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SPECTRAL CONTINUITY OF k –TH

ROOTS OF HYPONORMAL OPERATORS

B. P. DUGGAL

(communicated by Chi-Kwong Li)

Abstract. Continuity of the set theoretic function spectrum, and some of its distinguished parts,
on the class of k -th roots of hyponormal operators is proved.

1. Introduction and notation

A Hilbert space operator T , T ∈ B(H) , is hyponormal if TT∗ � T∗T , and an
operator A ∈ B(H) is a k -th root, for some integer k � 2 , of a hyponormal operator
if Ak is hyponormal. Let k√H = {A ∈ B(H) : Ak is hyponormal} . Then, this is easily
verified, k√H is stable under multiplication by scalars, closed in the norm topology
and a proper subclass of B(H) . Since the restriction of a hyponormal operator to
an invariant subspace is again hyponormal, A ∈ k√H implies A|M ∈ k√H for every
invariant subspace M of A . Hyponormal operators satisfy (Bishop’s) property (β)
[24]. Hence, apply [19, Theorem 3.3.9], operators A ∈ k√H satisfy property (β) ; in
particular, operators A ∈ k√H have SVEP, the single-valued extension property [19,
Proposition 1.2.19].

The spectrum σ(T) of T ∈ B(H) is a compact subset of the set C of complex
numbers. The function σ , viewed upon as a function from B(H) into the set of all
compact subsets of C with its Hausdorff metric, is an upper semi-continuous function
[15, Problem 103], which fails (in general) to be continuous [15, Problem 102]. Starting
with the seminal paper [23] by Newburgh on spectral continuity in a general Banach
algebra, characterization of the points of continuity of σ in the algebra B(H) has been
carried out by a number of authors, amongst them Conway and Morrel [7, 8] and Apostal
et.al. [4, Chapter 14]). It is however a demanding exercise to apply criteria from [7, 8]
and [4] to determine the continuity of σ on individual classes of operators; this has
led to the development of a number of techniques. It is known that σ is continuous
on the class which are either hyponormal operators or p -hyponormal operators or
M -hyponormal operators or operators satisfying a growth condition of order 1 or
(p, k) -quasihyponormal operators or paranormal operators (see [10], [11], [17], [20] and
[14]). The question of whether σ is continuous on the class of k -th roots of operators
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belonging to one of the classes above seems however not to have been considered.
This paper considers this problem. It is proved that the points A ∈ k√H are points of
continuity of the set theoretic functions the spectrum, the Browder spectrum, the Weyl
spectrum, the Weyl surjectivity spectrum, the Weyl approximate point spectrum and the
approximate point spectrum. We also point out how our argument extends to cover the
class of k -th roots of some of the other classes of operators referred to above.

We introduce now some of our notation and terminology. Any other notation or
terminology will be introduced as and when required.

Let T ∈ B(H) , and let T − λ = T − λ I . The ascent of T at λ , asc(T − λ ) ,
is the least non-negative integer n such that (T − λ )−n(0) = (T − λ )−(n+1)(0) and
the descent of T at λ , dsc(T − λ ) , is the least non-negative integer n such that
(T − λ )nH = (T − λ )n+1H . We say that T has finite ascent (resp., descent) if
asc(T − λ ) < ∞ (resp., dsc(T − λ ) < ∞ ) for all λ ∈ C . The operator T has the
single-valued extension property at λ0 , SVEP at λ0 for short, if for every open disc
Dλ0 centered at λ0 the only analytic function f : Dλ0 → H which satisfies

(T − λ )f (λ ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0 . Trivially, every operator T has SVEP at points of the resolvent
ρ(T) = C \ σ(T) and at isolated points of σ(T) . We say that A has SVEP if it has
SVEP at every λ ∈ C .

