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ON THE RELATION BETWEEN XX[∗] AND X[∗]X

IN AN INDEFINITE INNER PRODUCT SPACE

JAN S. KES AND ANDRÉ C. M. RAN

(communicated by Leiba Rodman)

Abstract. The relations between the canonical forms for pairs (XX[∗],H) and (X[∗]X,H) , with
nilpotent matrices XX[∗] and X[∗]X , are studied. We show that for some specific cases which
are obtained by imposing restrictions on rank X or rank X[∗]X or both, the relations between
these canonical forms can be found.

1. Introduction

Let H ∈ Cn×n be a hermitian, invertible matrix. Then this matrix induces the
following indefinite inner product

[x, y]
def
= 〈Hx, y〉

for x, y ∈ Cn , where 〈 ., .〉 denotes the usual inner product in Cn . For a matrix
X ∈ Cn×n we define the H -adjoint of X by

X[∗] def
= H−1X∗H.

It is easily shown that X[∗] is the unique matrix which satisfies the equation

[Xx, y] = [x, X[∗]y]

for all x, y ∈ C
n . We call a matrix A ∈ C

n×n H -selfadjoint if we have A[∗] = A .
For this category of matrices we can define a canonical form (J, P) for the matrix pair
(A, H) , in which the matrix J is the Jordan canonical form for A and where the matrix
P , which replaces H , is a matrix with a simple structure. See the next section for more
details, see also [3, 4].

We will consider the matrices X[∗]X and XX[∗] . One easily verifies that both
of these matrices are H -selfadjoint, so both pairs (X[∗]X, H) and (XX[∗], H) can be
written in canonical form. We will search for the connections between these two
canonical forms. It turns out that the main case of interest is the case where X[∗]X and
XX[∗] are nilpotent, and we shall focus on this case. The problem is connected to the

Mathematics subject classification (2000): 47B50, 15A21.
Key words and phrases: Indefinite inner products, canonical forms.

c© � � , Zagreb
Paper No. 01-12

181



182 JAN S. KES AND ANDRÉ C. M. RAN

problem treated in [1], although in the present paper the problem is discussed in the
finite dimensional case only.

In Section 2 we state the problem, and discuss preliminary material. In particular
we discuss the part of the canonical form connected to the nonzero eigenvalues of
X[∗]X in this section. From Section 3 onwards we assume that X[∗]X , and hence also
XX[∗] , is nilpotent. In Section 3 we discuss the case where X[∗]X is nilpotent and
rankX[∗]X = rankX . Several special cases that are, at least to a large extent, corollaries
of the result obtained in Section 3 are discussed in Section 4. Section 5 is concerned
with the case where X[∗]X is nilpotent and rankX = n − 1 . Finally, in Section 6 we
treat the case X[∗]X = 0 . Sections 3 and 6 are opposite extremes: Section 3 treats the
case where KerX[∗]X is as small as possible given X , while Section 6 treats the case
where KerX[∗]X is as large as possible.

2. Problem Formulation and Preliminaries

Let us first define the following matrix blocks. We define the n× n Jordan block,
associated with the real eigenvalue λ as

Jn(λ ) =

⎛
⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0

0 λ . . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λ

⎞
⎟⎟⎟⎟⎟⎠ .

For a nonreal eigenvalue λ from the upper half of the complex plane we define
K2n(λ ) = Jn(λ ) ⊕ Jn(λ̄ ) , a ’double’ Jordan block associated with both eigenvalues
λ and λ̄ . Note that the Jordan canonical form of an H -selfadjoint matrix has such
couples of Jordan blocks (see e.g. [3]). Further we define the standard involutary
permutation matrix block (sip matrix block) of an appropriate order by

P =

⎛
⎜⎜⎜⎝

0 · · · 0 1
... . .

.

0

0 1
...

1 0 · · · 0

⎞
⎟⎟⎟⎠

We also define the following property of two matrix pairs (A1, H1) and (A2, H2) .
We say that these two pairs are unitarily similar, denoted by (A1, H1) ≈ (A2, H2) , if
there exists an invertible matrix T for which holds

A2 = T−1A1T and H2 = T∗H1T. (1)

With these definitions in place, we can now present the following theorem (see [3],
p.33).

THEOREM 1. Let A be an H -selfadjoint matrix and let

J = diag[J(λ1), ..., J(λα), K(λα+1), ..., K(λβ)]
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be a Jordan canonical form for A consisting of Jordan blocks J(λi) associated with
eigenvalues λi of A , where λ1, ..., λα are real and λα+1, ..., λβ are non-real and from
the upper half of the complex plane. Define further, for some ordered set of signs
ε = {ε1, ε2, ..., εα} with εi = ±1 for 1 � i � α :

Pε,J = diag[ε1P1, ε2P2, ..., εαPα , Pα+1, ..., Pβ ]

where Pi is a sip matrix of the same size as J(λi) for 1 � i � α and of the same size
as K(λi) for α + 1 � i � β . Then

(A, H) ≈ (J, Pε,J)

for some set ε that is uniquely determined by (A, H) , up to permutations of signs
corresponding to equal Jordan blocks. Conversely, if for some set of signs ε , the pairs
(A, H) and (J, Pε,J) are unitarily similar, then A is H -selfadjoint.

