AbELIAN SELF-COMMUTATORS IN FINITE FACTORS

GABRIEL NAGY
(communicated by Hari Berkovici)

Abstract

An abelian self-commutator in a C^{*}-algebra \mathcal{A} is an element of the form $A=$ $X^{*} X-X X^{*}$, with $X \in \mathcal{A}$, such that $X^{*} X$ and $X X^{*}$ commute. It is shown that, given a finite AW*-factor \mathcal{A}, there exists another finite AW^{*}-factor \mathcal{M} of same type as \mathcal{A}, that contains \mathcal{A} as an AW^{*}-subfactor, such that any self-adjoint element $X \in \mathcal{M}$ of quasitrace zero is an abelian self-commutator in \mathcal{M}.

Introduction

According to the Murray-von Neumann classification, finite von Neumann factors are either of type $\mathrm{I}_{\text {fin }}$, or of type II_{1}. For the non-expert, the easiest way to understand this classification is by accepting the famous result of Murray and von Neumann (see [6]) which states that every finite von Neumann factor \mathcal{M} possesses a unique statetrace $\tau_{\mathcal{M}}$. Upon accepting this result, the type of \mathcal{M} is decided by so-called dimension range: $\mathcal{D}_{\mathcal{M}}=\left\{\tau_{\mathcal{M}}(P): P\right.$ projection in $\left.\mathcal{M}\right\}$ as follows. If $\mathcal{D}_{\mathcal{M}}$ is finite, then \mathcal{M} is of type $\mathrm{I}_{\text {fin }}$ (more explicitly, in this case $\mathcal{D}_{\mathcal{M}}=\left\{\frac{k}{n}: k=0,1, \ldots, n\right\}$ for some $n \in \mathbb{N}$, and $\mathcal{M} \simeq \operatorname{Mat}_{n}(\mathbb{C})$ - the algebra of $n \times n$ matrices). If $\mathcal{D}_{\mathcal{M}}$ is infinite, then \mathcal{M} is of type I_{1}, and in fact one has $\mathcal{D}_{\mathcal{M}}=[0,1]$. From this point of view, the factors of type II_{1} are the ones that are interesting, one reason being the fact that, although all factors of type I_{1} have the same dimension range, there are uncountably many non-isomorphic ones (by some celebrated results of McDuff of Connes).

In this paper we deal with the problem of characterizing the self-adjoint elements of trace zero, in terms of simpler ones. We wish to carry this investigation in a "Hilbert-space-free" framework, so instead of von Neumann factors, we are going to work within the category of AW*-algebras. Such objects were introduced in the 1950's by Kaplansky ([4]) in an attempt to formalize the theory of von Neumann algebras without any use of pre-duals. Recall that A unital C^{*}-algebra \mathcal{A} is called an $A W^{*}$-algebra, if for every non-empty set $\mathcal{X} \subset \mathcal{A}$, the left annihilator set $\mathbf{L}(\mathcal{X})=\{A \in \mathcal{A}: A X=0, \forall X \in \mathcal{X}\}$ is the principal right ideal generated by a projection $P \in \mathcal{A}$, that is, $\mathbf{L}(\mathcal{X})=\mathcal{A} P$.

Much of the theory - based on the geometry of projections - works for AW*algebras exactly as in the von Neumann case, and one can classify the finite AW*-factors into the types $\mathrm{I}_{\text {fin }}$ and I_{1}, exactly as above, but using the following alternative result:

