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STABILITY OF QUADRATIC PROJECTION METHODS

LYONELL BOULTON AND MICHAEL STRAUSS

(communicated by Leiba Rodman)

Abstract. We discuss stability properties of the method studied recently in [7] and [2], for
computing eigenvalues in gaps of the essential spectrum of self-adjoint operators.

1. Introduction

1.1. Spectral Pollution in the Galerkin method

Let A be a self-adjoint operator acting on an infinite dimensional Hilbert space H ,
with a dense domain Dom(A) . The spectrum of A , Spec(A) , may be expressed as the
union of the discrete spectrum consisting of all isolated eigenvalues of finite multiplicity,
Specdisc(A) , and the essential spectrum, where Specess(A) := Spec(A)\Specdisc(A) . In
most standard situations the essential spectrum can be found analytically, but points in
Specdisc(A) are usually estimated by numerical procedures.

The estimation of Specdisc(A) is often performed through subspaces L ⊂ Dom(A)
and corresponding truncations of A . Standard numerical techniques, such as the finite
element method, aim at solving Galerkin approximate problems posed in weak form:

(P)
find 0 �= u∈L and λ ∈R such that
〈Au, v〉 = λ 〈 u, v〉 ∀v ∈ L

where L is finite dimensional.
Backed by the Rayleigh-Ritz variational principle, when applicable, the Galerkin

method represents a powerful tool in the analysis of spectral properties of linear oper-
ators. However, the Galerkin method is not foolproof, in general, the solutions of (P)
might fail to provide reliable information about the location of Spec(A) (see [3], [4],
[7], [8], [9]).

The drawbacks in the Galerkin method are due in part to the so called spectral
pollution phenomenon which we now describe. Let Ln ⊂ Dom(A) be a sequence of
subspaces approaching H , as n → ∞ (e.g. satisfying (3) below with p = 0, 1 only).
Suppose we found 0 �= un ∈ Ln and λn ∈ R solutions of (P) with L = Ln , satisfying
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λn → μ and ‖un‖−1un → w ∈ Dom(A) in the weak topology. By the approximating
property of Ln , we may obtain

〈Aw − μw, v〉 = 0 ∀v ∈ Dom(A),

which appears to suggest that μ is in Spec(A) . Unfortunately, the latter conclusion
is not ensured in general. Without further information about the structure of A (e.g.
compactness properties), w might be 0 ∈ Dom(A) , so convergent solutions of the
approximate problem might produce “polluted” sequences λn → μ �∈ Spec(A) .

The emergence of spurious eigenvalues in gaps of Specess(A) represents a serious
difficulty in applications such as elasticity theory and solid state physics (see [3] and
[9]), as there is no universal recipe to detect or prevent them for a given operator A and
sequence of approximate subspaces Ln .

1.2. Pollution-free strategies and quadratic methods

Spectral pollution is a consequence of the fact that in (P) we are truncating simul-
taneously both u and v . Indeed, let Π be the orthogonal projection onto L and

F̂L(x) := min
0�=v∈L

‖Π(x − A)v‖
‖v‖ .

Then λ̂ ∈ R satisfies (P) if, and only if, F̂L(λ̂ ) = 0 . That is to say, there exists û ∈ L
such that (λ̂ − A)û ⊥ L . As ‖(λ̂ − A)û‖/‖û‖ is not guaranteed to be small, we have
no indication whether λ̂ is close to Spec(A) or not.

This argument suggests that the correct quantity to look at is

FL(x) := min
0�=v∈L

‖(x − A)v‖
‖v‖ .

As

FL(x) � inf
u∈Dom(A)

‖(x − A)u‖
‖u‖ = ‖(x − A)−1‖−1 = dist [x, Spec(A)],

FL(x) can be close to 0 only when x is close to a point in the spectrum of A .
In [8], Davies and Plum considered a pollution-free strategy for finding Spec(A)

based on computing the profile of FL(x) for x ∈ R . If L ⊂ Dom(A2) ,

FL(x)2 = min
0�=v∈L

〈Π(x − A)2v, v〉
‖v‖2

= ‖[Π(x − A)2 �L]−1‖−1

= min
0�=v∈L

‖Π(x − A)2v‖
‖v‖ =: GL(x).

(1)

Therefore estimating FL(x) reduces to computing eigenvalues of self-adjoint matrices
depending on the parameter x ∈ R .