We call the pair (J, Pε,J) the canonical form for (A, H) .
In order to find connections between the canonical forms for (X[∗]X, H) and

(XX[∗], H) , we need to know the connections between the Jordan canonical forms
for X[∗]X and XX[∗] . We will present a general theorem concerning the connections
between the Jordan canonical forms of the products AB and BA , where A ∈ Cn×m and
B ∈ Cm×n (see [5]).

THEOREM 2. The elementary divisors of AB and BA which do not have zero as
a root coincide with those of BA .
If λ n1 , λ n2 , ... is the sequence of elementary divisors of AB with zero as a root and n1 �
n2 � ... is the sequence of the (nonincreasing) exponents of these elementary divisors,
made infinitely with adjunction of zeros, and m1 � m2 � ... is the corresponding
sequence of exponents of the elementary divisors of BA with zero as a root, then
|nj − mj| � 1 .
Conversely, if C ∈ Cn×n and D ∈ Cm×m satisfy these conditions, there exist matrices
A ∈ Cn×m and B ∈ Cm×n such that C = AB and D = BA .

The implication of this theorem for the Jordan canonical forms for the matrices
AB and BA is that for nonzero eigenvalues λ , all blocks J(λ ) appearing in the Jordan
canonical form for AB also appear in the Jordan canonical form for BA . For eigenvalue
λ = 0 , the blocks differ at most 1 in order. The signs attached to the Jordan blocks
associated with nonreal eigenvalues in the canonical form for (AB, H) and (BA, H) are
both +1 according to Theorem1. For the signs attached to the Jordan blocks associated
with real nonzero eigenvalues we have the following proposition.

PROPOSITION 3. If λ1 �= 0 is a real eigenvalue of X[∗]X ∈ Cn×n with the cor-
responding sign ε1 attached to the Jordan block J(λ1) in the canonical form for
(X[∗]X, H) , then the corresponding sign attached to this Jordan block in the canonical
form for (XX[∗], H) is sign (λ1)ε1 . This proposition also holds for X[∗]X and XX[∗]

interchanged.
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Proof. Suppose that xk, xk−1, . . . , x0 , with xj ∈ Cn , is a Jordan chain of X[∗]X ,
corresponding to the nonzero real eigenvalue λ , so we have:

X[∗]Xxj = λxj + xj−1 for j = 1, . . . , k
X[∗]Xx0 = λx0.

Now put yj = Xxj for j = 0, . . . , k . Then yk, yk−1, . . . , y0 is a Jordan chain of XX[∗] .
To see this, we can write

XX[∗]yj = XX[∗]Xxj = X(λxj + xj−1) = λyj + yj−1 for j = 1, . . . , k,

and
XX[∗]y0 = XX[∗]Xx0 = λXx0 = λy0.

We can use these Jordan chains to determine the signs attached to the Jordan blocks
corresponding to λ in both canonical forms. Note that Jordan chains are used for an
(appropriate) Jordan basis T in the basis transformation described in (1). Combining
this with Theorem 1 we have Pε,J = T∗HT . Writing out this product, it is easily
verified that, for example, the sign attached to the Jordan block corresponding to λ
in the canonical form for (X[∗]X, H) is equal to the sign of [x0, xk] = 〈Hx0, xk〉 .
To determine the sign attached to the corresponding block in the canonical form for
(XX[∗], H) we calculate

〈Hy0, yk〉 = 〈HXx0, Xxk〉 = 〈X∗HXx0, xk〉 =
〈
HX[∗]Xx0, xk

〉
= λ 〈Hx0, xk〉 .

For X[∗]X and XX[∗] interchanged, similar equations hold. This proves the proposi-
tion. �

So the only remaining cases of interest are the Jordan blocks associated with
eigenvalue λ = 0 . Therefore, from now on we will only consider matrices X for
which X[∗]X is nilpotent.

A motivation for the search for connections between the canonical forms for the
pairs (XX[∗]) and (X[∗]X, H) can be found in the results of the articles [2] and [6]. The
first article contains a corollary (Corollary 6) which states that a matrix X ∈ C

n×n

admits an H -polar decomposition: X = UA (with an H -unitary U and an H -
selfadjoint A ) if and only if (XX[∗], H) and (X[∗]X, H) have the same canonical form
(see also [7] and [8]). The matrices XX[∗] and X[∗]X need not be nilpotent in this
corollary. The second article contains a theorem (Theorem 4.4) which states that a
matrix X ∈ Cn×n admits an H -polar decomposition if and only if the pair (X[∗]X, H)
satisfies three conditions of which the second one concerns the part of the canonical
form for (X[∗]X, H) corresponding to the zero eigenvalue.

3. The case rankX[∗]X = rankX

As already stated before, from now on we will only consider matrices X for which
X[∗]X is nilpotent. For simplicity from now on we shall denote Jn(0) by Jn .

We make the following general observation.
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PROPOSITION 4. Let X be such that X[∗]X is a nilpotent matrix and such that
rankX[∗]X = rankX . Then (X[∗]X, H) and (XX[∗], H) cannot have the same canonical
form unless X = 0 .