Mathematics subject classification (2000): 46L35, 46L05.
Key words and phrases: Self-commutator, AW*-algebras, quasitrace.
any finite $A W^{*}$-factor \mathcal{A} possesses a unique normalized quasitrace $q_{\mathcal{A}}$. Recall that a quasitrace on a \mathbb{C}^{*}-algebra \mathfrak{A} is a map $q: \mathfrak{A} \rightarrow \mathbb{C}$ with the following properties:
(i) if $A, B \in \mathfrak{A}$ are self-adjoint, then $q(A+i B)=q(A)+i q(B)$;
(ii) $q\left(A A^{*}\right)=q\left(A^{*} A\right) \geqslant 0, \forall A \in \mathfrak{A}$;
(iii) q is linear on all abelian C^{*}-subalgebras of \mathfrak{A},
(iv) there is a map $q_{2}: \operatorname{Mat}_{2}(\mathcal{A}) \rightarrow \mathbb{C}$ with properties (i)-(iii), such that

$$
q_{2}\left(\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\right)=q(A), \quad \forall A \in \mathfrak{A}
$$

(The condition that q is normalized means that $q(I)=1$.)
With this terminology, the dimension range of a finite $\mathrm{AW} *$-factor is the set $\mathcal{D}_{\mathcal{A}}=$ $\left\{q_{\mathcal{A}}(P): P\right.$ projection in $\left.\mathcal{A}\right\}$, and the classification into the two types is exactly as above. As in the case of von Neumann factors, one can show that the AW*-factors of type $\mathrm{I}_{\text {fin }}$ are again the matrix algebras $\operatorname{Mat}_{n}(\mathbb{C}), n \in \mathbb{N}$. The type II_{1} case however is still mysterious. In fact, a longstanding problem in the theory of AW^{*}-algebras is the following:

KAPLANSKY's CONJECTURE. Every AW*-factor of type II_{1} is a von Neumann factor.

An equivalent formulation states that: if \mathcal{A} is an $A W^{*}$-factor of type II_{1}, then the quasitrace $q_{\mathcal{A}}$ is linear (so it is in fact a trace). It is well known (see [3] for example) that Kaplansky's Conjecture implies:

Quasitrace Conjecture. Quasitraces (on arbitrary C*-algebras) are traces.
A remarkable result of Haagerup ([3]) states that quasitraces on exact C^{*}-algebras are traces, so if \mathcal{A} is an AW^{*}-factor of type II_{1}, generated (as an $\mathrm{AW} *$-algebra) by an exact C^{*}-algebra, then \mathcal{A} is a von Neumann algebra.

It is straightforward that if q is a quasitrace on some C^{*}-algebra \mathfrak{A}, and $A \in \mathfrak{A}$ is some element that can be written as $A=X X^{*}-X^{*} X$ for some $X \in \mathfrak{A}$, such that $X X^{*}$ and $X^{*} X$ commute, then $q(A)=0$. In this paper we are going to take a closer look at such A 's, which will be referred to as abelian self-commutators.

Suppose now \mathcal{A} is a finite AW^{*}-factor, which is contained as an AW*-subalgebra in a finite AW^{*}-factor \mathcal{B}. Due to the uniqueness of the quasitrace, for $A \in \mathcal{A}$, one has the equivalence $q_{\mathcal{A}}(A)=0 \Leftrightarrow q_{\mathcal{B}}(A)=0$, so a sufficient condition for $q_{\mathcal{A}}(A)=0$ is that A is an abelian self-commutator in \mathcal{B}. In this paper we prove the converse, namely: If \mathcal{A} is a finite $A W^{*}$-factor, and $A \in \mathcal{A}$ is a self-adjoint element of quasitrace zero, then there exists a finite $A W^{*}$-factor \mathcal{M}, that contains \mathcal{A} as an $A W^{*}$-subfactor, such that A is an abelian self-commutator in \mathcal{M}. Moreover, \mathcal{M} can be chosen such that it is of same type as \mathcal{A}, and every self-adjoint element $X \in \mathcal{M}$ of quasitrace zero is an abelian self commutator in \mathcal{M}. Specifically, in the type $\mathrm{I}_{n}, \mathcal{M}$ is \mathcal{A} itself, and in the type II_{1} case, \mathcal{M} is an ultraproduct.

