2. limy—oo si(AY (X)) = |Li(X)], i=1,...,n.
3. If X € Coxr, then {A}(X)}men converges.

Theorem 1.4(1) is [5, Proposition 4.1]. Tt reduces to [3, Theorem 1] and [13,
Proposition 3.1] when A = 1/2. Theorem 1.4(3) is [5, Theorem 4.6] and is an
extension of [4]. Theorem 1.4(2) can be deduced from (1.6) using compound matrices
via the argument in Ando |3, p.284-285].

It is evident from Theorem 1.4(1) that if the spectrum of X is a singleton set {o},
then the A -Aluthge sequence converges to o, .

The main goal of the paper is to show that if the nonzero eigenvalues of X € C,,,,
have distinct moduli, then the A -Aluthge sequence converges. Since such matrices
X form a dense subset in C,,,, it explains why many numerical experiments result
in convergence. An example is given to show that the A -Aluthge sequence does not
converge when A = 1.
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2. Distinct moduli implies convergence

We list the following notations that we will use in the forthcoming discussion.

Cuxn = thesetofall n x n complex matrices

GL,(C) = the general linear group of n x n nonsingular matrices
S(n) = the Lie algebra of n x n skew Hermitian matrices
H(n) = the real vector space of n x n Hermitian matrices
P(n) = thesetof n X n positive definite matrices
U(n) = the group of n X n unitary matrices
D(n) = the group of n x n diagonal unitary matrices

D,(n) = the set of all positive diagonal matrices with diagonal

entries in descending order
|X||F = +/tr (X*X), the Frobenius norm of X € C,x,
s1(X), the spectral norm of X € C,,x,
N = {1,2,...,}, the set of natural numbers

=
I

The entire paper is to prove the following two results.

THEOREM 2.1. Let 0 < A < 1. If the nonzero eigenvalues of X € C,x, have
distinct moduli, then the A -Aluthge sequence {A}(X)}nmen converges to a normal
matrix with the same eigenvalues (counting multiplicity) as X .

THEOREM 2.2. Let X = U*(&*_,T:)U, where U € U(n) and for each i =
1,...,k, either
1. the nonzero eigenvalues of T; are the same,
2. the nonzero eigenvalues of T; have distinct moduli,
3. T; has two nonzero eigenvalues, or
4. ANi(T;) is normal for some q € N.
Then the A -Aluthge sequence {A}(X)}nen converges.
Theorem 2.2 combines Theorem 2.1 and some known convergence results for nxn
matrices in the literature.

EXAMPLE 2.3. Suppose that 0 < A < 1.
1. Let

a
X=10 DA,
0

(SIS

*k

b

0
where |al, |b], |c| are distinct and matrix A has a singleton spectrum. The A -Althuge
sequence {A7(X)}nen converges.

2. Itis possible that X is not normal but A7 (X) is normal for some ¢ € N. Let

X =

S O =
S = O
SN =
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Then X is not normal and X is similarto ;& [ 0 |. By the proof of [5, Corollary 4.16],

«1S 0
M(X)=U {0 O}U
for some U € U(3) and S € GL(C). By [5, Proposition 4.14(2)], S has only one
eigenvalue 1 with trivial Jordan structure. So S = I, and A (X) is normal. Therefore,
Ay(X) =AM} (X) =, and {A7(X)}men convergesto A;(X).

The idea of proving Theorem 2.1 is to show that {A%'(X)},,en is a Cauchy sequence
via the Frobenius norm. As a finite dimensional normed space, C,, is complete and
thus {A7(X)}men converges. The proof does not reveal the explicit form of the limit.

We will establish a few lemmas in order to prove Theorem 2.1. The following
lemma can be obtained from [11, Proposition 1.10] and the remark on [11, p.445] since
normal and quasinormal coincide in C,,x, .

LEMMA 2.4. Let 0 < A <1 and X € C,x,. Then X is normal if and only if
A(X)=X.
Given a normal matrix A € GL,(C), we may write the spectral decomposition of
A in the following fashion
A =V*DyDV,

where V € U(n), Dy € D(n), and D € D, (n). Indeed,
D = diag (A1 (A)], ..., |A(A)]), Do = diag (e, ..., e")

such that A;(A) = €% |4;(A)], j=1,...,n.

The following lemma provides a representation of a sequence in GL,(C) which
converges to a normal matrix A € GL,(C) whose eigenvalues are the same if they have
the same moduli. We will only use a special case of the lemma in the proof of our main
theorem, namely, when A has distinct eigenvalue moduli.