T is said to be left semi-Fredholm (resp., right semi-Fredholm), T ∈ Φ+(H)
(resp., T ∈ Φ−(H) ), if TH is closed and the deficiency index α(T) = dim(T−1(0))
is finite (resp., the deficiency index β(T) = dim(H \ TH) is finite); T is semi-
Fredholm if it is either left semi-Fredholm or right semi-Fredholm, and T is Fredholm,
T ∈ Φ(H) , if it is both left and right semi-Fredholm. The semi-Fredholm index of
T , ind(T) , is the (finite or infinite) integer ind(T) = α(T) − β(T) . We say that
the operator T is Weyl (resp., Browder) if it is Fredholm of index 0 (resp., Fredholm
of finite ascent and descent). The Weyl spectrum σw(T) (resp., Browder spectrum
σb(T) ) of T is the set {λ : T − λ is not Weyl} (resp., the set {λ : T − λ is not
Browder} ). Let isoσ(T) , Π(T) = {λ ∈ σ(T) : asc(T −λ ) = dsc(T −λ ) < ∞} and
Π0(T) = {λ ∈ Π(T) : T − λ is Fredholm} denote, respectively, the isolated points of
the spectrum, the set of poles (of the resolvent of T ) and the set of Riesz points of T .

The (Fredholm) essential spectrum σe(T) of T is the set {λ : T−λ is not Fredholm} .
Evidently, σe(T) ⊆ σw(T) ⊆ σb(T) . Let σa(T) (σs(T) ) denote the approximate point
spectrum (resp., the surjectivity spectrum) of T . The Weyl approximate point spectrum
(Weyl defect spectrum) of T is the set σwa(T) == ∩{σa(T + K) : K ∈ K} (resp.,
σws(T) == ∩{σs(T + K) : K ∈ K} , where K is the ideal of compact operators
in B(H) . If we let Φ−

+(H) = {T ∈ Φ+(H) : ind(T) � 0} and Φ+
−(H) = {T ∈

Φ−(H) : ind(T) � 0} , then σwa(T) is the complement in C of all those λ for which
(T − λ ) ∈ Φ−

+ (H) and σws(T) is the complement in C of all those λ for which
(T − λ ) ∈ Φ+

−(H) [1, Theorem 3.65]. Evidently, σws(T) = σwa(T∗) , where, for a
subset S of C , S = {λ : λ ∈ S} .
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2. Results

Let {Tn} be a sequence of operators in B(H) such that limn−→∞ ||Tn − T|| = 0 .
The function σx , where σx is σ or a distinguished part thereof, is said to be continuous
at T if σx is (both) upper semi-continuous, lim supσx(Tn) ⊂ σx(T) , and lower semi-
continuous, σx(T) ⊂ lim inf σx(Tn) . It is well known that σ and σea are upper
semi-continuous at every T ∈ B(H) ([15, Problem 103] and [9, Theorem 2.1]). For
Hilbert space operators, a necessary and sufficient condition for the continuity of σ at
T is that σ is continuous at T∗ ; see Burlando [6, Proposition 3.1], where it is shown
that the continuity of σ at T∗ is both necessary and sufficient for the continuity of σ at
T in a reflexive Banach space. We say that a Banach space operator is polaroid (simply
polaroid) if the isolated points of the spectrum of the operator are poles (resp., poles of
order one) of the resolvent of the operator. It is well known that the eigen-spaces of a
hyponormal operator are reducing; hence, hyponormal operators are simply polaroid.
The following theorem is our main result.

THEOREM 2.1. Operators A ∈ k√H are points of continuity of σ , σb , σw and
σes .

Proof. We split the proof into a number of parts, stated below as steps.
Step 1: A has SVEP. This has already been observed, but here is some additional

detail. It is well known that hyponormal operators have SVEP; so that Ak has SVEP.
Recall from [1, Theorem 2.40] that if f : C −→ C is an analytic function on an open
neighbourhood C of σ(A) , which is non-constant on each connected component of C ,
then A has SVEP if and only if f (A) has SVEP. Hence A has SVEP.

Step 2: σws(A) = σwa(A∗) = σw(A∗) = σb(A∗) . Evidently, σwa(A∗) ⊆
σw(A∗) . Let λ /∈ σwa(A∗) . Then A∗ − λ ∈ Φ−

+(H) , i.e., A∗ − λ is upper semi-
Fredholm and ind(A∗ − λ ) � 0 . Since A has SVEP, the semi-Fredholm property of
A∗ − λ implies that ind(A∗ − λ ) � 0 [1, Corollary 3.19]. Hence ind(A∗ − λ ) = 0
and A∗ − λ is Fredholm. But then λ /∈ σw(A∗) =⇒ σw(A∗) ⊂ σwa(A∗) . Hence
σwa(A∗) = σw(A∗) . To prove the equality σw(A∗) = σb(A∗) , we start by observing
that σw(A∗) ⊆ σb(A∗) . Let λ /∈ σw(A∗) . Then A∗ − λ ∈ Φ(H) , which (since
A has SVEP) implies that dsc(A∗ − λ ) < ∞ [1, Theorem 3.17(vi)], and this (since
A∗−λ ∈ Φ(H) and α(A∗−λ ) = β(A∗−λ ) < ∞ ) in turn implies that asc(A∗−λ ) =
dsc(A∗ − λ ) < ∞ =⇒ λ /∈ σb(A∗) . Since σws(A) = σwa(A∗) for every operator A ,
the proof of Step 2 is complete.