Proof. Assume that (X[∗]X, H) and (XX[∗], H) have the same canonical form.
According to [2, Corollary 6], X admits an H -polar decomposition: X = UA , with
an H -unitary U and an H -selfadjoint A . Clearly KerX = KerA and A2 = X[∗]X .
Then, because rank (X[∗]X) = rankX , we have KerX = KerX[∗]X , and so:

KerA = Ker X = KerX[∗]X = Ker A2.

The matrix A is also nilpotent, and considering the Jordan canonical form of A we see
that it follows from this that A = 0 , and hence X = 0 . �

COROLLARY 5. If rankX[∗]X = rankX and X �= 0 then X does not allow an
H -polar decomposition.

Let us consider the casewhere KerX[∗]X = KerX , or, in otherwords, rankX[∗]X =
rankX . In that case the following theorem holds:

THEOREM 6. Assume that X is a matrix for which KerX[∗]X = KerX . Let the
canonical form of (X[∗]X, H) be given by

⊕k
j=1 Jnj ⊕ ⊕l

j=k+1J1, ⊕k
j=1εjPnj ⊕ ⊕l

j=k+1εj, (2)

where we assume that nj > 1 for j = 1, . . . , k . Then the canonical form of (XX[∗], H)
is given by

⊕k
j=1 Jnj−1 ⊕ ⊕k

j=1J1 ⊕ ⊕l
j=k+1J1, ⊕k

j=1εjPnj−1 ⊕ ⊕k
j=1δj ⊕ ⊕l

j=k+1εj, (3)

and the numbers δj = ±1 satisfy the equation one obtains from comparing the signature
of H in both canonical forms:

∑
nj is odd

εj =
∑

nj is even

εj +
k∑

j=1

δj.

In other words,
k∑

j=1

δj =
∑

nj is odd

εj −
∑

nj is even

εj. (4)

Before proving the theorem, let us note that equation (4) determines the number
of +1 ’s and −1 ’s among the δj ’s, that is, the δj ’s can be computed from (4) up to a
reordering of the one-by-one blocks in the canonical form (3).

Proof. Let us first define nj = 1 for k + 1 � j � l and denote Nm =
∑m

j=1 nj for

1 � m � l , finally define N0 = 0 . Let us further assume that (X[∗]X, H) is already in
canonical form, then we can write

Ker X = KerX[∗]X = span
{
e1, eN1+1, eN2+1, . . . , eNk+1, eNk+2, . . . , en

}
.
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Denoting the i -th column of X by xi , this leads to the following notation for the matrix
X :

X =

⎛
⎜⎝0 x2 · · · xN1︸ ︷︷ ︸

n1 columns

0 xN1+2 · · · xN2︸ ︷︷ ︸
n2 columns

· · · 0 xNk−1+2 · · · xNk︸ ︷︷ ︸
nk columns

0 0 · · · 0︸ ︷︷ ︸
l−k columns

⎞
⎟⎠ .

From this, it follows that we have (note that H−1 = H )

X[∗] = HX∗H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1x∗N1

...
ε1x∗2
0

ε2x∗N2

...
ε2x∗N1+2

0
...

εkx∗Nk
...

εkx∗Nk−1+2

0

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H. (5)

We now want to compute the product X[∗]X , using the notations above. In order
to simplify the notation of this product, let us denote (for 1 � i, j � l )

Ai,j =

⎛
⎜⎜⎜⎜⎜⎝

0 εi[xN(j−1)+2, xNi ] εi[xN(j−1)+3, xNi ] · · · εi[xNj , xNi ]
0 εi[xN(j−1)+2, xNi−1] εi[xN(j−1)+3, xNi−1] · · · εi[xNj , xNi−1]
...

...
...

...
0 εi[xN(j−1)+2, xN(i−1)+2] εi[xN(j−1)+3, xN(i−1)+2] · · · εi[xNj , xN(i−1)+2]
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ,

an ni × nj matrix block. Writing out the product X[∗]X , using the notations of X , X[∗]

and Ai,j from above, we find

X[∗]X =

⎛
⎜⎜⎝

A1,1 A1,2 · · · A1,l

A2,1 A2,2 · · · A2,l
...

...
. . .

...
Al,1 Al,2 · · · Al,l

⎞
⎟⎟⎠ .
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When we equate this expression to the Jordan canonical form in (2), we find

Ai,j =
{

Jni for i = j
0 for i �= j

This gives us important information concerning the indefinite inner products of all
pairs of columns of X :

[xi, xj] =
{

εp for i + j = Np + N(p−1) + 2 and N(p−1) + 2 � i, j � Np

0 else
(6)

In particular, using the notation of X[∗] in (5), we see that

X[∗]xNi+2 = eNi+1 ∈ Ker X

for 0 � i � k − 1 . So we have

KerXX[∗] ⊇ span
{

x2, xN1+2, . . . , xN(k−1)+2

}
. (7)

Moreover, for 0 � i � k − 1 and Ni + 1 � j � N(i+1) we have that

X[∗]xj = ej−1

and so
XX[∗]xj = xj−1.