LEMMA 2.5.  Let {Xu}men C GL,(C) be a sequence which converges to a
normal matrix A € GL,(C). Write

A = V*DgDV,

where V € U(n), Do € D(n), and D € D, (n). Suppose that eigenvalues of A are
identical if they have the same moduli. Then for each m € N, there are V,, € U(n),
By € S(n), Dy, € D(n) such that

X, = VP DD, V,, (2.1)

m

satisfying
1. lim,_. . D,, = D.
2. limy o B,y =0.

Proof. Since lim,,_, o, X, = A, we have

lim Dy~ 'VX,V* = D. (2.2)

m—0o0
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Let
Dy~ 'VX,,V* = U,DyLy, (2.3)
be a singular value decomposition of Do~ 'VX,,V*, where Uu, Ly, € U(n) and D,, €
Di(n) (U, and L, are not unique in general). Since D,, € D,(n) contains the
singular values of X,,, by the continuity of singular values
lim D,, = D. (2.4)

m—0o0

Rewrite (2.3) in the fashion of polar decomposition

Do~ 'VX,uV* = (UpLn)(Ly,DyuLi) € GL,(C) (2.5)
where U,L, € U(n), L;,DyL,, € P(n). The polar decomposition
m: U(n) x H(n) — GL,(C), n(U,H) = UexpH. (2.6)
is a diffeomorphism [15, p.238]. Due to (2.2) and (2.5)
lim UnLy = I, (2.7)
and
man;O L} (log D)L, = log D
so that
1im LDyl = D. (2.8)
By (2.4),
lim_(|L5,(D — D)Ly = tim (D~ D, = 0. (2.9)
By (2.8) and (2.9),
lim L;,DLy = lim LyDyly + 1im Ly (D—Dy)Ly = D. (2.10)
Therefore,
lim |D—L,DL,|| = lim |L;(D — L,DL;,)Ly|| (2.11)

m—o0 m—0oQ

= lim |LDL, —D|| =0 by (2.10).

This shows that

D= lim L,DL},. (2.12)
Write . _
D = diag (A1 (A)], ..., |A(A)]), Do = diag (e, ..., e)

such that A;(A) = €'%|;(A)|, j = 1,...,n. Recall that eigenvalues of A are identical
if they have the same moduli, that is, |Ax(A)| = |4;(A)| implies €% = ¢%. By
Lagrange interpolation theorem, it amounts to say that Dg = p(D) for some polynomial
p(x) € Clx]. By (2.12),

lim L.p(D)L;, (2.13)

lim p(L,DL;) = p(D) = Dy.
m—o0

lim L,DoL},
m—o0
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Now

X,, = V*DoUnDnL,V by (2.3) (2.14)
= V'L [(LuDoL}) (L Un)Dy '| DD,y Ly, V.

m

Denote C,, := (L,DoL},)(Ly Um)Dgl. By (2.7),
lim ||L,Un, —L|| = lim ||L} (LyUy — L) La|| (2.15)

m—0o0

= lim [|UnLy — || = 0.
So limy,—c0 LUy = I, and thus with (2.13),
lim C, = ( lim L,,,DQL;;) ( lim LmUm) Dyl =1, (2.16)

Notice that C,, € U(n). The exponential map exp : C,x, — GL,(C) [10, p.149] is
onto and satisfies
U(n) = expS(n). (2.17)
Though the exponential map exp : S(n) — U(n) is not bijective, it gives a diffeomor-
phism [10, p.104]
¢ :No— N;
between a neighborhood Ny of 0 € S(n) and a neighborhood N; of I, € U(n). Due
to (2.17), (2.16) and the diffeomorphism ¢, for each m € N, there exists B,, € S(n)
such that
Cn=¢"  and lim B, = 0. (2.18)

By (2.14),
’ ( ) Xm = V:;,eBmDODmea

where V,, :== L,V € U(n), as desired. [
We now use Lemma 2.5 to establish the following lemma.

LEMMA 2.6. Suppose that the eigenvalues of X € GL,(C) have distinct eigen-
value moduli

MK > [A2(X)] > - > |A(X)] > 0.