The approach developed in [8] relies heavily on being able to find accurately a
matrix representation for Π(x − A)2 �L in terms of an orthonormal basis of L . This
is a drawback, for instance, if L is given by the finite element method, where an
orthonormalisation of the basis will be numerically expensive.
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An alternative pollution-free method which is independent of the matrix represen-
tation of Π(x − A)2 �L is also available and it may be obtained by considering the
zeros of the function GL(z) for z ∈ C . Typically GL(z) and F2

L(z) only coincide
at z ∈ R . The (2 dimL) zeros of the polynomial det

(
Π(z − A)2 �L)

are the zeros
of GL(z) and, on the other hand, FL(z) �= 0 unless z is an eigenvalue of A , with
corresponding eigenvector u ∈ L , a very unlikely situation. It is remarkable, however,
that the non-real zeros of GL(z) also provide reliable information about the location of
Spec(A) .

This alternative procedure has been recently discussed in [7], [1] and [2], and it can
be traced back to [4] and [10]. A central role is played by the problem

(Q) find ζ ∈C such that ∃u ∈ L with
〈Au, Av〉 − 2ζ〈Au, v〉 + ζ2〈 u, v〉 = 0, ∀v ∈ L.

It is readily seen that GL(ζ) = 0 if, and only if, ζ is a solution of (Q). The philosophy
of the method is to regard (Q), in place of (P), as an approximate spectral problem for
operator A .

The following universal non-pollution result justifies favouring (Q) over (P) (see
[7, Theorem 2.6] or Theorem 3 below): if ζ is a solution of (Q), then

dist[Re ζ , Spec(A)] � |Im ζ |. (2)

That is to say, ζ can be close to R , only when it is also close to the spectrum of A .

Problem (Q) gives rise to a matrix spectral problem quadratic in the spectral
parameter. This added complication balances out with the reliability of the method
expressed in the above result.

Now, will a solution of (Q) ever be close to R ? As for the Galerkin method, in gen-
eral, additional conditions on a sequence of subspaces Ln are required for convergence.
A precise statement reads as follows, see [2] or Theorem 5 below. Let λ ∈ Specdisc(A)
and Πn be the orthogonal projection onto Ln ⊂ Dom(A2) . If

‖ΠnA
pΠnu − λ pu‖ → 0,

∀p = 0, 1, 2,
∀u ∈ Dom(A) : Au = λu,

(3)

then there exists ζn ∈ C satisfying (Q) with ζ = ζn and L = Ln , such that |ζn−λ | →
0. The above hypothesis is fulfilled immediately, for instance, if A is bounded and
Πnv → v for all v ∈ H .

The combination of these two results appears to provide a general pollution-free
procedure for finding discrete eigenvalues of self-adjoint operators. Although this might
seem too optimistic at the present moment, one of the advantages of this method lies
in the fact that it is applicable without any special restriction upon the structure of
Spec(A) . Moreover, the requirements on Ln are analogous to those needed in the
Galerkin method.
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1.3. Stability of Quadratic Projection Methods

On the downside, here we are confronted with a more difficult problem to solve. In
general, the finite-dimensional eigenvalue problem associated to (Q) is non-Hermitian.
Accuracy, as well as stability of the method becomes a delicate matter. The main goal
of the present note is to discuss how non-pollution and convergence of the method are
affected, when the coefficients of problem (Q) are known only approximately.

In Section 2. we will show that the non-pollution property remains stable in a sense
which will be specified below. In Section 3. we will discuss stability of approximation.
Note that a consistent formulation of (Q) only requires Ln ⊂ Dom(A) , see Remark 4.
Under a suitable hypothesis on the subspaces Ln , our Theorem 5 extends the analogous
result of [2] by allowing Ln ∩ [Dom(A) \Dom(A2)] �= ∅ . In the final section we report
on various numerical experiments performed on a simple example.

2. Pollution-free Stability

We devote this section to showing that, given error bounds in the computation
of the coefficients of problem (Q), it is possible to control errors in the pollution-free
estimation of Spec(A) by the quadratic method described in Section 1.2.

Let us begin by fixing some notation. Below Ln is an n -dimensional subspace
of Dom(A) with basis {e1, . . . , en} . This basis will always be normalised, ‖ej‖ = 1
for all j = 1, . . . , n . When sufficiently clear from the context, we will suppress the
sub-index and write L ≡ Ln .

For any u ∈ L , u = u1e1 + · · ·+ unen, from which we define the following norm
on L ,

‖u‖0 :=
(|u1|2 + · · · + |un|2

) 1
2 .

Since L is a finite dimensional space, there exists β > 0 , such that

‖u‖ = 〈 u, u〉 1
2 � β‖u‖0 ∀u ∈ L. (4)

If {e1, . . . , en} is an orthonormal basis, then ‖·‖ = ‖·‖0 . However when the basis
is far from being orthonormal, β will be small. We will occasionally write u =
(u1, . . . , un) ∈ Cn .