Combining these results, it appears that we can extend all k eigenvectors spanning
the subspace of Ker XX[∗] mentioned in (7) to Jordan chains of length n1 − 1 , n2 − 1 ,
. . . , nk − 1 respectively:

xN1

XX [∗]→ xN1−1
XX [∗]→ . . .

XX [∗]→ x2
XX [∗]→ 0

xN2

XX [∗]→ xN2−1
XX [∗]→ . . .

XX [∗]→ xN1+2
XX [∗]→ 0

... (8)

xNk

XX [∗]→ xNk−1
XX [∗]→ . . .

XX [∗]→ xN(k−1)+2
XX [∗]→ 0

This means that we can expect k Jordan blocks of order nj − 1 for 1 � j � k in
the Jordan canonical form for XX[∗] , unless we can extend one or more of the Jordan
chains mentioned in (8). We will show, however, that such an extention is impossible.
Let us therefore assume that we can extend one or more chains, this means that there
exists a vector y ∈ C

n such that we have

XX[∗]y = α1xN1 + α2xN2 + . . .αkxNk

def
= v,

for some (complex) numbers αi , not all equal to zero. Then we have v ∈ ImXX[∗] =
( KerXX[∗])[⊥] . This means in particular that v is H -orthogonal to all vectors spanning
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the subspace of KerXX[∗] mentioned in (7). When we calculate these indefinite inner
products, using (6), we find

[v, x2] = α1ε1

[v, xN1+2] = α2ε2

...

[v, xN(k−1)+2] = αkεk,

so we must conclude that αi = 0 for 1 � i � k . Here we have a contradiction.
To complete our knowledge of the Jordan canonical form for XX[∗] , we will

consider KerXX[∗] again. Note that

dim KerX[∗] = dim KerX = l

and

KerX[∗] ∩ span
{

x2, xN1+2, . . . , xN(k−1)+2

}
= {0} .

So we may, using (7), simply add the k vectors mentioned in the span above to the
l vectors of KerX[∗] when we construct KerXX[∗] and we see that dim KerXX[∗] �
l + k . But for our Jordan basis for XX[∗] , we have already the Nk − k vectors from the
Jordan chains in (8), associated with k eigenvectors of XX[∗] . To complete the Jordan
basis, we need another k + (l − k) = l vectors in Jordan chains associated with all
remaining eigenvectors respectively. Since there are still l eigenvectors remaining, we
may conclude that there are l Jordan chains of length 1 and dim KerXX[∗] = l + k .
So the Jordan canonical form for XX[∗] is given by

J
def
= ⊕k

j=1Jnj−1 ⊕ ⊕k
j=1J1 ⊕ ⊕l

j=k+1J1,

as in (3).
We will now consider the signs that are attached to the Jordan blocks of J . As

a Jordan basis for XX[∗] we can use the Jordan chains of (8) completed with an H -
orthonormal basis for Ker X[∗] . The existence of such a basis is guaranteed by the
fact that ImX is H -nondegenerate. To show this, let x ∈ ImX ∩ ( ImX)[⊥] =
ImX ∩ KerX[∗] . Let x = Xy . Then y ∈ KerX[∗]X . From rankX[∗]X = rankX it
follows that Ker X[∗]X = Ker X , so y ∈ KerX . But then x = 0 . It follows that ImX
is H -nondegenerate and hence KerX[∗] = ( ImX)[⊥] is H -nondegenerate and admits
an H -orthonormal basis {v1, . . . , vl} . So for a Jordan basis for XX[∗] we can write

S =

⎧⎪⎨
⎪⎩x2, . . . , xN1︸ ︷︷ ︸

n1−1 columns

, . . . , xNk−1+2, . . . , xNk︸ ︷︷ ︸
nk−1 columns

, v1, . . . , vl︸ ︷︷ ︸
l columns

⎫⎪⎬
⎪⎭ .

Putting the vectors of S as columns in a matrix S , we compute P
def
= S∗HS . Let
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us therefore first introduce some notation. We define, for 1 � i, j � k

Pi,j =

⎛
⎜⎜⎝
[
xN(i−1)+2, xN(j−1)+2

]
· · ·

[
xN(i−1)+2, xNj

]
... . .

. ...[
xNi , xN(j−1)+2

]
· · ·

[
xNi , xNj

]
⎞
⎟⎟⎠ ,

an (ni − 1) × (nj − 1) matrix block. Then we have

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1,1 P1,2 · · · P1,k

P2,1 P2,2
...

...
. . .

Pk,1 · · · Pk,k

[v1, v1]
. . .

[vl, vl]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where all empty places are indefinite inner products [xi, vj] , which are equal to zero

because xi ∈ ImX and vj ∈ KerX[∗] = ( ImX)⊥ . Further, we have [vi, vi]
def
= δi =

±1 for 1 � i � l . When we use (6), we find that Pi,j = 0 for i �= j and for i = j we
have

Pi,i =

⎛
⎝ 0 · · · εi

... . .
. ...