Denote
. M (X) An(X) )
Dy = dlag( S
’ Ol ()]
D := diag (|1MX)], -, | WX)]).
Then for a fixed 0 < A < 1,
A} (X) = V™" DgD,,V,y, (2.19)

for some D, € Dy(n), A, € S(n), V, € U(n), t,, = 0 such that
1. limy,_o D, =D.
2. limy,—oot, = 0.
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3. Foreach m € N, min{||A,||, |ID\*A, D71} = 1.

Proof. We write X,, :== A}'(X). Notice that if X,, can be expressed in the form
(2.19), then by Theorem 1.4(2), property (1) holds by the continuity of singular values
since D,, € D, (n) contains the singular values of X,,, .

We now consider the following two cases:

Case 1: Some element of {X,, }en is normal. Let X, be the first normal matrix
in the sequence. Then by Lemma 2.4

Xi = Xpr1 = Xpgp2 =+ -+

Since X; is normal and have the same spectrum of X, we may write X, = V*DyDV
for some V € U(n). Hence for all m > k,

Xy = v ethmDGDm Vnu

m

where D,, =D, A, =1I,, t,, =0 and V,, = V. Itis clear that (1), (2), and (3) are
true.

Case 2: None of the elements in {X,,}ncn is normal. By Theorem 1.4(1) the
limit points of {X,, }men are normal and are located in the orbit O of the diagonal DyD
under unitary similarity

0 :={V*DeDV | V € U(n)}.

Let
Xpp = UpDy Vi (2.20)
be a singular value decomposition of X,,, where D,, € Dy (n), U,,V,, € U(n). We
can rewrite (2.20) in the following fashion:
Xm = VZ(V;71U;71D51)D0DmV;71

= V*eP"DgD,V, by (2.17) (2.21)

where B = VmUngl for some B, € S(n). Notice that the matrix D,, € D, (n)

is uniquely defined by X,,, but V,, € U(n) and B,, € S(n) are not unique. For each
m € N, denote

Sn := {B € S(n) | there is V, € U(n) such that X,, = V/*e®DyD,, V. }.
The set S, is closed, since if {B<i>}i€N C S, and lim;_. o Bl = B, then
X, = (V(i))*eB(i)DeDmV(i)

for some {V},cy C U(n). Since U(n) is compact, the sequence {V)};cy has at
least one limit point V € U(n). So X,, = V*eDyD,,V and thus B € S,,,.

Since S, is closed, we choose B, € S, in (2.21) once and for all in the way that
|Bm|| is minimal (the choice B,, still may not be unique). Since each X,, is not normal,
B,, # 0. Write B,, = t,A,,, thatis, A,, := If—’:’ , and adjust #,, > O appropriately, one
has

min{||A,, | D, *A.D} I} = 1.



ON THE CONVERGENCE OF ALUTHGE SEQUENCE 129

So property (3) is satisfied.
It remains to prove property (2), i.e., lim,,_, 4, = 0, or equivalently,

lim B, =0, (2.22)
m—o0
since ||Bu|| = twl|Am|| = tn and lim,,_. D,, = D. Suppose on the contrary that

2.22) is not true. There would exist ¢ > 0 and a subsequence {B,, };cny Where
q i
|Bu; || = e, foralli € N. (2.23)

By (1.5) the subsequence {X,,}icn is bounded above by || X||. Thus {X,,}icn has a
convergentsubsequence {X,, }ien . By Theorem 1.4(1) lim; o X,/ is anormal matrix
of spectrum o(X), that is,

m i

hm X, = V*DQDV
for some V € U(n). By Lemma 2.5, we may write
« Eu
Xm,{ = Vm{e m'-DBDm,{ le'
where V,, € U(n), E,; € Sy, and lim;—. [|E,¢[| = 0. This would force lim; o || B, ||

= 0 because of the choice of B,, and would contradict (2.23). So (2.22) and thus prop-
erty (2) are established. O

LEMMA 2.7. Suppose {Ti}})o C Cuxy. Forany m € N,

i (rg)(—l)‘n = zm: (?T) (—1) Ty — To_y) -

=0 (=1

Proof. Recall the combinatorial identity

()=Co)+00),

in which we adopt the usual convention: (';’) =0ifm<lorl<0.So

B () - £

=0

o S (", e

(=0
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LEMMA 2.8. Let A,D € C,x,. For m € N,