Let matrices A0 , A1 and A2 in Cn×n be given entrywise by

[A0]jk = 〈Aej, Aek〉 , [A1]jk = 〈Aej, ek〉 , [A2]jk = 〈 ej, ek〉 . (5)

Define the matrix polynomial M(z) ∈ Cn×n as

M(z) := A0 − 2zA1 + z2A2, z ∈ C. (6)

Then ζ ∈ C is a solution of (Q) if, and only if, det[M(ζ)] = 0 .
The stability results we establish below give a positive answer to the following

question. Suppose we are only able to estimate the matrices Ap by Ãp and the norm of
the error ‖Ap − Ãp‖ � εp , p = 0, 1, 2 . Can we recover information about the spectrum
of A from the approximate problem

( Q̃ ) find ζ ∈C : det[Ã0 − 2ζ Ã1 + ζ2Ã2] = 0
with accuracy possibly depending upon εp ?



STABILITY OF QUADRATIC PROJECTION METHODS 221

The following preliminary result will be needed.

LEMMA 1. For z ∈ C and δ > 0 , let

J = [Re z − |Im z| − δ, Re z + |Im z| + δ ],

Ω =
{
(x − z)2 : x ∈ R\J}.

Then,
inf
υ∈Ω

Re υ = 2δ |Im z| + δ 2. (7)

Proof. Let z = a + ib , a, b ∈ R , then for any υ ∈ Ω we have

υ = (x − a)2 − b2 − 2b(x − a)i

for some x ∈ R\J . It is clear that Re υ > 0 and moreover

inf
υ∈Ω

Re υ = inf
x∈R\J

(x − a)2 − b2

= (|b| + δ)2 − b2

= 2δ |b|+ δ 2

verifying (7). �

THEOREM 2. Let A be a self-adjoint operator acting on a Hilbert space H , and
L be an n -dimensional subspace of Dom(A) . Let B be a singular n × n matrix. For
any z ∈ C , let M(z) and β be as in (6) and (4). Let αz ∈ R with αz � ‖M(z)−B‖Cn .
If δ > 0 is such that (δ 2 + 2δ |Im z|)β2 > αz , then

Spec(A) ∩ [Re z − |Im z| − δ, Re z + |Im z| + δ ] �= ∅. (8)

Proof. Let δ > 0 be as in the hypothesis and suppose the intersection (8) is empty.
Using the spectral theorem and (7), we have for all u ∈ L

Re (uTM(z)u) = Re
n∑

jk=1

〈 (A − z)ej, (A − z)ek〉 ukuj

= Re
n∑

jk=1

〈 (A − z)ujej, (A − z)ukek〉 = Re 〈 (A − z)u, (A − z)u〉

=
∫

R

Re (λ − z)2d〈Eλu, u〉 � (2δ |Im z| + δ 2)‖u‖2

� (2δ |Im z| + δ 2)β2‖u‖2
0 = (2δ |Im z| + δ 2)β2‖u‖2

Cn ,

where Eλ is the spectral measure associated to A . It then follows from the Schwarz
inequality that for any u ∈ Cn

‖M(z)u‖Cn � (2δ |Im z| + δ 2)β2‖u‖Cn ,

so that the operator M(z) : Cn → Cn is invertible and

‖M(z)−1‖Cn �
(
(2δ |Im z| + δ 2)β2

)−1
< α−1

z .
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In particular ‖M(z)−1‖−1
Cn > ‖M(z)−B‖Cn , fromwhich it follows that B is not singular.

The result follows from the obtained contradiction. �

The next theorem is the main result of this section and it is an improvement on [7,
Theorem 2.6].

THEOREM 3. Let A be a self-adjoint operator acting on a Hilbert space H , and
L be an n -dimensional subspace of Dom(A) . Define A0, A1 and A2 as in (5). Let Ãp

be n × n matrices, such that for εp � 0

‖Ap − Ãp‖Cn � εp, p = 0, 1, 2.

If the matrix Ã0 − 2ζ Ã1 + ζ2Ã2 is singular for some ζ ∈ C , then

Spec(A) ∩ [Re ζ − δ̃ , Re ζ + δ̃ ] �= ∅ (9)

for

δ̃ =
√
|Im ζ |2 + β−2(|ζ |2ε2 + 2|ζ |ε1 + ε0).