The paper is organized as follows. In Section 1 we introduce our notations, and we recall several standard results from the literature, and in Section 2 we prove the main results.

1. Prelimiaries

Notations. Let \mathcal{A} be a unital C^{*}-algebra.
A. We denote by $\mathcal{A}_{s a}$ the real linear space of self-adjoint elements. We denote by $\mathbf{U}(\mathcal{A})$ the group of unitaries in \mathcal{A}. We denote by $\mathbf{P}(\mathcal{A})$ the collection of projections in \mathcal{A}, that is, $\mathbf{P}(\mathcal{A})=\left\{P \in \mathcal{A}_{s a}: P=P^{2}\right\}$.
B. Two elements $A, B \in \mathcal{A}$ are said to be unitarily equivalent in \mathcal{A}, in which case we write $A \approx B$, if there exists $U \in \mathbf{U}(\mathcal{A})$ such that $B=U A U^{*}$.
C. Two elements $A, B \in \mathcal{A}$ are said to be orthogonal, in which case we write $A \perp B$, if: $A B=B A=A B^{*}=B^{*} A=0$. (Using the Fuglede-Putnam Theorem, in the case when one of the two is normal, the above condition reduces to: $A B=B A=0$. If both A and B are normal, one only needs $A B=0$.) A collection $\left(A_{j}\right)_{j \in J} \subset \mathcal{A}$ is said to be orthogonal, if $A_{i} \perp A_{j}, \forall i \neq j$.

Finite AW*-factors have several interesting features, contained in the following well-known result (stated without proof).

Proposition 1.1. Assume \mathcal{A} is a finite $A W^{*}$-factor.
A. For any element $X \in \mathcal{A}$, one has: $X X^{*} \approx X^{*} X$.
B. If $X_{1}, X_{2}, Y_{1}, Y_{2} \in \mathcal{A}$ are such that $X_{1} \approx X_{2}, Y_{1} \approx Y_{2}$, and $X_{k} \perp Y_{k}, k=1,2$, then $X_{1}+Y_{1} \approx X_{2}+Y_{2}$.

Definition. Let \mathcal{A} be a unital C^{*}-algebra. An element $A \in \mathcal{A}_{s a}$ is called an abelian self-commutator, if there exists $X \in \mathcal{A}$, such that

- $\left(X X^{*}\right)\left(X^{*} X\right)=\left(X^{*} X\right)\left(X X^{*}\right)$;
- $A=X X^{*}-X^{*} X$.

REMARK 1.1. It is obvious that if $A \in \mathcal{A}_{s a}$ is an abelian self-commutator, then $q(A)=0$, for any quasitrace q on \mathcal{A}.

Abelian self-commutators in finite AW^{*}-factors can be characterized as follows.
Proposition 1.2. Let \mathcal{A} be a finite $A W^{*}$-factor. For an element $A \in \mathcal{A}_{s a}$, the following are equivalent:
(i) A is an abelian self-commutator in \mathcal{A};
(ii) there exists $A_{1}, A_{2} \in \mathcal{A}_{s a}$ with:

- $A_{1} A_{2}=A_{2} A_{1}$;
- $A=A_{1}-A_{2}$;
- $A_{1} \approx A_{2}$.

Proof. The implication (i) \Rightarrow (ii) is trivial by Proposition 1.1.
Conversely, assume A_{1} and A_{2} are as in (ii), and let $U \in \mathbf{U}(\mathcal{A})$ be such that $U A_{1} U^{*}=A_{2}$. Choose a real number $t>0$, such that $A_{1}+t I \geqslant 0$ (for example $\left.t=\left\|A_{1}\right\|\right)$, and define the element $X=\left(A_{1}+t I\right)^{1 / 2} U^{*}$. Notice that $X X^{*}=A_{1}+t I$, and $X^{*} X=A_{2}+t I$, so $X X^{*}$ and $X^{*} X$ commute. Now we are done, since $X X^{*}-X^{*}=$ $A_{1}-A_{2}=A$.