Z (’Z) (71)lAm_[D2A[

(=0

< 2" ||D*A — AD?|| A"
F

Proof. Applying Lemma 2.7 with T, = A" ‘D?A’, we have

Z( )i-ae o
=0 F
_ i (’Z ) (Am (p2Al _ Amf(erlDZAéfl)
=1 F
- Zm: (’Z ) 1)‘A"* (D*A — AD?) A"~
1 F

/A
M§ T

(7)) @ - a?)a,

m—1 m—/{ 2 2
(21) |A|""||D*A — AD

L

1

N
NE

I Al

~
Il

1

m— m— — (m—1 m—
2" ||D*A — AD?|| . A" byz<€_1>:2 L

=1

where the last inequality is obtained by using the inequalities ||AB||r < ||A||||B||r and
IAB||r < [|A[|#[|B]|. O

LEMMA 2.9. Let D = diag(dy,...,d,) with positive d,,...,d, and A € S(n).
For meN,

m

Z (’Z) (71)€D177LA('D2)LAmfelel

=0

F
—1
g 2m71 Hle)LADlﬁ*)L 7D1+AAD17)LH HD)LflAle)LHm (224)
F

< 271 |[p% - AD?|, || 1aD! H"H . (2.25)

Proof. Clearly we have

| tap 2| = |- (o240
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Applying Lemma 2.7 with T, = D'=*A‘D* A"~!D'=*  we have

N

— 2}’)1—1 HDI—)LAD1+)L _ D1+)LAD1—},H HD)L—IADI—)L
F

m

Z (’Z) (71)ZD1—)LA[D2},AW!—ZD1—)L

F

F

11) (_l)[ (DI—AAZD2)LA}’H—[D1—A _ Dl—)LA[—lD2)LAm—[+1D1—)L)
)(1)[D1_AAZ_1 (AD2)L _ DZAA) Am—ZDl—)L

F

’zl_ll) (71)[ (Dl—)LAD)L—l)[_l (DI—AAD1+A _ D1+)LAD1—},)

(D/lflAle/l)m_lZ H
F

m

{—1

3 (’” - 1) HD“MD*”H[_1 HDHADW —DIMAD“AH HDA’IADI’AH
F

m—1

)

where the last inequality is obtained by using the inequalities ||AB||r < ||A||||B||r and
|AB||r < ||A]|F||B]| - So we have inequality (2.24).

The (i,j) -entry of D'~*AD'** — DI**AD!"* is ay(d}~*d!** — d}**d} ") and

the (i,j)-entry of DA — AD? is ay(d; — d}). We claim that

iR R < — . (2.26)

For definiteness, suppose d; > d;(> 0). Then |a7,-1*’1a7j1+)L - d}*ld}fﬂ = dl-lJr’lanl*’1 -
dl=*d** for 0 <A <1 and |&? — d?| = d? — d?, and

2 2 1+A 71—A 1—4 g14+A\ _ 1+4 1+4 1-A 1-A
di —di —(di""d;™" —di"di") = (di " + ;) (d;" —di7") 2 0.

Hence (2.26) is established and

HDI—)LAD1+)L 7D1+},AD1—)LHF g HDZA *ADZHF

so that (2.25) follows. O

Given X € C,x,, define

f(X) = [[X"X = XX

which is interpreted as a measure of how close X to a normal matrix. For example,
f(X) =0 if and only if X is normal. We interpret that X is close to a normal matrix if
f(X) is small. Notice that f is constant on the orbit of X under unitary similarity, that

is,

f(X)=f(UXU*), UeU(@). (2.27)

m—/{
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The notation g(7) = O(#*) for a real value function g means

lim
t—0

£ <m

for some constant M .

LEMMA 2.10. Let 0 < A < 1. Suppose that

X = V*e“DyDV € GL,(C)

is not normal, where A € S(n), V € U(n), D = diag (dy,- - ,d,) € Dy+(n), and

Dy = diag (€, --- | ), 01,---,0, € R.

Suppose further 0 < t < 1 and min{||A||,||D'~*AD*~'||} < 1. Then

[0 |l @ - PG TR
) St lagl” (& — &)

< a+0(r)
where the bounds for O(t)’s in (2.28) and (2.29) are independent of X, and

drd} ™" +d!d}
o = max

1<i<j<n di + d;

Moreover, a@ < 1 whenever d,,--- ,d, are distinct.
Proof. By (1.4) and (2.27)

fA (X)) _ fA(VXVY))  f(Ar(e"DyD))

fX) fVvXVE)  f(e"DeD)

Since X is not normal, the denominator
f(e™DgD) =f(X) > 0.

