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Abstract. Let Γ be the convex set consisting of all states φ on the tensor product B ⊗ B of the
algebra B = Mn(C) of all n × n matrices over the complex numbers C with the property that
the restrictions φ�B⊗I and φ�I⊗B are the unique tracial states on B ⊗ I and I ⊗ B . We find
necessary and sufficient conditions for such a state, called a marginal tracial state, to be extremal
in Γ . We also give a characterization of those extreme points in Γ which are pure states. We
conjecture that all extremal marginal tracial states are pure states.

1. Introduction

For n � 2 let B be the type In -factor consisting of the n × n matrices Mn(C)
over the complex numbers C . Let B ⊗ B be the tensor product of B with itself. Then
B⊗B is isomorphic to the full matrix algebra of n2×n2 matrices over C . The mapping
x → x⊗ I (respectively, x → I ⊗ x ), for x ∈ B gives a unital embedding of B into the
subalgebra B ⊗ I (respectively, I ⊗ B ) of B ⊗ B .

Let τ be the unique tracial state on B⊗B . By restriction to B⊗ I (respectively, to
I ⊗B ), τ(x⊗ I) = τB(x) (respectively, τ(I ⊗ x) = τB(x) ). Under these identifications
we will abuse notation somewhat by using τ interchangeably to refer to the tracial state
on B ⊗ B as well as on B .

A state φ on B ⊗ B is called a marginal tracial state if the restrictions of φ to
B ⊗ I and I ⊗ B are the tracial states on B ⊗ I and I ⊗ B respectively. Note that the
set Γ consisting of all marginal tracial states on B ⊗ B is non-empty (since, of course,
τ ∈ Γ ) and convex. Moreover, Γ is σ(T ⊗ T, B⊗ B) -compact, where T is the dual of
B .

In [P1] K. R. Parthasarathy has shown for the case n = 2 that any extremal
marginal tracial state is a pure state. Our work in the present paper is directed towards
determining whether or not one can extend Parthasarathy’s result to all n . Although
we cannot solve the problem we have obtained some partial results which we hope will
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prove useful. Our results suggest that Parthasarathy’s result may indeed extend to all n
(see Lemma 2.7 and the remark following).

Given these considerations it is obviously of interest to determine those pure states
on B ⊗ B which are marginal tracial states. The proof of the theorem below shows
that there is a one-to-one correspondence between such states and SU(n) . The proof,
which we include for the sake of completeness, is achieved by constructing the Schmidt
decomposition of a unit vector corresponding to the pure state, [Sc], [VW], [EK].

THEOREM 1.1. A marginal tracial state φ on B ⊗ B is a pure state if and only if
there are orthonormal bases {f i : 1 � i � n} and {gi : 1 � i � n} of Cn such that
φ(A) = 〈Aξ , ξ〉 for all A ∈ B ⊗ B , where ξ =

∑n
i=1

f i⊗gi√
n

.

REMARK 1.1. A decompositionof a vector η in Cn⊗Cn into the form
∑n

i=1 aif i⊗
gi , where {f i : i = 1, . . . , n}, {gj : j = 1, . . . , n} are a pair of orthonormal bases of
Cn , is known as a Schmidt decomposition, (see [EK] for the reference to [Sc])). In [EK]
it is shown that for any pure state ω on Mp(C)⊗Mq(C) there is an orthonormal basis
{f i : i = 1, . . . , p} for Cp and another, {gj : j = 1, . . . , q} for Cq such that the unit
vector η satisfying ω = 〈 ·η,η〉 admits a Schmidt decomposition η =

∑r
i=1 aif i⊗gi ,

where r � min(p, q) .
In the terminology of quantum computing the vector ξ in the statement of the

theorem is said to be a maximally entangled vector which means that r above is
maximal (i.e., r = n ) in the Schmidt decomposition of ξ .

Proof. If {f i} and {gi} are orthonormal bases for Cn it is straightforward to
verify that the pure state 〈 ·ξ , ξ〉 is a marginal tracial state on B ⊗ B , where ξ =∑n

i=1
f i⊗gi√

n
. Conversely, suppose φ is a marginal tracial state that is also pure. Then for

1 � i, j � n there are complex numbers λij ∈ C be such that φ(A) = 〈Aξ , ξ〉 where
ξ =

∑n
i,j=1 λijf i ⊗ f j . For x ∈ B we have φ(x ⊗ I) = 〈 (x ⊗ I)ξ , ξ〉 = τ(x ⊗ I) . Let

{ers : 1 � r, s � n} be matrix units of B corresponding to the orthonormal basis {f i} ,
i.e. ersf i = δisf r , then clearly