Step 3: σa(A∗) \ σwa(A∗) = Π0a(A∗) = {λ ∈ isoσa(A∗) : 0 < α(T∗ − λ ) <
∞} . In particular, if λ ∈ σa(A∗) \ σwa(A∗) , then λ ∈ isoσa(A∗) . Since A has
SVEP, σ(A) = σ(A∗) = σa(A∗) , σw(A) = σw(A∗) = σwa(A∗) (Step 2) and Π0(A) =
Π0(A∗) = Πa

0(A
∗) , where Πa

0(A
∗) = {λ ∈ σa(A∗) : λ ∈ Π0(A∗)} . We prove that

σ(A) \ σw(A) = Π0(A) = Π00(A) : this, in view of the above, would then imply that
σa(A∗)\σwa(A∗) = Π0a(A∗) . Since A has SVEP, λ ∈ σ(A)\σw(A) implies that A−λ
is Fredholm, ind(A − λ ) = 0 and asc(A − λ ) < ∞ [1, Theorem 3.16]. Hence A − λ
is Fredholm and asc(A − λ ) = dsc(A − λ ) < ∞ [1, Theorem 3.4(iv)]. Equivalently,
λ ∈ Π0(A) , and (since Π0(A) ⊆ σ(A) \ σw(A) for every operator A ) we conclude
that σ(A) \ σw(A) = Π0(A) ⊆ Π00(A) . For the reverse inclusion, let λ ∈ Π00(A) .
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Then λ ∈ isoσ(A) : there exists a decomposition H = H0(A − λ ) ⊕ K(A − λ )
of H such that A − λ |H0(A−λ ) is quasi-nilpotent (and K(T − λ ) is semi-regular)
[21]. Evidently, σ(A1) = σ(A|H0(A−λ )) = {λ} . Since Ak

1 is hyponormal, hence
polaroid, it follows that Ak

1 = λ kI|H0(A−λ ) . Hence A1 = λ I|H0(A−λ ) , which implies
that H = (A− λ )−1(0)⊕K(A− λ ) . Since (A− λ )K(A− λ ) = K(A− λ ) , it follows
that H = (A − λ )−1(0) ⊕ (A − λ )H , i.e., λ ∈ Π(A) . Since α(A − λ ) < ∞ , we
conclude that Π00(A) = Π0(A) .

Step 4: If {An} is a sequence in k√H which converges in norm to A , then A∗ is a
point of continuity of σwa . The function σwa being upper semi-continuous [9, Theorem
2.1], we prove that σwa is lower semi-continuous, i.e., σwa(A∗) ⊂ lim inf σwa(A∗

n ) .
Assume to the contrary that σwa is not lower semi-continuous. Then there exists an ε >
0 , a λ0 ∈ σwa(A∗) and an ε -neighbourhood (λ0)ε of λ0 such that σwa(A∗

n)∩(λ0)ε = ∅
for infinitely many values of n . Assume without loss of generality that σwa(A∗

n) ∩
(λ0)ε = ∅ for all n . Then A∗

n −λ ∈ Φ−
+(H) for every (λ0 
=)λ ∈ (λ0)ε , which implies

that ind(A∗
n − λ ) � 0 , α(A∗

n − λ ) < ∞ and (A∗
n − λ )H is closed. Consequently,

ind(An − λ ) � 0 and β(An − λ) < ∞ , which, since An has SVEP for all n , implies
ind(An − λ) � 0 . Hence ind(An − λ) = 0 and α(An − λ) = β(An − λ ) < ∞ for all
n . The continuity of the index implies that ind(A − λ ) = limn−→∞ ind(An − λ ) = 0 ,
and hence that A−λ is Fredholm with ind(A−λ ) = 0 . But then A∗−λ0 is Fredholm
with ind(A∗ − λ0) = 0 =⇒ A∗ − λ0 ∈ Φ−