Since Dy € D(n) and D € D, (n) commute, we have

f(etADeD) — ||D2_etAD26—tAHF
= Ak S
_ 2 i 2
=P (Z k! >D Z k! 1
k=0 fe= F

0
1 (D*A — AD?) ,Zﬁ [
" Le

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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We consider the second term of the last expression. Since 0 < ¢ < 1, one has 2>
forall m > 2. Since |A]| <1,

i % [Zm: ('Z) (—1)'A" ' D2A"

m=2

=0 F

< iﬁ i (m) (_l)éAmféDZAZ b t2 > M

X ] f y =

m=2 n: =0 F
< 22 HD2A AD?|, by Lemma 2.8
@ -

= sz ID*A —AD?|,

= o) DA Ap?],.
Since

1Bllr = lICllr < 1B+ Cllr < |Bllr +[|Cllr, B, C € Coxn, (2.33)

the denominator can be written as

tA 2 2
0 .
f(e"DgD) = (t+0O(#*)) | D*A — AD (2.34)

-
On the other hand, the numerator is
f(A;(€4DgD)) = f(D*e™DoD'")
"Dl—ADgle—zADz/lezADeDl—)L _ D AR p—tAph H
F

_ A2 - o~ Ak -
= ||D" "Dy Z Z k! DoD
k=0 ! =0
(i >D2 21 (—1)kaAr D
k! k!
=0 k=0 F
Set B := DglADg. Then
Ay (e%DyD)) = | D' — (—1)**B D — "B pl—*
k! k!
k=0 k=0
i (71)ktkAk D)L
1
k=0 F

L
m=0 (=0
— " |~ (m Oy gm—E 32 =22 40y,
Z%[Z(€>(1)DA D> **A'D
m=0 (=0 F




134 HUAJUN HUANG AND TIN-YAU TAM

— Ht D1+ABD1—)L _ DI—ABD1+)L _ D)LADZ—}, +D2—)LAD)L)

o0 tm m m (=2 pl 24 pm—f0 -1 —A
+ ﬁ[Z(f)(l)D pOmED
m=2 (=0
e e " m Ly gm—Ly2—2A LA
S ()
m=2 (=0 i

We now examine the middle term of the last expression. When 0 < ¢ < 1,

Z t_l lz (rg) (71)[DI_ABZD2)LBm—[D1_}L
n:

m=2 (=0

F

IS (m (=4 pl )22 pm—{pyl—A
<D § (€>(—1)D B'D*B"'D
m=2 (=0 F
< Y =2 'D’B—BD||,  byLemma29and [D*"'AD'*| <1
m.
m=2

2 (62

=t %3) |Dy'D*ADy — Dy 'AD* Dy |, since B := D,'ADg

= O(F)||D’A — AD?||,..

Likewise we examine the last term. Replacing A by 1 — A in Lemma 2.9 and using
the identity ('f) = (m'f é,), we get

o0 tn.' m : : :
Z — lz (’Z) (—1)“D’1A’"’“D2’2’1A‘D’1
" Le=o

m=2

=0(#) ||p’°A — AD?
F

I

From the above computations,

f(8(e"DoD))
_ tHDlJr/lBlel _ DI=ABpW+i _ prAApt—* +D2*’1AD’1H
F

+0(7%) ||D*A — AD?|

F
- tHDWLD;;ADng—A — D'"*D;ADeD'** — D*AD** + D**AD H
F

+0(7%) |D’°A — AD?||,.. (2.35)
Denote
P = HDIHD;;AD@DH — D'"*D;ADyD'** — D*AD** 4 D**AD HF
Q0 = |[[D’A-AD|,.

Then Q > 0 in view of (2.32) and (2.34). Substituting (2.34) and (2.35) into (2.31),

fMX) _ P+0(@)Q P —OF)P+0(2)Q
fX) — (t+0(r)e 0 (t+0(2))Q

(2.36)
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By direct computation,

H [ @ alt*azal = — G Wal~ayd — dragd?~* + &P ayd? |

~

nxn

Ql

||[ dizaij - aijdjz L1><n||F

2
er'l,jzl ||

ei(@jfe,')(dil+ldjl—)t _ dil—}»dler/l) _’_dZZ—)Ld]A . dildjz_l‘z

n 2
Zij:l lag|” (@7 — d;2)2

Notice that the two terms in the above expressions

A A

d; d;