Proof. With the notation of Theorem 2, take B = Ã0 − 2ζ Ã1 + ζ2Ã2 . Since

‖M(ζ) − B‖Cn � (|ζ |2ε2 + 2|ζ |ε1 + ε0),

(9) follows from Theorem 2. �

In particular, under the hypothesis above,

dist[Re ζ , Spec(A)] � |Im ζ | + β−1ε (10)

with ε =
√|ζ |2ε2 + 2|ζ |ε1 + ε0 . If the basis {e1, . . . , en} is orthonormal, then (9)

and (10) hold with β = 1 . Note that the case ε0 = ε1 = ε2 = 0 corresponds to [7,
Theorem 2.6], see (2).

3. Stability of Convergence in the Quadratic Method

A consistent formulation of (Q) only requires L ⊂ Dom(A) . However, the
available approximation results for the quadratic method (cf. [1] and [2]) impose the
hypothesis L ⊂ Dom(A2) . In this section we show that, if Ln ⊂ Dom(A) approach
reasonably well the eigenspace associated to an eigenvalue λ ∈ Specdisc(A) , then
solutions of (Q) will converge to λ in the large n limit, and the process remains stable
under perturbation of the matrix coefficients of the polynomial M(z) .

REMARK 4. Allowing the possibility of test spaces L� Dom(A2) is only relevant
when A is unbounded. If A is a differential operator of order 2m and the trial
spaces are constructed using the finite element method, L ⊂ Dom(A2) requires C4m−1

conforming elements, while L ⊂ Dom(A) only requires C2m−1 conforming elements.
The performance of the interpolation algorithm in the finite element method is usually
compromised as m increases.
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Below we highlight explicitly the dependency on n of approximate subspaces and
operators, so we denote matrices M(z) and Ap , corresponding to Ln , by M(n)(z) and

A(n)
p , respectively. We also assume throughout this section that the basis {e1, . . . , en}

of Ln is orthonormal. In general we do not assume that Ln ⊆ Lm whenever n < m .
Strictly speaking we should denote the basis functions of Ln by {e(n)

j } . However we
suppress this notation as no confusion shall arise.

For u ∈ Dom(A) , the projection of u onto Ln is then given by

Πnu =
n∑

k=1

ukek.

Since {e1, . . . , en} is orthonormal, we can isometrically identify Ln with Cn .
Our key result assumes the following hypothesis on the sequence Ln :

(H)
∀p, q = 0, 1, and ∀u ∈ Dom(A) : Au = λu,
‖∑n

j=1〈ApΠnu, Aqej〉 ej − λ p+qu‖ → 0, as n → ∞.

Whenever Ln ⊂ Dom(A2) , (H) reduces to (3). Furthermore, if A is bounded and Πn

converges strongly to the identity, then (H) holds true for all λ ∈ Specdisc(A) .
The following result is an improvement upon [2, Theorem 2.2].

THEOREM 5. Let A be a self-adjoint operator on a Hilbert space. Suppose that
the sequence of approximate subspaces Ln ⊂ Dom(A) satisfy (H). Let λ ∈ Specdisc(A)
and let d := dist[λ , Spec(A) \ {λ}] . Given 0 < δ < d/4 , there always exist
N, ε0, ε1, ε2 > 0 ensuring the following. If n > N and the matrices Ãp ∈ Cn×n satisfy

‖Ãp − A(n)
p ‖ < εp, p = 0, 1, 2,

then
(a) we can always find ζ ∈ C with det[Ã0 − 2ζ Ã1 + ζ2Ã2] = 0 and |ζ − λ | < δ ,
(b) the set {μ ∈ C : det[Ã0 − 2μÃ1 + μ2Ã2] = 0} does not intersect the annulus

{w ∈ C : δ < |w − λ | � d/4} .

The proof of this result will be given at the end of this section. It will be a conse-
quence of various technical lemmas, in particular, suitable extensions of [2, Lemmas 5.1
and 5.3] and various regularity properties of GL(z) .

We begin with the rigorous definition of the right hand side of (1) in the case
L ⊂ Dom(A) . For z ∈ C , let

GL(z) := min
0�=v∈Cn

‖M(z)v‖Cn

‖v‖Cn
.

If L ⊂ Dom(A2) , then GL(z) coincides with the right hand side of (1). Below we will
write Gn(z) ≡ GLn(z) .

Clearly GL(ζ) = 0 if, and only if, det M(ζ) = 0 ; so the solutions of problem
(Q) are completely characterised as the zeros of GL(z) . It is readily seen that:

GL(z) = ‖[M(z)]−1‖−1 = least singular value of M(z). (11)
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In fact GL(z)−1 is a continuous subharmonic function in the region {z ∈ C : detM(z) �=
0} , with singularities at the zeros of det[M(z)] (see e.g. [4] or [2, Lemma 4.1]). This
property will play a central role below.