εi · · · 0

⎞
⎠ ,

so the basis S is appropriate, the canonical form for (XX[∗], H) is (J, P) , where J is
as in (3.) and P as above. We also see that the signs of the blocks in (X[∗]X, H) of
order 2 and higher are preserved, as in the theorem. In order to determine the signs
δi , attached to the remaining blocks of order 1 in (J, P) , for 1 � i � l , we notice
that this can uniquely be done (up to permutations of the order of the blocks) since the
signature of H is preserved under the congruence transformation S∗HS , so we have
sig H = sigP . Writing out this equation leads to (4). �

4. Several Corollaries

4.1. The case where rankX = 1

Note that in this case we also have rankX[∗] = 1 . We shall write X = αβ∗ ,
with α, β ∈ Cn both nonzero vectors. Note further that in this case there are only three
possibilities:

i) X[∗]X = XX[∗] = 0 . This is a trivial case.
ii) rankX[∗]X = 1 and XX[∗] = 0 . Here we can apply Theorem 6 directly.
iii) rankXX[∗] = 1 and X[∗]X = 0 . Here we can apply Theorem 6 for X and X[∗]

interchanged.
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The first possibility occurs when ImX is H -neutral and ImX∗ is H−1 -neutral, the
second case when ImX is not H -neutral and ImX∗ is H−1 -neutral, and the third case
occurs when ImX is H -neutral and ImX∗ is not H−1 -neutral. Let us assume that the
third possibility occurs. As a sample result we state the conclusion of applying Theorem
6. Let the signs in the sign characteristic of (X[∗]X, H) be n+ plus ones, and n− minus
ones. Then the Jordan canonical form of XX[∗] consists of one block of size two, and
n − 2 blocks of size one, while the sign corresponding to the block of order two in the
sign characteristic of (XX[∗], H) is given by sign(β∗H−1β) , and there are n+ − 1 plus
ones, and n− − 1 minus ones corresponding to the n − 2 blocks of order one.

4.2. The case where rankX[∗]X = n − 1

Note that in this case we have

dim KerX[∗]X = 1.

Further, we have
Ker X[∗]X ⊃ Ker X �= {0}.

It now follows that
dim Ker X = 1,

so we can apply Theorem 6 directly. The result is as follows: let us denote the (single)
sign in the sign characteristic of (X[∗]X, H) by ε . Then the Jordan canonical form of
XX[∗] consists of one block of size n − 1 and one block of size one. The signs in the
sign characteristic of (XX[∗], H) are as follows. The signs are both ε when n is odd,
while in case n is even, the sign corresponding to the block of size n− 1 is ε , and the
sign corresponding to the block of size 1 is −ε .

5. The case where rankX = n − 1

Recall that we still assume that X[∗]X is nilpotent. In this section we discuss
the case where rankX = n − 1 . In that case we have dim KerX[∗]X � 2 and
dim KerXX[∗] � 2 . If one of the two (or both) has a one-dimensional kernel, then we
are in the case where either rankX[∗]X = n − 1 , or rankXX[∗] = n − 1 , a case that
was treated before in Section 4.2. So, we may assume that

dim Ker X[∗]X = dim Ker XX[∗] = 2.

Let us further assume that

X[∗]X = Jk ⊕ Jn−k, H = ε1Pk ⊕ ε2Pn−k, k � n − k. (9)

We denote X by X = ( x1 · · · xn ) , that is, the vector xj denotes the j -th column
of X . Since Ker X is a one-dimensional subspace of KerX[∗]X we have that there are
complex numbers α and β , not both zero, such that KerX = span {αe1 + βek+1} .
(We can normalize either α or β to 1 if we wish.) In other words,

αx1 + βxk+1 = 0.

With these assumptions and notations in place, we can state the following theorem.
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THEOREM 7. Let X be of rank n − 1 , with both X[∗]X and XX[∗] of rank n − 2 .
Let the pair (X[∗]X, H) be in canonical form (9), and let α and β , not both zero, be
so that αx1 + βxk+1 = 0 . Then the following hold:

a. if xk+1 = 0 (and so α = 0 ), then XX[∗] ≈ Jk+1 ⊕ Jn−k−1 with corresponding
signs ε1 and ε2 .

b. if xk+1 �= 0 then there are the following possibilities
i) 2k �= n . In this case XX[∗] ≈ Jk−1 ⊕ Jn−k+1 with corresponding signs ε1

and ε2 .
ii) 2k = n, ε1 = ε2 . In this case XX[∗] ≈ Jk−1 ⊕ Jk+1 with corresponding

signs both equal to ε1 .
iii) 2k = n, ε1 = −ε2 and |α| �= |β | . Then XX[∗] ≈ Jk−1 ⊕ Jk+1 with

corresponding signs sign(|α|2 − |β |2)ε1 and sign(|α|2 − |β |2)ε2 .
iv) 2k = n, ε1 = −ε2 and |α| = |β | . Then XX[∗] ≈ Jk⊕Jk with corresponding

signs +1 and −1 .

Proof. We start by making several general observations that are independent of
the special case at hand. Since

X = ( x1 · · · xk xk+1 · · · xn )

we have

X[∗] = H−1X∗H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1x∗k
...