11+/1 1-A 117/1 {1+/1 ld ! J
o t ijl(d_/) (d,-) ]

A A\
2—A A A 2—A i J
ogs - al(2)- 2

are of the same sign, that is, both positive, negative, or zero. Thus

Po_ | Sl @ - dl A iy
< _ 2
o "\ S0 Jagl” (& — d2)?
n 2 _ _
_ | Sl el @ — dp2(dtd) ™+ di (237)
- n 2 .
\ Zi,/’:l |lag|” (di — d;)*(d; + d;)*
(did!~* +dlrdl)?
S 2, (d; + d;)? (2.38)
di#d;
aji A
drd'* + d - at
< max — LT o —q. (2.39)

1<i<j<n di +d;
The inequality (2.38) comes from the fact that

Gt < max

< 4 if g >0 and b, >0 for 1<i<k.
bi+ -+ by 1K<k by

The expression (2.39) is due to symmetry. The constant o < 1 since

di+di—dld " —dtal = (d} —d})(d T —d"*) > 0.
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Moreover, & < 1 whenever d,,- - ,d, are distinct. Now P/Q < o < 1. By (2.36),
SR~ 0(1). (2.37) and (2.39),
FA (X)) P
— - = 5 T0@
7 ooV
! 2 1=A | g1=2 A
S ” d'—d'zd-}‘d. +d 2
g 211}71 |aJ‘ ( ) ( i Y j) +O([)
Zz,} 1 ‘ lj| (dl - dj)z(di +d])2
< a+0(r).

The bounds for O(z) ’s are independent of X by scrutinizing the process. [
COROLLARY 2.11. Suppose that X € GL,,(C) has distinct eigenvalue moduli
M (X)| > > |A(X)] > 0.
Suppose that X,, := A} (X) is not normal for all m € N. Then

——F (83 (X))
Jim = < (2.40)

where 1 -2 A4 )‘1 2 2
_ IO A0 4 X)) 4(X)|
@ me G+ 2,00 <o e
Proof. Let Dy and D be denoted as in Lemma 2.6, that is,
. A1 (X) An(X) >
Dy := diag ( :
0 A1(X )\ A (X))
D = diag (|M(X)], -, |A(X)]).

Then by Lemma 2.6,
m - V*eth D(—)Dme,

where D,, € Dy (n), V,, € U(n), A,, € S(n), t,, = 0 such that
lim,,—o0c D,y = D
liMpoo fm = 0 (2.42)
min{[|A.|, 1D, *AnDy 1} = 1.

Denote

I
&
o

[{S]
S
ISH

g

D, : (2.43)

(m) A am)N1—2 (mIN1=2 ( 7(m)\ A
d,- d; + (d; d;

oy = 1%1;131‘)%;1 d,(m>+d(m)

Since X,, is not normal for all m € N, we have f (X,,) > 0 forall m € N. By Lemma

2.10,
[ (8 (X))

f(Xm) < O +O(tm)>
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where the bound for O(z,,) is independent of X,,. So by (2.42),

——f (A% (X S —_
lim w < lim o, + lim O(z,) = «,

m— oo f(Xm) m—oo m—oo
where o is givenin (2.41),and o < 1 since X has distinct eigenvalue moduli. [
LEMMA 2.12. If X € GL,(C) and 0 < A < 1, then
1A4(X) = X[ < (n' 23X 4) £ (02 (2.45)

Proof. The idea comes from the proof of [5, Theorem 4.6] for the 2 x 2 case. Let
X = UP be the polar decomposition of X, where U € U(n) and P € P(n). Then

1A2(X) = X|r = [(P*U— UP*)P'* |
IP*U — UP* || P2 (2.46)
— ||P* — UP*U*||¢|IP|
1(P2)*? — (UPPU*)M?||p|[P||
XX = (XX A2 X
1-1/2 * w1 A/2 _
14154210 X — x| )X (2.47)

(' PHIX ) F 002,

N

N

where the inequality (2.46) follows from ||AB||r < ||Al|r||B|| and the inequality (2.47)
follows from an inequality of Bhatia and Kittaneh [6] (see [5, Proposition 2.5]). O

Proof of Theorem 2.1.

The proof adopts some nice ideas in the proofs of [5, Theorem 4.6 and Corollary
4.16]. Let X, := A}(X). There are two cases:

Case 1: X is nonsingular with distinct eigenvalue moduli.