δrs/n = τ(ers) = φ(ers ⊗ I) = 〈 (ers ⊗ I)ξ , ξ〉 =
n∑

j=1

λsjλ̄rj,

so that Λ =
(√

nλij
)

is a unitary matrix. For 1 � i � n set gi =
∑n

j=1

√
nλijf j . Since

Λ is a unitary matrix the set {gi : 1 � i � n} is an orthonormal basis of Cn , and
φ = 〈 ·ξ , ξ〉 where ξ =

∑n
i=1

f i⊗gi√
n

. �

REMARK 1.2 . From the proof above it follows that if φ is a pure state on B ⊗ B
that restricts to the tracial state on B ⊗ I , i.e. φ(x ⊗ I) = τ(x) = τB(x) for all x ∈ B ,
then φ is automatically a marginal tracial state on B ⊗ B . For it follows under these
hypotheses that φ = 〈 ·ξ , ξ〉 where ξ =

∑n
i=1

f i⊗gi√
n

and so for any y ∈ B , φ(I ⊗ y) =

〈 (I ⊗ y)ξ , ξ〉 =
〈
(I ⊗ y)(

∑n
i=1

f i⊗gi√
n

),
∑n

i=1
f i⊗gi√

n

〉
=

∑n
i=1 〈 ygi, gi〉 /n = τ(y) .

REMARK 1.3 . Using an argument similar to the proof above (see also [EK]) one
can show that if φ = 〈 ·ξ , ξ〉 is a pure marginal tracial state then the vector ξ has the
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following property: let η be any vector in Cn ⊗ Cn = H ⊗ H , the vector space on
which B ⊗ B acts; then there is a linear operator Φ ∈ B such that (Φ⊗ I)ξ = η .

2. Main Results

Let S be the convex set of all states on B ⊗ B ; then for each φ ∈ S there is
a unique positive element hφ ∈ T ⊗ T such that φ(a) = τ(ahφ) , all a ∈ B ⊗ B ,
and τ(hφ) = φ(I) = 1 . Conversely, let h be any element of T ⊗ T satisfying
τ(h) = 1 = ‖h‖1 , where ‖ · ‖1 denotes the trace norm on T ⊗ T ; then h must
be positive and φh(a) = τ(ah), a ∈ B ⊗ B , is a state on B ⊗ B , [Sa]. Under this
correspondencewe shall identify the set of all states on B⊗B with the set of all positive
elements of B ⊗ B with trace norm 1 .

Let P (resp., Q) be the canonical conditional expectation of B ⊗ B onto B ⊗ I
(resp., I ⊗ B ); then the linear mappings P and Q satisfy the following conditions:

(i) P(h) � 0 (resp. Q(h) � 0 ) for h � 0 in B ⊗ B , and P(I) = I (resp.
Q(I) = I ).

(ii) P(axb) = aP(x)b for a, b ∈ B ⊗ I and x ∈ B ⊗ B , (resp., Q(cxd) =
cQ(x)d for c, d ∈ I ⊗ B and x ∈ B ⊗ B ).

(iii) P(xk) = P(kx) for k ∈ I ⊗ B and x ∈ B ⊗ B (resp. Q(x�) = Q(�x)
for � ∈ B ⊗ I and x ∈ B ⊗ B ).

(iv) P(x∗x) = 0 (resp. Q(x∗x) = 0 ) if and only if x = 0 , for x ∈ B ⊗ B .
(v) τ(P(x)) = τ(Q(x)) = τ(x) for x ∈ B ⊗ B .
(vi) P(x∗) = P(x)∗ and Q(x∗) = Q(x)∗ for x ∈ B ⊗ B .
(vii) ‖P(x)‖ � ‖x‖ and ‖Q(x)‖ � ‖x‖ for all x ∈ B ⊗ B .

Since T ⊗ T and B⊗ B are identical as sets, the conditional expectation P (resp.
Q ) may be viewed as a positive linear mapping of T ⊗ T onto T ⊗ I (resp. of T ⊗ T
onto I ⊗ T ) and satisfying the same properties above. Concerning the norm we have
‖P(x)‖1 � ‖x‖1 and ‖Q(x)‖1 � ‖x‖1 for x ∈ T ⊗ T. In fact,

‖P(x)‖1 = sup
‖a‖�1,a∈B⊗I

|τ(aP(x))|

= sup
‖a‖�1,a∈B⊗I

|τ(P(aP(x)))|

= sup
‖a‖�1,a∈B⊗I

|τ(P(a)P(x))|

= sup
‖a‖�1,a∈B⊗I

|τ(P(a)x)|

= sup
‖a‖�1,a∈B⊗I

|τ(ax)|

� sup
‖b‖�1,b∈B⊗B

|τ(bx)|

� ‖x‖1.
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LEMMA 2.1. A state h on B ⊗ B is a marginal tracial state if and only if P(h) =
Q(h) = I .