ε1x∗1
ε2x∗n

...
ε2x∗k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

H,

and so

XX[∗] = ( x1 · · · xk xk+1 · · · xn )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1x∗k
...

ε1x∗1
ε2x∗n

...
ε2x∗k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

H.

The fact that X[∗]X = Jk ⊕ Jn−k gives identities for x∗i Hxj . These identities will be
used frequently in the proof.

In particular, we have X[∗]x1 = 0, X[∗]xk+1 = 0 , and considering the second and
the k + 2 -th column in X[∗]X we see that X[∗]x2 = e1, X[∗]xk+2 = ek+1 , and hence it
follows that

XX[∗]x2 = x1, XX[∗]xk+2 = xk+1.

In a similar way it follows that, more generally

XX[∗]xj = xj−1, j = 2, · · · , k, j = k + 2, · · · , n. (10)
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Also, we shall use that x∗1Hxk = 0 and x∗k+2Hxk = 0 .
Hence we have that

XX[∗](αx2 + βxk+2) = αx1 + βxk+1 = 0.

We can now describe Ker XX[∗] completely:

KerXX[∗] = span {αx2 + βxk+2,−β̄x1 + ᾱxk+1}. (11)

Note that the latter vector is indeed non-zero, for if we assume that −β̄x1 + ᾱxk+1 = 0
then it follows that there is a number γ such that αγ = −β̄ , βγ = ᾱ . Then α|γ |2 =
−β̄ γ̄ = −α and β |γ |2 = −β . Now since at least one of α and β is non-zero this is
not possible.

A final general remark we make is that ImXX[∗] = ( KerXX[∗])[⊥] , as is well-
known (and easy to check).

Proof of case a. Consider the case where xk+1 = 0 . Then α = 0 , and we may
and will take β = 1 . Then KerXX[∗] = span {xk+2, x1} . From (10) we see that there
are two Jordan chains, namely

xk , . . . , x1

xn , . . . , xk+2,

which we order in such a way that XX[∗] maps a vector in this chain to the next vector,
ending up finally with a vector in the kernel of XX[∗] . Note that these Jordan chains
are of length k and n − k − 1 , respectively. Further, xk is H -orthogonal to both x1

and xk+2 . This is seen from the fact that x∗k Hx1 is up to a factor ε1 the 1, 1 -entry in
X[∗]X , which is zero, and that x∗k Hxk+2 is up to a factor ε1 the 1, k + 2 -entry in X[∗]X ,
which is zero as well. (Here it is assumed that k > 1 , but the case k = 1 can be done
analogously.) Hence it follows that xk is in ImXX[∗] . So there is a vector y such that
XX[∗]y = xk . It follows that X[∗]y = ek + δek+1 for some number δ . Now we have a
Jordan chain of length k + 1 :

y, xk, . . . , x1,

and the corresponding sign in the sign characteristic of (XX[∗], H) is the sign of the
number 〈Hy, x1〉 . Thus we compute

〈Hy, x1〉 = x∗1Hy =
1
ε1

(X[∗]y)k = ε1.

Next, we compute the sign corresponding to the Jordan chain of length n − k − 1
given by xn, . . . , xk+2 . That sign is determined by the sign of the number

〈Hxn, xk+2〉 = xk+2Hxn =
1
ε2

(X[∗]X)n−1,n = ε2.

Proof of case b. In all cases presented in case b we have xk+1 �= 0 , and hence
α �= 0 . Then KerXX[∗] = span {αx2 + βxk+2, xk+1} . As a first observation note that
the following are certainly Jordan chains:

xn, . . . , xk+1,

αxk + βx2k, . . . ,αx2 + βxk+2. (12)
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The first chain has length n− k , the second has length k − 1 . The question is whether
and which one of these chains can be extended with an extra vector. In order to decide
this we make use of a general fact:

Fact. If A is H selfadjoint, and we have a Jordan chain corresponding to the
eigenvalue 0 : Ayj = yj−1, j = 1, . . . , k , Ay0 = 0 , then 〈Hy0, yj〉 = 0 is j < k .

Note that 〈Hxk+1, xn〉 = x∗nHxk+1 = 0 because the k + 1, k + 1 -entry in X[∗]X
is zero. For the other Jordan chain we have (again using knowledge of the entries of
X[∗]X ):

〈H(αx2 + βxk+2),αxk + βx2k〉
= |α|2x∗k Hx2 + ᾱβx∗k Hxk+2 + αβ̄x∗2kHx2 + |β |2x∗2kHxk+2

= |α|2ε1 + ᾱβ · 0 + αβ̄ · 0 + |β |2δε2, (13)

where

δ =
{

0 if 2k �= n,

1 if 2k = n.

We see that the number in (13) is nonzero in the following cases: 2k �= n or ε1 = ε2

or 2k = n , ε1 = −ε2 , |α|2 �= |β |2 . So it follows that in each of these cases the lengths
of the Jordan chains of XX[∗] are k − 1 and n − k + 1 . The sign corresponding to the
block of size k− 1 is determined by the sign of the number (13). Now we need to find
a Jordan chain that can be extended with a vector. It is now that we split the argument
into several cases.