We now consider two possibilities:

(i) X,, is normal for some m € N. Then by Lemma 2.4 we have the convergence.

(ii) X, is not normal for all m € N. Then f(X,,) > 0 forall m € N. We will
show that the sequence {X,,}ncn is a Cauchy sequence. By Corollary 2.11 for each
€ >0 with ot + € < 1, thereis N, € N such that whenever m > N,

f(AXn))

<oa+e<l.
f(Xm)

So

m—1

f Xit1)
oy S

S (Xn) = f (Xn.) < (o0 + )" NS (X, ) (2.48)
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Given my > m; > N,,

1 Xomy = Xom, [l
my—1
< Z [ Xiv1 — Xil|F
i=m
my—1
< Z <n1/2_1/4||Xi||1_’1) f(x)H? by Lemma 2.12
i:m1
my—1
< (PR ST () by (1.5)
i= mi
my—1 .
< (nPHRIXR) ST (NI (M2 by (248)

i=m

mzfl
_ [n1/2—1/4||XH1—)L(a+€)—N€A/2f(XN€)A/2] Z(a+e)iA/z

i:m1

< Mo+ e)m*? -0 as m; — 0o,

where M is a constant independent of m; and m; :

M = [ 1/2— A/4||XH1 )L(a+€)—NE)L/2 1/2 Z OC+€ 1)L/2
i=0
1
1/2—1/4 X 1-1 o —NeA /2 X A2 )
R e e e

So {Xuu}men is a Cauchy sequence and thus convergent.

Case 2: X is singular whose nonzero eigenvalues are of distinct moduli.

Let r be the size of the largest Jordan block of X corresponding to the zero
eigenvalue. By [5, Proposition 4.14(1)], the Jordan structure for the zero eigenvalue
in X,_; is trivial, that is, all the Jordan blocks of X,_; corresponding to the zero
eigenvalue are 1 x 1. By the proof of [5, Corollary 4.16], there is U € U(n) such that

«|S 0
oS 0

where S € GL,_,(C). The eigenvalues of S are the nonzero eigenvalues of X. So S
has distinct eigenvalue moduli and thus {A}'(S)}sen converges by Case 1. By (1.4)
and the fact that Ay (A ® B) = A3 (A) ® Ay (B),

Xy = U* { #(5) 8} U.

So {X,}men converges. [
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Proof of Theorem 2.2.

Using (1.4) and Ay (A @ B) = Ay (A) & Ay (B), itis sufficient to consider X = T
where T is of one of the four forms. As in the proof of Theorem 2.1, it is further
reduced to the nonsingular 7. Then use Theorem 2.1 to handle (2), Theorem 1.4(1)
and (3) to handle (1) and (3), respectively. As to (4), if A?(T) is normal for some

g € N, then AJ™(T) = A4(T) forall m € N and so {A?(T)}nen converges. [

3. Some remarks

In general when A ¢ [0,1) (the case A = O is trivial), the A -Aluthge sequence
may not converge. In particular we consider A = 1 and D(X) := A;(X) is called the
Duggal transform [8] of X.

EXAMPLE 3.1. The Duggal sequence {X,}men := {D"™(X)}men does not con-
verge in general. Indeed {P,,}nen may not converge where X, = U,,P,, is the polar
decomposition of X, . For example,

-1 —1] 0 —1][2 1
X=1, 1_‘[1 oHl 1]
X_'210—1_0—11—1
Dol a0 o1 o2

1 —1][0 -1

So {Pu}men and {X,,}men are alternating.

REMARK 3.2. Though the nonlinear map A, : C,x, — C,x, is continuous [5,
Theorem 3.6] for each 0 < A < 1, it is neither injective or surjective. For example, let

N = {8 (1)] . Then A, (N) = 0 but there is no A € Cyx, such that Ay (A) = N by

[5, Proposition 4.14].
Numerical experiences suggest the following

CONJECTURE 3.3. Let 0 < A < 1.
[X*X — XX*[|F > [|A2(X)"Ax(X) — A (X) AL (X)"||F (3.1)

forall X € C,xp.

If the conjecture is true, then {||X}X,, — X, X} ||[F}men is always a nonincreasing
sequence convergentto 0 by Theorem 1.4 where X, := A7(X).