Proof. Suppose h is a marginal tracial state; then τ(ah) = τ(a) , a ∈ B⊗ I is the
tracial state on B ⊗ I and τ(ah) = τ(P(ah)) = τ(aP(h)) = τ(a) , a ∈ B ⊗ I . Hence
P(h) = I , and similarly, Q(h) = I . Conversely, if P(h) = Q(h) = I for a positive
element h in T ⊗ T then τ(ah) = τ(P(ah)) = τ(aP(h)) = τ(a) for a ∈ B⊗ I and so
h is tracial on B ⊗ I , and similarly it is tracial on I ⊗ B , so that h is a marginal tracial
state. �

Consider the linear mapping P + Q on T ⊗ T and let V = ker(P + Q) ; then
for v ∈ V , (P + Q)(v) = 0 and P(P + Q)(v) = P(v) + PQ(v) = P(v) + τ(v)I = 0 .
Similarly, Q(v)+ τ(v)I = 0 ; hence (P + Q)(v)+ 2τ(v)I = 0 ; therefore τ(v) = 0 and
so P(v) = Q(v) = 0 .

REMARK 2.1. It is straightforward to see that V = N ⊗ N where N ⊂ B is the
vector space of all elements b ∈ B with trace 0 .

LEMMA 2.2. (I −V)∩ (T ⊗T)+ is the set of all marginal tracial states on B⊗B ,
where (T ⊗ T)+ is the set of all positive elements of T ⊗ T .

Proof. Let h ∈ (I − V) ∩ (T ⊗ T)+ and put h = I − v , v ∈ V . Since h �
0, ‖h‖1 = τ(h) = τ(I − v) = τ(I) = 1 ; hence h is a state on B ⊗ B . Moreover,
P(I − v) = P(I) − P(v) = I and Q(I − v) = I and therefore, by the previous lemma,
h is a marginal tracial state.

Conversely suppose h is amarginal tracial state on B⊗B ; then P(I−h) = I−I = 0
and Q(I − h) = 0 ; hence I − h ∈ V and h = I − (I − h) . �

A consequence of the following result is that for n � 2 the unique tracial state on
B ⊗ B is never an extremal marginal tracial state.

THEOREM 2.3. Let h0 be a marginal tracial state on B ⊗ B . Then the following
conditions are equivalent:

(i) h0 is extremal among the marginal tracial states on B ⊗ B ,
(ii) (R(h0)T ⊗ TR(h0)) ∩ V = {0},
(iii) (R(h0)T ⊗ TR(h0)) ∩ {λ I + V : λ ∈ C} = {λh0 : λ ∈ C} ,

where R(h0) is the range projection of h0 .

Proof. (i) =⇒ (ii) : Suppose there is a nonzero element v in (R(h0)T ⊗
TR(h0))∩V . Since R(h0)T⊗TR(h0) and V are selfadjoint, v∗ ∈ (R(h0)T⊗TR(h0))∩V
and so v + v∗, iv − iv∗ ∈ (R(h0)T ⊗ TR(h0)) ∩ V ; hence without loss of generality
we may assume that v is self-adjoint. Then there is a positive real number λ such
that −λR(h0) � v � λR(h0). Therefore there exists a positive number μ such that
−μh0 � −λR(h0) � v � λR(h0) � μh0 . Hence μh0 ± v � 0 and so h0 ± v

μ � 0 .
Then ‖h0 ± v

μ ‖1 = τ(h0 ± v
μ ) = τ(h0) = 1 . Moreover, P(h0 ± v

μ ) = P(h0) = I
(resp. Q(h0 ± v

μ ) = Q(h0) = I) and so h0 ± v
μ are marginal tracial states and

h0 =
(h0+ v

μ )+(h0− v
μ )

2 , a contradiction.
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(ii) =⇒ (iii) : Clearly h0 ∈ R(h0)T ⊗ TR(h0) and h0 = I + (h0 − I) with
h0 − I ∈ V ; hence {λh0 : λ ∈ C} ⊂ (R(h0)T ⊗ TR(h0)) ∩ {λ I + V : λ ∈ C} .
If there is an element k in (R(h0)T ⊗ TR(h0)) ∩ {λ I + V : λ ∈ C} that is not a
scalar multiple of h0 then k = λ1I + v for some λ1 ∈ R and v ∈ V . If λ1 = 0
then k = v �= 0 and v ∈ R(h0)T ⊗ TR(h0) , which contradicts (ii) . If λ1 �= 0 then
k
λ1