The statement of Theorem 5 will be obtained as a consequence of the fact that
GL(z) is small if, and only if, for small enough εp > 0 , z = ζ is a solution of an
approximate problem ( Q̃ ). The following notion, which has recently become standard,
will simplify considerably most of our arguments. Let

ΛL(ε0, ε1, ε2) := {z ∈ C : GL(z) − (ε0 + 2ε1|z| + ε2|z|2) � 0}.
This set is called the structured pseudospectrum of the matrix polynomial M(z) , see
[5].

The proof of the following fundamental property of the pseudospectrum is a direct
consequence of (11) and [5, Lemma 2.1]. It clearly suggests how to verify the validity
of (a) and (b) of Theorem 5.

LEMMA 6. The complex number ζ ∈ ΛL(ε0, ε1, ε2) if, and only if, det[Ã0 −
2ζ Ã1 + ζ2Ã2] = 0 for some Ãp ∈ Cn×n satisfying ‖Ãp − Ap‖ � εp, p = 0, 1, 2.

Furthermore, cf. [6, Theorem 2.3],

LEMMA 7. Let Ω be a connected component of ΛL(ε0, ε1, ε2) , such that
detM(μ) = 0 for some μ ∈ Ω . If ‖Ãp − Ap‖ � εp , there always exist ζ ∈ Ω
such that det[Ã0 − 2ζ Ã1 + ζ2Ã2] = 0 .

We now establish two key relations between the large n limit of Gn(z) and
dist[z, Spec(A)]2 in a neighbourhood of the discrete spectrum of A .

LEMMA 8. Let λ ∈ SpecdiscA . If the sequence of approximate subspaces
Ln ⊂ Dom(A) satisfy (H), then

lim
n→∞Gn(λ ) = 0.

Proof. Let u ∈ Dom(A)\{0} be such that Au = λu . Consider the vector
u = (〈 e1, u〉 , . . . , 〈 en, u〉 ) . We have

[M(n)(λ )u]i =
n∑

j=1

[M(λ )]ij〈 ej, u〉

=
n∑

j=1

〈Aei, A〈 u, ej〉 ej〉 − 2λ 〈Aei, 〈 u, ej〉 ej〉 + λ 2〈 ei, 〈 u, ej〉 ej〉

= 〈Aei, AΠnu〉 − 2λ 〈Aei,Πnu〉 + λ 2〈 ei,Πnu〉 ,

so that

‖M(n)(λ )u‖2
Cn =

n∑
j=1

|〈AΠnu, Aej〉 − 2λ 〈Πnu, Aej〉 + λ 2〈Πnu, ej〉 |2

= ‖
n∑

j=1

〈AΠnu, Aej〉 ej − 2λ 〈Πnu, Aej〉 ej + λ 2〈Πnu, ej〉 ej‖2.
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The right hand side converges to zero by virtue of (H). Also ‖u‖Cn → ‖u‖ �= 0 as
n → ∞ . Now, fix ε > 0 . Then, for all n large enough,

Gn(λ ) � ‖M(n) (λ )u‖Cn
‖u‖Cn

� ε.

As Gn(z) is non-negative and ε is arbitrary the lemma follows. �

In general it is possible to construct exampleswhere limn→∞ Gn(z) = 0 for certain
z �∈ R , [1]. However, this is not possible for z in the vicinity of discrete eigenvalues of
A .

LEMMA 9. Let λ ∈ Specdisc(A) and let d > 0 be as in Theorem5. Assume that the
sequence of approximate subspaces Ln ⊂ Dom(A) satisfy (H). For all 0 < δ < d/4 ,
there exist a constant 0 < s � 1 such that

lim inf
n→∞ Gn(z) � sδ 2 for all δ � |z − λ | � d/4. (12)

Proof. If Ln ⊂ Dom(A2) , the result has been established in [2, Lemma 5.3]. We
treat the more general case by considering approximate subspace L̃n ⊂ Dom(A2) with
orthonormal bases sufficiently close to Ln in the sense specified by (i)-(iii) below.

As a first step, we recall the following standard result. For any v ∈ Dom(A) , there
exists a sequence vn ∈ Dom(A2) such that vn → v and Avn → Av . That is to say,
Dom(A2) is a core (in the operator sense) for A .

Let
cn = max

{
1, max

j,k=1...n; p,q=0,1
{|〈Apej, A

qek〉 |}
}
.