REMARK 3.4. One may want to have the representation (2.1) of X,, in Lemma 2.5
for all normal A € GL,(C):

Xm = V;;eBmDGDm Vnu

such that lim,, .., B, = 0. But this is not true in general. The assumption that
eigenvalues of A are identical if they have the same moduli in Lemma 2.5 is equivalent
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to Dy = p(D) for some polynomial p € Cx]. It is not hard to see that it amounts
to say that Dy commutes with every permutation matrix commuting with D. In
Lemma 2.5, if Dy is not a polynomial of D, then the statement does not hold. In
such case, there is a permutation matrix V such that DV = VD but DyV # VDy.
There is {Dy}men C D4 (n) such that each D,, has distinct diagonal entries and
lim,,— oo D,y = D . Denote X,, = DgV*D,,V. Then

lim X,, = DoV*DV = DgD.

m—0o0

We show by contradiction that X,, € GL,(C) cannot be expressed in the form (2.1). If
(2.1) were true, then X,, would have two polar decompositions

X = Do(V*DyV) = (V" DoV, (VD Vin).
By the uniqueness of polar decomposition of GL,(C),
Do = VieP"DgV,,  V*D,V =V:D,V,. (3.2)

By the second equality of (3.2), V), := V,,V* commutes with D,,. So V,, € D(n)
since D,, has distinct diagonal entries. Then Dg and V!, commute. From the first
equality of (3.2) we get

ePm =V, DoV:Do ™' = V. VDoV*V*Dg™" = V! (VDoV*Dg~ ") V/7.

Then we get

lim V/ (VDgV*De V¥ = lim P =1,.

m—0o0 m—0o0

So VDgV*Dg~! = I,. This contradicts VDy # DoV . So the desired representation in
Lemma 2.5 does not hold in this situation.

1%
m

REFERENCES

(1] A. ALUTHGE, On p -hyponormal operators for 0 < p < 1, Integral Equations Operator Theory, 13
(1990), 307-315.

[2] A. ALUTHGE, Some generalized theorems on p -hyponormal operators, Integral Equations Operator
Theory, 24 (1996), 497-501.

[3] T. ANDO, Aluthge transforms and the convex hull of the eigenvalues of a matrix, Linear Multilinear
Algebra, 52 (2004), 281-292.

[4] T. ANDO AND T. YAMAZAKI, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear
Algebra Appl., 375 (2003), 299-309.

[5] J. ANTEZANA, P. MASSEY AND D. STOJANOFF, A -Aluthge transforms and Schatten ideals, Linear
Algebra Appl., 405 (2005) 177-199.

[6] R.BHATIA AND F. KITTANEH, Some inequalities for norms of commutators, SIAM J. Matrix Anal. Appl.,
18 (1997) 258-263.

[7] M. CHO, 1. B. JUNG AND W. Y. LEE, On Aluthge transform of p -hyponormal operators, Integral
Equations Operator Theory, 53 (2005), 321-329.

(8] C.Foias, I. B. JUNG, E. Ko AND C. PEARCY, Complete contractivity of maps associated with the Aluthge
and Duggal transforms, Pacific J. Math., 209 (2003), 249-259.

(9] P.R. HALMOS, A Hilbert Space Problem Book, Springer-Verlag, New York, 1974.

[10] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York,

1978.



ON THE CONVERGENCE OF ALUTHGE SEQUENCE 141

[11] I.B.JUNG, E. KO AND C. PEARCY, Aluthge transforms of operators, Integral Equations Operator Theory,
37 (2000), 437-448.

[12] 1. B. JUNG, E. Ko AND C. PEARCY, Spectral pictures of Aluthge transforms of operators, Integral
Equations Operator Theory, 40 (2001), 52-60.

[13] 1. B. JUNG, E. KO AND C. PEARCY, The iterated Aluthge transform of an operator, Integral Equations
Operator Theory, 45 (2003), 375-387.

[14] K. OKUBO, On weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl.,
371 (2003), 369-375.

[15] A.L. ONISHCHIK AND E. B. VINBERG, Lie groups and algebraic groups, Springer-Verlag, Berlin, 1990.

[16] T. YAMAZAKI, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc.,
130 (2002), 1131-1137.

[17] T. YAMAZAKI, On numerical range of the Aluthge transformation, Linear Algebra Appl., 341 (2002)
111-117.

(Received September 18, 2006) Department of Mathematics and Statistics

Auburn University
AL 36849-5310, USA

e-mail: huanghu@auburn.edu, tamtiny@auburn.edu

Operators and Matrices
www.ele-math.com
oam@ele-math.com