= I + v
λ1

/∈ {λh0 : λ ∈ C} and k
λ1

∈ (R(h0)T ⊗TR(h0))∩{λ I + V : λ ∈ C} . We

have k
λ1

− h0 = I + v
λ1

− (I − (I − h0)) = v
λ1

+ (I − h0) ∈ V and v
λ1

+ (I − h0) �= 0 ;
moreover v

λ1
+ (I − h0) ∈ R(h0)T ⊗ TR(h0) ∩ V . This contradicts (ii) .

(iii) =⇒ (i) : If h0 is not extremal then there are two marginal tracial states
h1 and h2 on B ⊗ B such that h0 �= hi for i = 1, 2 and h0 = h1+h2

2 . Therefore
0 � hi � 2h0 for i = 1, 2 , and so by the preceding lemma it follows that hi ∈ (R(h0)T⊗
TR(h0)) ∩ {λ I + V : λ ∈ C} for i = 1, 2 . If h1 = λh2 then τ(h1) = λτ(h2) = λ ,
hence λ = 1 and so dim ((R(h0)T ⊗ TR(h0)) ∩ {λ I + V : λ ∈ C}) � 2 . �

REMARK 2.2. In [P1] K. R. Parthasarathy provides necessary and sufficient con-
ditions for a state, with restrictions ρ1 on B ⊗ I and ρ2 on I ⊗ B , to be extremal
among all states with the same restrictions. In the appendix to this paper we show that
our condition (ii) above is equivalent to Parthasarathy’s condition for marginal tracial
states to be extremal.

COROLLARY 2.4. (cf. [P1]) If h0 is an extremal marginal tracial state then
R(h0) < I , i.e., h0 is not invertible.

Proof. If R(h0) = I then (R(h0)T ⊗TR(h0))∩V = V = {0}. On the other hand,
V = N ⊗ N where N = {a ∈ B : τB(a) = 0} , where τB is the tracial state on B .
Hence V �= {0} . �

Let H be the set of all Hilbert-Schmidt class matrices of B ; then H = B as
sets and the inner product of H is given by 〈 a, b〉 = τB(b∗a) , for a, b ∈ B , where
τB is the tracial state on B . The norm on H is given by ‖a‖2 = τB(a∗a)

1
2 , a ∈ H .

H⊗H coincides with B⊗B as a set and H⊗H is a Hilbert space with inner product
given by 〈 a ⊗ b, c⊗ d〉 = τ((c⊗ d)∗(a⊗ b)) for a, b, c, d ∈ B and extended to all of
H⊗H by linearity. Moreover, since B = CI + N it follows that H⊗H = B ⊗ B =
CI ⊕ (N ⊗ I + I⊗N)⊕ (N ⊗N) where we abuse notation slightly by using I to denote
the identity on B and also on B ⊗ B .

LEMMA 2.5. {λ I : λ ∈ C} ⊕ (N ⊗ I + I ⊗ N) ⊕ (N ⊗ N) is an orthogonal
decomposition of H⊗H .

Proof. For λ ∈ C we have τ((λ I)∗(N ⊗ I + I ⊗ N)) = λ̄ τ(N ⊗ I + I ⊗ N) = 0
and τ((N ⊗ I + I⊗N)∗(N ⊗N)) = τ(N∗N ⊗N +N⊗N∗N) = τ(N∗N ⊗ I)τ(I ⊗N)+
τ(N ⊗ I)τ(I ⊗ N∗N) = 0 . �

Henceforth we shall often use the notation B rather than T or H because they are
the same as sets.

Let E be a linear subspace of B ⊗ B . We shall use the notation Eo to denote
the orthogonal complement of E with respect to the scalar product defined by the
tracial state τ on B ⊗ B . We shall also simplify notation by using R to denote the
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range projection R(h0) of a fixed extremal marginal tracial state h0 . Then we have the
following lemma.

LEMMA 2.6. B ⊗ B = CI + (N ⊗ I + I ⊗ N) + (RB ⊗ BR)o .

Proof. ByTheorem 2.3 , (RB⊗BR)∩V = {0} ; hence B⊗B = ((RB⊗BR)∩V)o =
(RB ⊗ BR)o + Vo = (RB ⊗ BR)o + (B ⊗ I + I ⊗ B) . �

The following lemma is an immediate consequence of the preceding lemma.