NOTATION. In [3] Haagerup shows that, given a normalized quasitrace q on a unital C^{*}-algebra \mathcal{A}, the map $d_{q}: \mathcal{A} \times \mathcal{A} \rightarrow[0, \infty)$, given by

$$
d_{q}(X, Y)=q\left((X-Y)^{*}(X-Y)\right)^{\frac{1}{3}}, \quad \forall X, Y \in \mathcal{A}
$$

defines a metric. We refer to this metric as the Haagerup " $\frac{2}{3}$-metric" associated with q. Using the inequality $|q(X)| \leqslant 2\|X\|$, one also has the inequality

$$
\begin{equation*}
d_{q}(X, Y) \leqslant \sqrt[3]{2}\|X-Y\|^{\frac{2}{3}}, \quad \forall X, Y \in \mathcal{A} \tag{1}
\end{equation*}
$$

If \mathcal{A} is a finite AW^{*}-factor, we denote by $q_{\mathcal{A}}$ the (unique) normalized quasitrace on \mathcal{A}, and we denote by $d_{\mathcal{A}}$ the Haagerup " $\frac{2}{3}$-metric" associated with $q_{\mathcal{A}}$.

We now concentrate on some issues that deal with the problem of "enlarging" a finite AW -factor to a "nicer" one. Recall that, given an AW*-algebra \mathcal{B}, a subset $\mathcal{A} \subset \mathcal{B}$ is declared an $A W^{*}$-subalgebra of \mathcal{B}, if it has the following properties:
(i) \mathcal{A} is a C^{*}-subalgebra of \mathcal{B};
(ii) $\mathbf{s}(A) \in \mathcal{A}, \forall A \in \mathcal{A}_{s a}$;
(iii) if $\left(P_{i}\right)_{i \in I} \subset \mathbf{P}(\mathcal{A})$, then $\bigvee_{i \in I} P_{i} \in \mathcal{A}$.
(In condition (ii) the projection $\mathbf{s}(A)$ is the support of A in \mathcal{B}. In (iii) the supremum is computed in \mathcal{B}.) In this case it is pretty clear that \mathcal{A} is an AW^{*}-algebra on its own, with unit $I_{\mathcal{A}}=\bigvee_{A \in \mathcal{A}_{s a}} \mathbf{s}(A)$. Below we take a look at the converse statement, namely at the question whether a C^{*}-subalgebra \mathcal{A} of an AW^{*}-algebra \mathcal{A}, which is an AW^{*}-algebra on its own, is in fact an AW^{*}-subalgebra of \mathcal{B}. We are going to restrict ourselves with the factor case, and for this purpose we introduce the following terminology.

Definition. Let \mathcal{B} be an AW^{*}-factor. An AW^{*}-subalgebra $\mathcal{A} \subset \mathcal{B}$ is called an $A W^{*}$-subfactor of \mathcal{B}, if \mathcal{A} is a factor, and $\mathcal{A} \ni I$ - the unit in \mathcal{B}.

Proposition 1.3. Let \mathcal{A} and \mathcal{B} be finite $A W^{*}$-factors. If $\pi: \mathcal{A} \rightarrow \mathcal{B}$ be a unital (i.e. $\pi(I)=I) *$-homomorphism, then $\pi(\mathcal{A})$ is a $A W^{*}$-subfactor of \mathcal{B}.

Proof. Denote for simplicity $\pi(\mathcal{A})$ by \mathcal{M}. Since \mathcal{A} is simple, π is injective, so \mathcal{M} is $*$-isomorphic to \mathcal{A}. Among other things, this shows that \mathcal{M} is a factor, which contains the unit I of \mathcal{B}. We now proceed to check the two key conditions (ii) and (iii) that ensure that \mathcal{M} is an AW^{*}-subalgebra in \mathcal{B}.
(ii). Start with some element $M \in \mathcal{M}_{s a}$, written as $M=\pi(A)$, for some $A \in \mathcal{A}_{s a}$, and let us show that $\mathbf{s}(M)$ - the support of M in \mathcal{B} - in fact belongs to \mathcal{M}. This will be the result of the following:

CLAIM 1. One has the equality $\mathbf{s}(M)=\pi(\mathbf{s}(A))$, where $\mathbf{s}(A)$ denotes the support of A in \mathcal{A}.