Then it is always possible to find a set {ẽ1, . . . , ẽn} ⊂ Dom(A2) such that
(i) {ẽ1, . . . , ẽn} is orthonormal,
(ii) ‖ej − ẽj‖ � c−1

n e−n ,
(iii) |〈Apej, Aqek〉 − 〈Apẽj, Aqẽk〉 | � e−n ,

for j, k = 1, . . . , n and p, q = 0, 1 . We may find ẽj by applying the Gram-Schmidt
orthogonalisation procedure to vectors of Dom(A2) sufficiently close to the ej .

Let L̃n := Span {ẽ1, . . . , ẽn} ⊂ Dom(A2) . In this proof, the symbol ∼ on top of
matrices and operators denotes that they are constructed using L = L̃n . Note that (iii)
ensures the existence of complex numbers wpq

jk such that |wpq
jk | � 1 and

〈Apẽj, A
qẽk〉 = 〈Apej, A

qek〉 + wpq
jk e−n.

Property (iii) yields

|[M̃(n)(z) − M(n)(z)]jk| = |2z[Ã(n)
1 − A(n)

1 ]jk + [Ã(n)
0 − A(n)

0 ]jk|
� 2|z||〈Aẽj, ẽk〉 − 〈Aej, ek〉 | + |〈Aẽj, Aẽk〉 − 〈Aej, Aek〉 |
� (2|z| + 1)e−n,

Thus,
‖M̃(n)(z) − M(n)(z)‖ � (2|z| + 1)ne−n. (13)
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Let u ∈ Dom(A) be such that Au = λu . We next show that (ii) and the fact that
(H) holds for Ln , ensures that (H) also holds for L̃n . Indeed,

‖
n∑

k=1

〈ApΠ̃nu, Aqẽk〉 ẽk − λ p+qu‖

� ‖
n∑

k=1

〈ApΠ̃nu, Aqẽk〉 ẽk − 〈ApΠnu, Aqek〉 ek‖

+‖
n∑

k=1

〈ApΠnu, Aqek〉 ek − λ p+qu‖

� ‖
n∑

k=1

〈ApΠ̃nu, Aqẽk〉 ẽk − 〈ApΠ̃nu, Aqẽk〉 ek‖

+‖
n∑

k=1

〈ApΠ̃nu, Aqẽk〉 ek − 〈ApΠnu, Aqek〉 ek‖

+‖
n∑

k=1

〈ApΠnu, Aqek〉 ek − λ p+qu‖ = T1 + T2 + T3.

Since Ln satisfies condition (H), T3 → 0 . We must show that the first two terms also
converge to zero. Consider the first term,

T1 = ‖
n∑

jk=1

〈 u, ẽj〉 〈Apẽj, A
qẽk〉 (ẽk − ek)‖

� ‖u‖
n∑

jk=1

|〈Apẽj, A
qẽk〉 |‖ẽk − ek‖

= ‖u‖
n∑

jk=1

|(〈Apej, A
qek〉 + wpq

jk e−n)|‖ẽk − ek‖

� ‖u‖ne−n
n∑

k=1

‖ẽk − ek‖ + ‖u‖
n∑

jk=1

|〈Apej, A
qek〉 |‖ẽk − ek‖.

Using (ii) it is clear that T1 → 0 . For the second term we have,

T2 = ‖
n∑

jk=1

〈 u, ẽj〉 〈Apẽj, A
qẽk〉 ek − 〈 u, ej〉 〈Apej, A

qek〉 ek‖

= ‖
n∑

jk=1

〈 u, 〈Apẽj, Aqẽk〉 ẽj − 〈Apej, Aqek〉 ej〉 ek‖

� ‖u‖
n∑

jk=1

‖〈Apẽj, A
qẽk〉 ẽj − 〈Apej, A

qek〉 ej‖
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= ‖u‖
n∑

jk=1

‖(〈Apej, A
qek〉 + wpq

jk e−n)ẽj − 〈Apej, A
qek〉 ej‖

� ‖u‖n2e−n + ‖u‖
n∑

jk=1

|〈Apej, A
qek〉 |‖ẽj − ej‖.

Again, using (ii) it is clear that T2 → 0 . This ensures that L̃n also satisfies (H) so (12)
is valid for G̃n(z) .

The proof of (12) follows. Fix ε > 0 . Let vn ∈ Cn such that ‖vn‖ = 1 and

‖M(n)(z)vn‖ � Gn(z) + ε.