LEMMA 2.7. R(B ⊗ I + I ⊗ B)R = CR + R(N ⊗ I + I ⊗ N)R = RB ⊗ BR .

REMARK 2.3 . Note that the conclusion of the lemma shows that R �= I and so we
recapture the result of Corollary 2.4 .

The identificationmade in the preceding lemmabetween RB⊗BR and CR+R(N⊗
I + I ⊗ N)R is trivial when dim(R )= 1 and seems to be rather puzzling otherwise,
since it does not seem intuitive to us that CR+R(N⊗ I+ I⊗N)R is isomorphic to a full
matrix algebra for dim(R )> 1 . For this reason the lemma suggests that any extremal
marginal tracial state must in fact be pure.

In what follows we shall make use of the following observation (see Corollary
2.10). Since h0 ∈ RB⊗BR and τ(h0R(N ⊗ I + I⊗N)R) = τ((N ⊗ I + I⊗N)h0) = 0 ,
we have the orthogonal decomposition:

RB ⊗ BR = Ch0 ⊕ R(N ⊗ I + I ⊗ N)R.

Moreover, if W = {a ∈ RB ⊗ BR : τ(a) = 0} then by the preceding equation

W = h
1
2
0 R(N ⊗ I + I ⊗ N)Rh

1
2
0 = h

1
2
0 (N ⊗ I + I ⊗ N)h

1
2
0 .

Our nextmain goal, in Theorem 2.9 , is to obtain necessary and sufficient conditions
for a extremal marginal tracial state to be a pure state. To prove this result it will be
helpful to study two norms on the linear subspace CI + V of B ⊗ B . First note that
since B ⊗ B has the orthogonal decomposition B ⊗ B = (CI + V) ⊕ (N ⊗ I + I ⊗ N)
we may identify CI + V with the quotient space B ⊗ B/(N ⊗ I + I ⊗ N) of B ⊗ B .

The first norm we impose on CI + V is the C∗ -norm ‖ · ‖ which the space
inherits as a subspace of B ⊗ B . The other is the quotient norm ‖| · |‖ given by
‖|a|‖ = inf

y∈N⊗I+I⊗N
‖a + y‖, a ∈ CI + V . Clearly ‖|a|‖ � ‖a‖ , all a ∈ CI + V .

Let ‖ · ‖1 be the trace norm on T ⊗ T . Then ‖a‖1 = τ((a∗a)
1
2 ), a ∈ T ⊗ T ,

and is the dual norm of the C∗ -norm ‖ · ‖ on B ⊗ B . Let ‖ · ‖∗ be the dual norm on
CI + V(⊂ T ⊗ T) with respect to the norm ‖ · ‖ on CI + V(⊂ B⊗B) . By the general
theory of Banach spaces

(B ⊗ B/(N ⊗ I + I ⊗ N))∗ = (N ⊗ I + I ⊗ N)o = CI + V ⊂ T ⊗ T

with respect to the norm ‖ · ‖1 ; hence we have, for f ∈ CI + V ,

‖f ‖1 = sup
‖|x|‖�1,x∈CI+V

|f (x)| = sup
‖x‖�1,x∈B⊗B

|f (x)|, and

‖f ‖∗ = sup
‖x‖�1,x∈CI+V

|f (x)|,
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and so ‖f ‖∗ � ‖f ‖1 .
Suppose f ∈ CI + V is a state on B ⊗ B ; then 1 = ‖f ‖1 = f (I) . By re-

striction f may be viewed as a linear functional on CI + V , and we have ‖f ‖1 =
sup

‖|x|‖�1,x∈CI+V
|f (x)| . Let Δ be the set of all such linear functionals. Then Δ coin-

cides with the set of all positive elements h in CI + V such that τ(h) = 1 . Since
f (I) � ‖f ‖∗ � ‖f ‖1 , ‖f ‖∗ = ‖f ‖1 for f ∈ Δ .

Let h0 be an extreme point of Γ and let I(h0) be the set of all states k on B ⊗ B
such that τ(ah0) = τ(ak) for a ∈ CI + V ; then k − h0 ∈ (CI + V)o = N ⊗ I + I ⊗ N
and therefore there is a selfadjoint element a in N ⊗ I + I ⊗ N such that k = h0 + a .
Conversely we have the following:

LEMMA 2.8. Let h be an arbitrary state on B ⊗ B and consider its restriction to
CI+V ; then there is a unique selfadjoint element � in CI+V such that τ(xh) = τ(x�)
for x ∈ CI + V . In fact � = (I − (P − Q)2)(h) .