First assume that 2k < n . We are looking for a vector of the form yn−k = γ xn +
ν(αxk + βx2k) in ImXX[∗] = ( KerXX[∗])[⊥] . Indeed, if we find such a vector, then
there is a vector yn−k+1 such that the vectors (XX[∗])jyn−k+1 , with j = 0, 1, . . . , n−k+1
form a Jordan chain of length n − k + 1 . Now note that since the k + 1 -th column of
X[∗]X is zero one has

〈H(γ xn + ν(αxk + βx2k), xk+1〉 = 0.

So, we are just looking for γ and ν to satisfy

0 = 〈H(γ xn + ν(αxk + βx2k),αx2 + βxk+2〉
= ᾱ(γ x∗2Hxn + ναx∗2Hxk + νβx∗2Hx2k)
+ β̄(γ x∗k+2Hxn + ναx∗k+2Hxk + νβx∗k+2Hx2k)

= |α|2νε1 + β̄γ ε2.

So, we can take γ = 1 and solve for ν : ν = − β̄γ ε2

|α|2ε1
. So, for this case we have the

following Jordan chain:

yn−k+1, xn + ν(αxk + βx2k), . . . , xk+1.

We compute the corresponding sign by computing 〈Hyn−k+1, xk+1〉 . To do so, we
observe that

X[∗]yn−k+1 = ναek + ναe2k + en + z,
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where z ∈ KerX . So

〈Hyn−k+1, xk+1〉 = x∗k+1Hyn−k+1 =
1
ε2

e∗nX
[∗]yn−k+1 =

1
ε2

= ε2.

This finishes the case b.i.
We assume from now on that 2k = n . As was argued above, in the cases under

consideration in b.ii and b.iii we know that there are two Jordan chains of lengths k− 1
and k + 1 , respectively, and the sign corresponding to the chain of length k − 1 is the
sign of |α|2ε1 + |β |2ε2 . Like in the previous case it remains to determine a Jordan
chain of length k + 1 , and find the corresponding sign. We argue as in the case b.i, but
now look for a vector yk+1 such that XX[∗]yk+1 = γ x2k + ν(αxk + βx2k) for some γ
and ν . We determine γ and ν from the condition that this vector must be in the image
of XX[∗] , which is the H -orthogonal of the kernel of XX[∗] , and the relevant equation
now becomes:

0 = 〈Hγ x2k + ν(αxk + βx2k),αx2 + βxk+2〉
= β̄γ ε2 + ν(|α|2ε1 + |β |2ε2).

Since |α|2ε1 + |β |2ε2 �= 0 we can solve for ν and take γ = 1 :

ν = − β̄ε2

|α|2ε1 + |β |2ε2
.

Thenwe get the vector yk+1 as desired, andwe form a Jordan chain by taking the vectors
(XX[∗])jyk+1 for j = 0, . . . , k . Then it is easily seen that y2 = xk+2 + ν(αx2 +βxk+2) ,
and hence y1 = xk+1 . So to get the sign corresponding to this Jordan chain we compute
〈Hyk+1, xk+1〉 . In order to do this we use the fact that X[∗]yk+1 = ναek+(1+νβ)e2k+z
for some z in the kernel of X . So:

〈Hyk+1, xk+1〉 = x∗k+1Hyk+1 =
1
ε2

e∗2kX
[∗]yk+1 =

1
ε2

(1 + νβ)

= ε2 − |β |2
|α|2ε1 + |β |2ε2

=
|α|2ε1ε2

|α|2ε1 + |β |2ε2
.

This proves the cases b.ii and b.iii.
Finally, we consider the case b.iv. In this case we have that αxk + βx2k is H -

orthogonal to KerXX[∗] . Indeed 〈Hxk+1,αxk + βx2k〉 = 0 is straightforward, while
〈H(αx2 + βxk+2),αxk + βx2k〉 = 0 is just what we have computed in (13). Hence
αxk +βx2k is in ImXX[∗] . So, there is a vector y so that XX[∗]y = αxk +βx2k . Then
we have two Jordan chains of length k :

x2k, . . . , xk+1,

y,αxk + βx2k, . . . ,αx2 + βxk+2.

Now 〈Hxk+1, xn〉 = 0 . We now use the following general fact:
Fact. Suppose that A = Jk ⊕ Jk , and H = Pk ⊕ Pk . Then for any Jordan chain

yk, . . . , y1 of length k we have 〈Hyk, y1〉 �= 0 .
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Proof. Any Jordan chain of length k is of the form

y1 = a1e1 + b1ek+1, y2 = a1e2 + b1ek+2 + a2e1 + b2ek+1, . . . , yk = a1ek + b1e2k + x,

where x ∈ span {e1, . . . , ek−1, ek+1, . . . , e2k−1} , and a1 and b1 not both zero. Then

〈Hyk, y1〉 = 〈H(a1e1 + b1ek+1), a1ek + b1e2k + x〉
= 〈H(a1e1 + b1ek+1), a1ek + b1e2k〉 = |a1|2 + |b1|2 > 0.