Then, by virtue of (13),

G̃n(z) � ‖M̃(n)(z)vn‖
� ‖[M̃(n)(z) − M(n)(z)]vn‖ + ‖M(n)(z)vn‖
� (2|z| + 1)ne−n + Gn(z) + ε.

As this happens for all ε > 0 , the fact that G̃n(z) satisfies (12) implies that also Gn(z)
satisfies this inequality. �

Proof of Theorem 5. Let 0 < s � 1 be as in Lemma 9 and d be as in the
hypothesis of the theorem. By virtue of Lemmas 8 and 9, there exists N > 0 such that,
Gn(λ ) � sδ 2 and

Gn(z) > sδ 2 whenever δ < |z − λ | � d/4, (14)

for all n > N . The subharmonicity of Gn(z)−1 ensures that the only local minima of
Gn(z) are those points where the function vanishes. Thus, for all n > N , there always
exists ζn ∈ C satisfying

|ζn − λ | < δ and Gn(ζn) = 0. (15)

Let ε0, ε1, ε2 > 0 be small enough such that

ε0 + 2ε1|z| + ε2|z|2 < sδ 2, |z − λ | < d/4.

Suppose that n > N . Then, by (14),

Gn(z) − (ε0 + 2ε1|z| + ε2|z|2) > 0

for all δ < |z− λ | � d/4 , so ΛLn(ε0, ε1, ε2)∩ {δ < |z− λ | � d/4} = ∅ . This, along
with Lemma 6, ensures (b). On the other hand, by virtue of (15), ΛLn(ε0, ε1, ε2) ∩
{|z − λ | < δ} �= ∅ . Thus Lemma 7 yield (a). �
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4. Case Study

Finite rank perturbations of multiplication operators have been considered previ-
ously in connection with spectral pollution (see [8], [7] and [2]) due to their simple
structure. In this final section we report on various numerical experiments we have
performed on a model operator of this type.

Let ek(x) = (2π)−
1
2 eikx and

a(x) =
{

0 for − π � x < 0,
1 for 0 � x < π.

In this section we assume that

H = L2[−π, π],
L2n+1 = span {e−n(x), . . . , en(x)} and

Aφ(x) = a(x)φ(x) + 〈 φ, e0〉 e0(x), φ ∈ H.

Clearly A is bounded and self-adjoint in H . Moreover, the spectrum of A is found
explicitly. Since A is a rank one perturbation of the multiplication operator by the
symbol a , Weyl’s Theorem ensures that Specess(A) = Range(a) = {0, 1} . On the
other hand, the isolated eigenvalues of finite multiplicity of A are the solutions of
〈 (λ − a)−1e0, e0〉 = 1 , [4]. A straightforward calculation reveals the two solutions
λ± = 1 ±√

2/2 , which comprise the discrete spectrum of A . The eigenvalue λ− is
inside the gap (0, 1) of the essential spectrum.

As the symbol a(x) is discontinuous, the Fourier basis {ek} is not a good choice
for approximating λ− using the Galerkin method. Indeed, the solutions of (P) pollute
the whole interval [0, 1] as the dimension of L2n+1 increases. Let us test the quadratic
method described in the preceding sections in this very simple model.

Since A is bounded and Π2n+1φ → φ for all φ ∈ H , condition (H) of Section 3.
is satisfied. Thus, by virtue of Theorem 5, both discrete eigenvalues are approached by
solutions of (Q) as n → ∞ , free from spectral pollution according to Theorem 3.

All the calculation described in this section were carried out using the computer
package MATLAB. Fully functional m-codes are available at the web page [11].

We compute the exact solutions of (Q), by finding the ζ ∈ C such that det M(2n+1)(ζ)
= 0 . The matrix coefficients A(2n+1)

p may be found explicitly using (5). They are sparse
and Hermitian with entries either purely real or purely imaginary. The errors in solving
(Q) are negligible for n of reasonable size (< 1000 ).

In order to test the results established in the previous sections, we force large
errors in the matrix entries, and compute the corresponding “perturbed” solution of the
problem ( Q̃ ). For simplicity, we fix ε0 = ε1 = ε2 = ε .