Proof. A straightforward calculation shows that (P − Q)2(P − Q)2 = (P − Q)2 ,
and ((P − Q)2)∗ = (P − Q)2 so that (P − Q)2 is the orthogonal projection of B ⊗ B
onto N ⊗ I + I ⊗N in the Hilbert space B⊗ B . Hence I − (P−Q)2 is the orthogonal
projection of B ⊗ B onto CI + V . Hence � = (I − (P − Q)2)(h) ∈ CI + V .

Next we show that τ(xh) = τ(x�) for all x ∈ CI +V . To see this note that for any
a, b ∈ B⊗B , τ(P(a)b) = τ(P(a)P(b)) = τ(aP(b)) . Similarly τ(Q(a)b) = τ(aQ(b)) .
Therefore τ((P − Q)2(a)b) = τ((P − Q)(a)(P − Q)(b)) = τ(a(P − Q)2(b)) , and so
τ((I − (P − Q)2)(a)b) = τ(a(I − (P − Q)2)(b)) . Now replace a with x ∈ CI + V
and b with h in this equation. From the preceding paragraph x = (I − (P − Q)2)(x) ,
so that τ(xh) = τ(x�) for all x ∈ CI + V . The uniqueness of � is straightforward. �

The following gives a characterization of the extreme points of Γ that are in fact
pure states. As pointed out in [P1] all extreme points are pure in the case n = 2 , i.e.
when the algebra B is isomorphic to the matrix algebra M2(C) .

THEOREM 2.9. Let h0 be an extreme point of Γ , the set of marginal tracial states on
B⊗B . Then h0 is a pure state on B⊗B if and only if (I−(P−Q)2)(RB⊗BR) ⊂ RB⊗BR .

Proof. Suppose h0 is a pure state; then RB ⊗ BR = CR and so h0 = n2R . By
Lemma 2.1 , (P − Q)(h0) = 0 , so

(I − (P − Q)2)(R) =
1
n2

(I − (P − Q)2)(h0)) =
1
n2

h0 = R.

Hence (I − (P − Q)2)CR = CR .
For the converse suppose (I − (P − Q)2)(RB ⊗ BR) ⊂ RB ⊗ BR . By the proof

of Lemma 2.8 , for any h ∈ RB ⊗ BR , (I − (P − Q)2)(h) ∈ CI + V . Therefore
(I − (P − Q)2)(h) ∈ (CI + V) ∩ (RB ⊗ BR) . Combining this with the results of
Theorem 2.3 shows (I − (P−Q)2)(h) ∈ {λh0 : λ ∈ C} , and so (I − (P−Q)2)(a) ∈
{λh0 : λ ∈ C} for a ∈ RB ⊗ BR ; hence

(I − (P − Q)2)(a) = τ(a)h0, a ∈ RB ⊗ BR. (2.1)
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By Lemma 2.1 , P(h0) = I = Q(h0) . Therefore (P − Q)2(h0) = 0 so that we may
rewrite the equation above as

a − τ(a)h0 = (P − Q)2(a − τ(a)h0). (2.2)

Hence a − τ(a)h0 ∈ N ⊗ I + I ⊗ N for a ∈ RB ⊗ BR .
Now assume (to obtain a contradiction) that h0 is not a pure state. Then if

r = rank(R) , r > 1 , RB ⊗ BR is isomorphic to the algebra of r × r matrices, and
therefore the linear space W = {a ∈ RB ⊗ BR : τ(a) = 0} has dimension r2 − 1 .

From the preceding paragraph W is also a subset of N ⊗ I + I ⊗ N . Let a �= 0
be a selfadjoint element of W satisfying ‖a‖2 = 1 , then there are selfadjoint elements
�, m of N such that a = � ⊗ I + I ⊗ m .

We show 2� ⊗ m = h0 − I . To see this apply Eq. 2.2 to a2 to see that

a2 − h0 = (P − Q)2(a2 − h0) (2.3.)

But

(P − Q)2(a2 − h0) = (P − Q)2(a2)

= (P − Q)2(�2 ⊗ I + I ⊗ m2 + 2� ⊗ m)

= (P − Q)2(�2 ⊗ I + I ⊗ m2)

= (P − Q)2(�2 ⊗ I + I ⊗ m2 − I)

= �2 ⊗ I + I ⊗ m2 − I,

where the last equality follows from the observation that �2⊗I+I⊗m2−I ∈ N⊗I+I⊗N ,
since

(i) τ(�2 ⊗ I + I ⊗ m2 − I) = τ(a2) − 1 = 0 , and
(ii) �2 ⊗ I + I ⊗ m2 − I is orthogonal to N ⊗ N .