Now applying this fact we conclude that in case b.iv the two blocks of size k must
have opposite signs in the sign characteristic. �

6. The case X[∗]X = 0 .

In case X[∗]X = 0 we have that ImX is H -neutral. Indeed, X[∗]X = 0 is
equivalent to ImX ⊂ Ker X[∗] = (ImX)[⊥] . Let N0 be a subspace that is skewly linked
to ImX , that is, N0 is an H -neutral subspace such that for any vector x in ImX there is
a vector y in N0 with [x, y] �= 0 . Observe that ImX+̇N0 is a nondegenerate subspace.
Let N1 be the subspace (ImX+̇N0)[⊥] . Then N1 is H -nondegenerate as well. With
respect to the decomposition Cn = ImX+̇N0+̇N1 we have, after an appropriate choice
of basis,

X =

⎛
⎝X1 X2 X3

0 0 0
0 0 0

⎞
⎠ , H =

⎛
⎝ 0 I 0

I 0 0
0 0 H3

⎞
⎠ . (14)

Note that X1 is nilpotent, and if we denote j = dim ImX then

rank ( X1 X2 X3 ) = j.

In these terms we compute XX[∗] . First,

X[∗] =

⎛
⎝ 0 X∗

2 0
0 X∗

1 0
0 H−1

3 X∗
3 0

⎞
⎠ .

Then

XX[∗] =

⎛
⎝ 0 Z 0

0 0 0
0 0 0

⎞
⎠ ,

where
Z = X1X

∗
2 + X2X

∗
1 + X3H

−1
3 X∗

3 . (15)

Note that Z is a hermitian matrix. Clearly, the Jordan canonical form of XX[∗] depends
on the rank of Z . For instance, if Z happens to be full rank then there are j Jordan
chains of length two, while if Z = 0 then XX[∗] = 0 . Let us denote by k the rank of
Z .

Observe that Zx = 0 if and only if

〈HX[∗]x̃, X[∗]x̃〉 = 0,
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where x̃ = ( 0 xT 0 )T . Moreover, since rank ( X1 X2 X3 ) = j , the second
block column of X[∗] is a one-to-one map between the kernel of Z and the isotropic
subspace of ImX[∗] , i.e., ImX[∗] ∩ (ImX[∗])[⊥] . Therefore, the dimension of the kernel
of Z is equal to the dimension of

ImX[∗] ∩ (ImX[∗])[⊥] = ( KerX)[⊥] ∩ KerX.

So, the dimension of KerXX[∗] is j + (j − k) + (n − 2j) = n − k , where j − k is
the dimension of ( KerX)[⊥] ∩ KerX . Jordan chains of length one are obtained from
vectors of the form ⎛

⎝ 0
0
x

⎞
⎠ ,

with corresponding signs in the sign characteristic equal to the signs in the sign charac-
teristic of the pair (X[∗]X, H) corresponding to these vectors (and determined by H3 ),
as well as from vectors of the form⎛

⎝ 0
x
0

⎞
⎠ , x ∈ Ker Z,

and of the form ⎛
⎝ x

0
0

⎞
⎠ , x ∈ (ImZ)⊥

and the signs corresponding to the span of the latter two groups of eigenvectors are an
equal number of +1 ’s and −1 ’s, that is, j − k plus 1 ’s and j − k minus 1 ’s. Indeed,
the latter observation is based on considering the signature of H . The contribution
to this from blocks of order two is an equal number of +1 ’s and −1 ’s, and so the
contribution of the span of the last two types of eigenvectors that correspond to blocks
of order one must also be an equal number of +1 ’s and −1 ’s.

Next, observe that if Zx �= 0 , then⎛
⎝ 0

x
0

⎞
⎠ ,

⎛
⎝ Zx

0
0

⎞
⎠

is a Jordan chain of length two for XX[∗] . Furthermore,〈
H

⎛
⎝Zx

0
0

⎞
⎠ ,

⎛
⎝ 0

x
0

⎞
⎠〉 = 〈Zx, x〉 .

In conclusion, the signs in the sign characteristic of the pair (XX[∗], H) corresponding
to blocks of size two are completely determined by Z . Hence, we have the following
theorem.
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THEOREM 8. Assume that X[∗]X = 0 , let X and H be in the form (14), and let
Z be given by (15). Let k be the rank of Z , and let j denote the dimension of ImX .
Then k is determined by

k = dim ImX − dim
(

KerX ∩ ( Ker X)[⊥]
)

.

Let κ+ be the number of positive eigenvalues of H3 , let κ− be the number of negative
eigenvalues of H3 , let ν+ be the number of positive eigenvalues of Z , and finally, let
ν− be the number of negative eigenvalues of Z .

Then the Jordan canonical form of XX[∗] has n − 2k Jordan blocks of size one,
and k Jordan blocks of size two. The signs in the sign characteristic of (XX[∗], H)
corresponding to the Jordan blocks of size one are as follows: the number of +1 ’s is
κ++(j−k) and the number of −1 ’s is κ−+(j−k) . The signs in the sign characteristic
of (XX[∗], H) corresponding to the Jordan blocks of size two are as follows: the number
of +1 ’s is ν+ , while the number of −1 ’s is ν− .
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