Let
[Ãp]jk = [Ap]jk +

ε
2n + 1

α(p)
jk (16)

where α(p)
jk are random variables sampled from the unit disk {|z| � 1} with additional

constraints specified below. Then
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‖(Ap − Ãp)u‖2 =
2n+1∑
j=1

∣∣∣∣∣
2n+1∑
k=1

ε
2n + 1

α(p)
jk uk

∣∣∣∣∣
2

� ε2

(2n + 1)2

2n+1∑
k=1

|uk|2
2n+1∑
jk=1

|α(p)
jk |2

� ε2

(2n + 1)2

2n+1∑
k=1

|uk|2
2n+1∑
jk=1

1 � ε2
2n+1∑
k=1

|uk|2,

so ‖Ap − Ãp‖ � ε . Moreover this bound is sharp. Indeed, the matrix T such that
[T]jk = ε

2n+1 for all 1 � j, k � 2n + 1 , satisfies

‖T‖2 = ‖T∗T‖ = ε‖T‖.
We consider two types of restrictions on the random variable α(p)

jk . On the one
hand, Theorem3 covers the general situation ofmoving all entries of Ap along randomly
chosen directions in the complex plane. Thus, we perform unstructured perturbations
by allowing all α(p)

jk �= 0 . On the other hand, however, in order to reproduce the effect
made by rounding errors in the estimation of the entries, we performnon-zero-Hermitian
perturbations by imposing the condition:

α(p)
jk =

{
0 if [Ap]jk = 0,

α(p)
kj �= 0 if [Ap]jk �= 0.

In Figure 1. we depict the exact solutions of (Q) for n = 50 . According to (2),
the points which are in the vicinity of the real axis are necessarily close to the spectrum.

0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 1. Exact solutions to (Q) for n = 50 .
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Figure 2., on the other hand, depicts the solutions of ( Q̃ ) corresponding to 100
different random perturbations. Each of the graphs were constructed by prescribing a
different constraint on the random variables. Here n = 50 and ε = 10−1 . From the
perturbed solutions one can identify Spec(A) less accurately but, once again, without
pollution by virtue of Theorem 3. The correction δ of Theorem 3, will depend on ζ
and ε , but notably not on n . Furthermore, Theorem 5 ensures that the clouds observed
in Figure 2. will cluster near to each of the exact solutions of (Q) as ε → 0 .
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Figure 2. Top: solutions to (Q̃) for 100 unstructured random perturbations. Bottom: solutions
to (Q̃) for 100 non-zero-Hermitian random perturbations. Here ε = 10−1 .
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Figures 3.-4. show the outcome of running Monte Carlo simulations in this model.
We fix again ε = 10−1 . These pictures have been constructed in the following manner.
For each fixed n , we have found ζ−

n , the closest point to the eigenvalue λ− such
that detM(2n+1)(ζ−

n ) = 0 . Then we have performed 20 constrained perturbations and
averaged the solutions of (Q̃) which are closest to ζ−

n . We know that solutions of
the approximate problems close to ζ−

n always exist, as a consequence of Theorem 5.
Denote these averages by ζu,−

n and ζ s,−
n for the unstructured and non-zero-Hermitian

cases respectively. In Figure 3. we depict |Im ζ−
n | , |Im ζu,−

n | and |Im ζ s,−
n | for

n = 5 : 10 : 100 . Similarly in Figure 4. we depict |λ−−Re ζ−
n | , |λ−−Re ζu,−

n | and
|λ− − Re ζ s,−

n | .

Figure 3. Error predicted by Theorem 3 in the approximation of λ− . Here we depict |Im ζ−
n |

(unperturbed), |Im ζu,−
n | and |Im ζ s,−

n | for n = 5 : 10 : 100 . We average the two
perturbed solutions of (Q̃) over a sample of 20 problems with ε = 10−1 . The scaling is

log-log and the horizontal axis shows 2n + 1 .

Figure 3. provides clear numerical evidence that the convergence of the quadratic
method applied to this simple model is not lost even when the perturbations are large in
modulus. Figures 4. suggests that structured perturbations are considerably superior to
the unstructured ones, in the test |λ− − Re ζ−

n | .
By combining Figure 3. and Theorem 3, we immediately predict a rate of con-

vergence of |λ− − Re ζ−
n | = o(n−r) for r ≈ 1/2 . It is remarkable, however, that

Figure 4. strongly suggests an actual exponent of r ≈ 1 for this rate of convergence.
An explanation of this phenomenon is linked to the fact that λ− is an isolated point of
the spectrum, see [10, Section 2]. We will be reporting on this issue elsewhere.
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Figure 4. Actual error in the approximation of λ− using the real part of solutions of (Q) and
(Q̃) . Here we depict |λ− − Re ζ−

n | (unperturbed), |λ− − Re ζu,−
n | and |λ− − Re ζ s,−

n |
for n = 5 : 10 : 100 . We average the two perturbed solutions of (Q̃) over a sample of 20

problems with ε = 10−1 . The scaling is log-log and the horizontal axis shows 2n + 1 .
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