From the preceding calculation and Equation 2.3 we have 2�⊗m = h0 − I for all
self-adjoint a in W with ‖a‖2 = 1 .

By Corollary 2.4 , h0 �= I hence � ⊗ m �= 0 , hence � �= 0 and m �= 0 .
Recall [T] that for any functional ρ on B the map x ⊗ y → ρ(y)x , x, y ∈ B extends
by linearity to a well-defined (right) slice map from B ⊗ B to B . If we define ρ
by ρ(y) = τ(m∗y), y ∈ B then the corresponding right slice map sends � ⊗ m to
τ(m∗m)� �= 0 . Similarly there is a left slice map that sends � ⊗ m to τ(�∗�)m �= 0 .
But if b = �1 ⊗ I + I ⊗ m1 is any other selfadjoint element of W with ‖b‖2 = 1 then
2�1 ⊗m1 = h0 − I = 2�⊗m , so applying the left and right slice maps above to �1 ⊗m1

shows that �1 (resp., m1 ) is a scalar multiple of � (resp. of m ). It follows immediately
that if c = �2 ⊗ I + I ⊗m2 is any selfadjoint element of W , then independent of ‖c‖2 ,
�2 and m2 are scalar multiples of � and m respectively. Since W = W∗ it then follows
that for any element d of W , d lies in the subspace of N ⊗ I + I ⊗ N spanned by
� ⊗ I, I ⊗ m . Hence W is at most two-dimensional. Since W has dimension r2 − 1 ,
the only possibility is r = 1 . Hence h0 must be a pure state on B ⊗ B . �

PROBLEM. Let h0 be an extreme point of Γ and let h be an arbitrary state on
B ⊗ B with h ∈ RB ⊗ BR . Can we conclude that ‖(I − (P − Q)2)(h)‖1 � 1 ?.
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If so then h0 is a pure state. In fact, τ((I − (P − Q)2)(h)) = τ(h) = 1 and so
(I − (P − Q)2)(h) is a state. Since (I − (P − Q)2)(h) ∈ CI + V , it is a marginal
tracial state. Now put h0 =

∑m
j=1 λjn2ej , where λj > 0 for j = 1, 2, . . . , m with∑m

j=1 λj = 1 and {ej : j = 1, 2, . . . , m} is a family of mutually orthogonal one-
dimensional projections in B⊗ B such that

∑m
j=1 ej = R . Then (I − (P−Q)2)(h0) =

h0 =
∑m

j=1 λjn2(I−(P−Q)2)(ej) . Since h0 is extreme in Γ , n2(I−(P−Q)2)(ej) = h0

for all j ; hence (I−(P−Q)2)(R) = (I−(P−Q)2)
(∑m

j=1 ej

)
= m

n2 h0 and so h0 = n2

m R .

Hence for an arbitrary projection p of RB ⊗ BR , (I − (P −Q)2)(p) = τ(p)h0 , and so
by Theorem 2.9 , h0 is pure.

COROLLARY 2.10. Let h0 be an extremal marginal tracial state on B ⊗ B . Then
the following conditions are equivalent.

(i) h0 is a pure state on B ⊗ B .
(ii) for any k ∈ RB ⊗ BR the restriction of k to CI + V is τ(k)h0�CI+V .

(iii) for � ∈ h1/2
0 (N ⊗ I + I ⊗ N)h1/2

0 , the restriction of � to CI + V is 0 .

(iv) h1/2
0 (N ⊗ I + I ⊗ N)h1/2

0 ⊂ (N ⊗ I + I ⊗ N) .

(v) h1/2
0 (CI + V)h1/2

0 ⊂ CI + V .

Proof. (i) =⇒ (ii) : R = R(h0) is a rank one projection so h0 = n2R and
k = λR . Then τ(k) = λτ(R) = λ 1

n2 , so k = λ
n2 h0 .

(ii) =⇒ (iii) : By the remark following Lemma 2.7 , since h1/2
0 (N ⊗ I + I ⊗

N)h1/2
0 = W = {a ∈ RB ⊗ BR : τ(a) = 0} , so by (ii) the restriction of � to CI + V

must be 0 .
(iii) =⇒ (iv) : For a ∈ CI + V , by Lemma 2.8 we have τ(a(I − (P −

Q)2)(h1/2
0 (N⊗I+I⊗N)h1/2

0 ) = 0 . On the other hand, τ(a(I−(P−Q)2)(h1/2
0 (N⊗I+I⊗

N)h1/2
0 ) = τ((I−(P−Q)2)(a)(h1/2

0 (N⊗I+I⊗N)h1/2
0 ) = τ(ah1/2

0 (N⊗I+I⊗N)h1/2
0 ) = 0

for a ∈ CI + V ; hence h1/2
0 (N ⊗ I + I ⊗ N)h1/2

0 ⊂ (CI + V)o = N ⊗ I + I ⊗ N .