Denote the projection $\pi(\mathbf{s}(A)) \in \mathbf{P}(\mathcal{M})$ by P. First of all, since $(I-\mathbf{s}(A)) A=0$ (in \mathcal{A}), we have $(I-P) M=0$ in \mathcal{B}, so $(I-P) \perp \mathbf{s}(M)$, i.e. $\mathbf{s}(M) \geqslant P$. Secondly, since $q_{\mathcal{B}} \circ \pi: \mathcal{A} \rightarrow \mathbb{C}$ is a quasitrace, we must have the equality

$$
\begin{equation*}
q_{\mathcal{B}} \circ \pi=q_{\mathcal{A}} \tag{2}
\end{equation*}
$$

In particular the projection P has dimension $D_{\mathcal{B}}(P)=D_{\mathcal{A}}(\mathbf{s}(A))$. We know however that for a self-adjoint element X in a finite AW^{*}-factor with quasitrace q, one has the equality $q(\mathbf{s}(X))=\mu^{X}(\mathbb{R} \backslash\{0\})$, where μ^{X} is the scalar spectral measure, defined implicitly (using Riesz' Theorem) by

$$
\int_{\mathbb{R}} f d \mu^{X}=q(f(X)), \quad \forall f \in C_{0}(\mathbb{R})
$$

So in our case we have the equalities

$$
\begin{align*}
D_{\mathcal{B}}(\mathbf{s}(M)) & =\mu_{\mathcal{B}}^{M}(\mathbb{R} \backslash\{0\}) \tag{3}\\
D_{\mathcal{B}}(P) & =D_{\mathcal{A}}(\mathbf{s}(A))=\mu_{\mathcal{A}}^{A}(\mathbb{R} \backslash\{0\}) \tag{4}
\end{align*}
$$

where the subscripts indicate the ambient AW^{*}-factor. Since π is a $*$-homomorphism, one has the equality $\pi(f(A))=f(M), \forall f \in C_{0}(\mathbb{R})$, and then by (2) we get

$$
\int_{\mathbb{R}} f d \mu_{\mathcal{B}}^{M}=q_{\mathcal{B}}(f(M))=\left(q_{\mathcal{B}} \circ \pi\right)(f(A))=q_{\mathcal{A}}(f(A))=\int_{\mathbb{R}} f d \mu_{\mathcal{A}}^{A}, \quad \forall f \in C_{0}(\mathbb{R})
$$

In particular we have the equality $\mu_{\mathcal{B}}^{M}=\mu_{\mathcal{A}}^{A}$, and then (3) and (4) will force $D_{\mathcal{B}}(\mathbf{s}(M))=$ $D_{\mathcal{B}}(P)$. Since $P \geqslant \mathbf{s}(M)$, the equality of dimensions will force $P=\mathbf{s}(M)$.
(iii). Start with a collection of projections $\left(P_{i}\right)_{i \in I} \subset \mathbf{P}(\mathcal{M})$, let $P=\bigvee_{i \in I} P_{i}$ (in $\mathcal{B})$, and let us prove that $P \in \mathcal{M}$. Write each $P_{i}=\pi\left(Q_{i}\right)$, with $Q_{i} \in \mathbf{P}(\mathcal{A})$, and let $Q=\bigvee_{i \in I} Q_{i}$ (in \mathcal{A}). The desired conclusion will result from the following.