+ (H) , which is a contradiction.
Step 5: If {An} is a sequence in k√H which converges in norm to A , then σ

is continuous at A∗ . Since A has SVEP, σ(A∗) = σa(A∗) . In view of the upper
semi-continuity of the function σ , it would therefore suffice to prove that σa(A∗) ⊂
lim inf σa(A∗

n ) for every sequence {An} ∈ k√H such that An converges in norm
to A . Let λ ∈ σa(A∗) . Then we have two possibilities: either λ ∈ σwa(A∗) or
λ ∈ σa(T∗) \ σwa(A∗) . Since

σwa(A∗) ⊂ lim inf σwa(A∗
n) ⊂ lim inf σa(A∗

n )

(see Step 4), the proof for the case in which λ ∈ σwa(A∗) follows. Now let λ ∈
σa(A∗) \ σwa(A∗) . Then, see Step 3, λ ∈ isoσa(A∗) . Hence λ ∈ lim inf σa(A∗

n) =
lim inf σ(A∗

n) ) for all n [18, Theorem IV.3.16].
Step 6: Completing the proof. It is immediate from Step 4 that σws is continuous

at A ∈ k√H and, since σ is continuous at A if and only if σ is continuous at A∗ , the
continuity of σ at A ∈ k√H follows from Step 5. Finally, since σw(T∗) = σw(T) and
σb(T∗) = σb(T) , the continuity of σw and σb at T ∈ k√H follows from Steps 2 and
4. �

Continuity of σe and σa .
Let U = B(H)/K denote the Calkin algebra, and let π : B(H) −→ U denote the

quotient map. (Recall that K ⊂ B(H) is the two sided ideal of compact operators.)
We say that an operator A ∈ B(H) is in ess k√H if π(A)k = π(Ak) is hyponormal.

THEOREM 2.2. σe is continuous on ess k√H .
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Proof. Since U is a C∗ -algebra, there is a Hilbert space H0 and an isometric
∗ -isomorphism ν : U −→ B(H0) such that the essential spectrum σe(A) (= σ(π(A) )
is the spectrum of the operator νoπ(A) ∈ B(H0) . Since the operator (νoπ(A))k =
νoπ(Ak) ∈ B(H0) is hyponormal, Theorem 2.1 applies. �

Although σa is generally not a continuous function, it is upper semi-continuous
[8]. The following lemma, which proves the continuity of σwa at points A ∈ k√H , will
be required in our proof of the continuity of σa on k√H .

LEMMA 2.3. If {An} is a sequence of operators in k√H such that An converges
in norm to A , then σwa(A) ⊂ lim inf σwa(An) .

Proof. If σwa is not lower semi-continuous, then there exists an ε > 0 , an integer
n0 , a λ ∈ σwa(A) and an ε -neighbourhood (λ )ε of λ such that σwa(An)∩(λ )ε = ∅ for
all n > n0 . Choose an n sufficiently large so that ||An−A|| = ||(An−λ )−(A−λ )|| < ε .
Then the punctured neighbourhood theorem for semi-Fredholm operators implies that
A − λ ∈ Φ−

+ (H) . This is a contradiction. �

THEOREM 2.4. σa is continuous on k√H .

Proof. To prove the continuity of σa at A , we have only to prove that σa is
lower semi-continuous at A . Let λ ∈ σa(A) . Then either λ ∈ σa(A) \ σwa(A) or
λ ∈ σwa(A) . Since

σwa(A) ⊂ lim inf σwa(An) ⊂ lim inf σa(An),

the proof for the case in which λ ∈ σwa(A) follows. Now let λ ∈ σa(A) \ σwa(A) .
Then, since A has SVEP, λ ∈ isoσa(A) [1, Theorem 3.23]; hence, [18, Theorem
IV.3.16], λ ∈ lim inf σa(An) . �

Extension to some other classes of Hilbert space operators.
An operator T ∈ B(H) is

p -hyponormal, 0 < p � 1 , if |T∗|2p � |T|2p ;
w-hyponormal if |T̃∗| � |T| � |T̃| , where, for the polar decomposition T = U|T| of
T , T̃ is the Aluthge transform T̃ = |T| 1

2 U|T| 1
2 of T ;

M -hyponormal if there exists a number M � 1 such that |T∗ − λ |2 � M|T − λ |2 for
all complex λ ;
q -quasihyponormal for some positive integer q if T∗q(|T|2 − |T∗|2)Tq � 0 ;
(q, p) -quasihyponormal for some positive integer q and 0 < p � 1 if T∗q(|T|2p −
|T∗|2p)Tq � 0 ;
of class A if |T|2 � |T2| ;
totally ∗ -paranormal if ||(T − λ )∗x||2 � ||(T − λ )2x|| for all λ ∈ C and every unit
vector x ∈ H ,
and T is paranormal if ||Tx||2 � ||T2x|| for every unit vector x ∈ H .