(iv) =⇒ (v) : By the above equality 0 = τ((CI +V)h1/2
0 (N ⊗ I + I⊗N)h1/2

0 ) =
τ(h1/2

0 (CI + V)h1/2
0 (N ⊗ I + I ⊗ N)) ; hence h1/2

0 (CI + V)h1/2
0 ⊂ (N ⊗ I + I ⊗ N)o =

(CI + V) .
(v) =⇒ (iv) : clear.

(iv) =⇒ (iii) : W = h1/2
0 (N ⊗ I + I ⊗ N)h1/2

0 ⊂ (N ⊗ I + I ⊗ N) ; hence
(I − (P − Q)2)(W) ⊂ (I − (P − Q)2)(N ⊗ I + I ⊗ N) = 0 .

(iii) =⇒ (i) : RB ⊗ BR = Ch0 + W and (I − (P − Q)2)(Ch0 + W) = Ch0 ⊂
RB ⊗ BR ; hence by Theorem 2.9 , h0 is a pure state. This completes the proof. �

3. Appendix

Let ρ1 and ρ2 be states on B and let E(ρ1, ρ2) be the convex set consisting
of all states ρ on B ⊗ B which restrict on B ⊗ I to ρ1 and on I ⊗ B to ρ2 , i.e.,
ρ(x ⊗ I) = ρ1(x) and ρ(I ⊗ y) = ρ2(y) , for x, y ∈ B . In [P1] Parthasarathy gives a



162 GEOFFREY L. PRICE AND SHÔICHIRÔ SAKAI

necessary and sufficient condition for ρ to be extremal in E(ρ1, ρ2) . We show how
Parthasarathy’s criterion is related to ours in the case ρ1 = ρ2 = τB by showing that it
is equivalent to condition (ii) of Theorem 2.3 .

The following lemma can be found in [P2] (see also [P1]).

LEMMA A.1. Let h be a state on B ⊗ B with rank r < m, where m = n2 . Then
there exists a positive invertible r × r matrix K , a permutation matrix σ of B ⊗ B ,
and an r × (m − r) matrix A such that

σhσ−1 =
[

K KA
A∗K A∗KA

]

THEOREM A.2. (cf. [P1]) Let h be a marginal tracial state on B ⊗ B with
rank r < m. Then h is not an extremal marginal tracial state if and only if there is a
selfadjoint r × r matrix L such that

σ−1

[
L LA

A∗L A∗LA

]
σ

is in V .

Proof. By condition (ii) of Theorem 2.3 the state h on B ⊗ B is not extremal if
and only if (RT ⊗ TR) ∩ V is nontrivial, where R = R(h) and V = N ⊗N . Let σ be
a permutation matrix in B ⊗ B such that hσ = σhσ−1 has the form of the matrix in
the lemma, and let Rσ = σR(h)σ−1 . It follows from spectral theory that Rσ = lim

j→∞
hσj

where hσ1 = hσ , hσj+1 = (hσj )1/2 . Moreover, for any positive matrix C in B ⊗ B (or

in fact, for any positive operator C on a Hilbert space) we may obtain C1/2 as a limit
C1/2 = lim

j→∞
Cj where C0 = 0 and Cj+1 = Cj + 1

2 (C − C2
j ) [Sz]. Therefore C1/2 is a

limit of linear combinations of powers of C . It follows that the successive square roots
hσj of the lemma all have the form [

Zj ZjA
A∗Zj A∗ZjA

]

and therefore there is an r × r matrix Q such that the projection Rσ has the form[
Q QA

A∗Q A∗QA

]
.

If (RT ⊗ TR) ∩ V is nontrivial then there is a nonzero selfadjoint element D in
(RT ⊗ TR)∩V and Dσ = RσDσRσ . From this equation and the form of Rσ it follows

that Dσ has the form

[
L LA

A∗L A∗LA

]
, as in the statement of the lemma, with L = L∗ ,

L �= 0 , and with D = σ−1Dσσ in V .
To prove the converse suppose there is a selfadjoint r × r matrix L such that the

matrix D = σ−1

[
L LA

A∗L A∗LA

]
σ is in V . Since K is invertible it is not difficult

to show that RσDσRσ = Dσ (because the range of the matrix Dσ is contained in the
range of the matrix hσ ), so that D = RDR and therefore D ∈ (RT ⊗ TR) ∩ V . �
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