CLAIM 2. $P=\pi(Q)$.
Denote by \mathcal{F} the collection of all finite subsets of I, which becomes a directed set with inclusion, and define the nets $P_{F}=\bigvee_{i \in F} P_{i}($ in $\mathcal{B})$ and $Q_{F}=\bigvee_{i \in F} Q_{i}$ (in $\mathcal{A})$. On the one hand, if we consider the element $X_{F}=\sum_{i \in F} Q_{i}$, then $Q_{F}=\mathbf{s}\left(X_{F}\right)$ (in \mathcal{A}), and $P_{F}=\mathbf{s}\left(\sum_{i \in I} P_{i}\right)=\mathbf{s}\left(\pi\left(X_{F}\right)\right)$ (in $\left.\mathcal{B}\right)$, so by Claim 1, we have the equality $P_{F}=\pi\left(Q_{F}\right)$. On the other hand, we have $Q=\bigvee_{F \in \mathcal{F}} Q_{F}$ (in \mathcal{A}), with the net $\left(Q_{F}\right)_{F \in \mathcal{F}}$ increasing, so we get the equality $D_{\mathcal{A}}(Q)=\lim _{F \in \mathcal{F}} D_{\mathcal{A}}\left(Q_{F}\right)$. Arguing the same way (in \mathcal{B}), and using the equalities $P_{F}=\pi\left(Q_{F}\right)$, we get

$$
D_{\mathcal{B}}(P)=\lim _{F \in \mathcal{F}} D_{\mathcal{B}}\left(P_{F}\right)=\lim _{F \in \mathcal{F}} D_{\mathcal{B}}\left(\pi\left(Q_{F}\right)\right)=\lim _{F \in \mathcal{F}} D_{\mathcal{A}}\left(Q_{F}\right)=D_{\mathcal{A}}(Q)=D_{\mathcal{B}}(\pi(Q)) .
$$

Finally, since $[I-\pi(Q)] P_{i}=\pi\left([I-Q] Q_{i}\right)=0, \forall i \in I$, we get the inequality $\pi(Q) \geqslant P$, and then the equality $D_{\mathcal{B}}(P)=D_{\mathcal{B}}(\pi(Q))$ will force $P=\pi(Q)$.

COMMENT. In the above proof we employed an argument based on the following property of the dimension function D on a finite AW^{*}-factor \mathcal{A} :
(L) If a net $\left(P_{\lambda}\right)_{\lambda \in \Lambda} \subset \mathbf{P}(\mathcal{A})$ is increasing, then $D\left(\bigvee_{\lambda \in \Lambda} P_{\lambda}\right)=\lim _{\lambda \in \Lambda} D\left(P_{\lambda}\right)$. The literature $([1],[4])$ often mentions a different feature: the complete additivity (C.A.) If $\left(E_{i}\right)_{i \in I} \subset \mathbf{P}(\mathcal{A})$ is an orthogonal family, then $D\left(\bigvee_{i \in I} E_{i}\right)=\sum_{i \in I} D\left(E_{i}\right)$.

To prove property (L) one can argue as follows. Let $P=\bigvee_{\lambda \in \Lambda} P_{\lambda}$, so that $D(P) \geqslant$ $D\left(P_{\lambda}\right), \forall \lambda \in \Lambda$. In particular if we take $\ell=\lim _{\lambda \in \Lambda} D\left(P_{\lambda}\right)$ (which exists by monotonicity), we get $D(P) \geqslant \ell$. To prove that in fact we have $D(P)=\ell$, we construct a sequence $\alpha_{1} \prec \alpha_{2} \prec \ldots$ in Λ, such that $\lim _{n \rightarrow \infty} D\left(P_{\alpha_{n}}\right)=\ell$, we consider the projection $Q=\bigvee_{n \in \mathbb{N}} P_{\alpha_{n}} \leqslant P$, and we show first that $D(Q)=\ell$, then $Q=P$. The equality $D(Q)=\ell$ follows from (c.A.) since now we can write $Q=P_{\alpha_{1}} \vee \bigvee_{n=1}^{\infty}\left[P_{\alpha_{n+1}}-P_{\alpha_{n}}\right]$ with all projections orthogonal, so we get