The following inclusions are known to be proper: hyponormal ⊂ p -hyponormal ⊂
w -hyponormal ⊂ paranormal and A ⊂ paranormal (see [12, P 144] for an appropriate
reference). Observe that a (q, 1) -quasihyponormal operator is q -quasihyponormal.
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Let P denote any one of the classes of operators defined above. The argument of
the proof of Theorem 2.1 extends to classes P .

THEOREM 2.5. If A ∈ B(H) is in k√P , then σ , σa , σws , σb and σw are
continuous at A . Furthermore, σe is continuous on ess k√P .

Proof. An examination of the proof of Theorem 2.1 shows that the properties of
the class of hyponormal operators that play a role in the proof of the Theorem 2.1 are:
(i) Hyponormal operators have SVEP; (ii) the class of hyponormal operators is closed
in the uniform topology; (iii) if λ ∈ isoσ(T) , then H0(T − λ ) = (T − λ )−1(0) .
Here the integer 1 in (T − λ )−1(0) is of little consequence; (T − λ )−n(0) for some
positive integer n would do the job just as well. We show in the following that
operators in P share these properties with hyponormal operators. Evidently it would
suffice to consider classes of operators which are either M -hyponormal or (q, p) -
quasihyponormal or totally ∗ -paranormal or paranormal. Let P0 denote the class
of operators which are either M -hyponormal or (q, p) -quasihyponormal or totally
∗ -paranormal or paranormal.

If T ∈ P0 , then T has SVEP; see [12, pp 144–146] for M -hyponormal, (q, p) -
quasihyponormal and totally ∗ -paranormal operators and [2] for paranormal operators.
It is well known that the restriction of an operator T ∈ P0 to an invariant subspace
is again in the same class. Since operators T ∈ P0 are polaroid (see [13, p 276] and
[25, Theorem 6]), it follows that operators T ∈ P0 satisfy property (iii) above. We
are thus left to prove that if {Tn} is a sequence of operators in a class P0 such that
limn−→∞ ||Tn − T|| = 0 , then T ∈ P0 . The proof here is almost the same for each
of the constituent classes of P0 : we give a brief outline for paranormal and (q, p) -
quasihyponormal operators. Choose n large enough so that ||T − Tn|| < ε for some
(arbitrary) ε > 0 . If Tn is paranormal, then for every unit vector x ∈ H

||Tx||2 � ||(T − Tn)x||2 + 2||(T − Tn)x||||Tnx|| + ||Tnx||2
� 3ε2 + 2ε||T|| + ||Tnx||2 � 3ε2 + 2ε||T|| + ||T2

n x||
� 4ε2 + 4ε||T|| + ||T2x||.

If Tn is (q, p) -quasihyponormal, then

|||T∗|pTqx|| � ||(|T∗|p − |T∗
n |p)Tqx|| + |||T∗

n |p(Tq − Tq
n )x|| + |||T∗

n |pTq
n x||

and

|||T∗
n |pTq

nx|| � |||Tn|pTq
n x|| � ||(|T|p − |Tn|p)Tq

n x|| + |||T|p(Tq − Tq
n )x|| + |||T|pTqx||

for all x ∈ H . Since ||Ar − Br|| � |||A− B|r|| for positive operators A, B ∈ B(H) and
0 � r � 1 [5, p 293, X.7], and since (|A − B|2rx, x) � ||x||2(1−r)(|A − B|2x, x)r for
all A, B ∈ B(H) , x ∈ H and 0 � r � 1 by the Hölder-McCarthy inequality [22], it
follows that

|||T∗|pTqx|| � ε2pf 1 + εf 2 + |||T|pTqx||,
where f 1 and f 2 are (finite valued) functions of ε and (powers of) ||T|| and ||x|| . �
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