$$
\begin{aligned}
D(Q) & =D\left(P_{\alpha_{1}}\right)+\sum_{n=1}^{\infty} D\left(P_{\alpha_{n+1}}-P_{\alpha_{n}}\right) \\
& =D\left(P_{\alpha_{1}}\right)+\sum_{n=1}^{\infty}\left[D\left(P_{\alpha_{n+1}}\right)-D\left(P_{\alpha_{n}}\right)\right]=\lim _{n \rightarrow \infty} D\left(P_{\alpha_{n}}\right)=\ell
\end{aligned}
$$

To prove the equality $Q=P$, we fix for the moment $\lambda \in \Lambda$, and integer $n \geqslant 1$, and some $\mu \in \Lambda$ with $\mu \succ \lambda$ and $\mu \succ \alpha_{n}$, and we observe that, using the Parallelogram Law, we have:

$$
P_{\lambda}-P_{\lambda} \wedge Q \leqslant P_{\lambda}-P_{\lambda} \wedge P_{\alpha_{n}} \approx P_{\lambda} \vee P_{\alpha_{n}}-P_{\alpha_{n}} \leqslant P_{\mu}-P_{\alpha_{n}}
$$

so applying the dimension function we get

$$
D\left(P_{\lambda}-P_{\lambda} \wedge Q\right) \leqslant D\left(P_{\mu}-P_{\alpha_{n}}\right)=D\left(P_{\mu}\right)-D\left(P_{\alpha_{n}}\right) \leqslant \ell-D\left(P_{\alpha_{n}}\right)
$$

Since the inequality $D\left(P_{\lambda}-P_{\lambda} \wedge Q\right) \leqslant \ell-D\left(P_{\alpha_{n}}\right)$ holds for arbitrary $n \in \mathbb{N}$ and $\lambda \in \Lambda$, taking limit (as $n \rightarrow \infty$) yields $D\left(P_{\lambda}-P_{\lambda} \wedge Q\right)=0$, which in turn forces $P_{\lambda}=P_{\lambda} \wedge Q$, which means that $P_{\lambda} \leqslant Q$. Since this is true for all $\lambda \in \Lambda$, it will force $Q \geqslant P$, so we must have $Q=P$.

We now recall the ultraproduct construction of finite AW*-factors, discussed for example in [2] and [3].

Notations. Let $\mathbf{A}=\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite AW^{*}-factors, and let $q_{n}: \mathcal{A}_{n} \rightarrow \mathbb{C}$ denote the (unique) normalized quasitrace on \mathcal{A}_{n}. One considers the finite $\mathrm{AW} *$-algebra

$$
\mathbf{A}^{\infty}=\left\{\left(X_{n}\right)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_{n}: \sup _{n \in \mathbb{N}}\left\|X_{n}\right\|<\infty\right\}
$$

Given a free ultrafilter \mathcal{U} on \mathbb{N}, one defines the quasitrace $\tau_{\mathcal{U}}: \mathbf{A}^{\infty} \rightarrow \mathbb{C}$ by

$$
\tau_{\mathcal{U}}(\boldsymbol{x})=\lim _{\mathcal{U}} q_{n}\left(X_{n}\right), \quad \forall \boldsymbol{x}=\left(X_{n}\right)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}
$$

Next one considers the norm-closed ideal

$$
\mathbf{J}_{\mathcal{U}}=\left\{\boldsymbol{x} \in \mathbf{A}^{\infty}: \tau_{\mathcal{U}}\left(\boldsymbol{x}^{*} \boldsymbol{x}\right)=0\right\} .
$$

It turns out that quotient \mathbf{C}^{*}-algebra $\mathbf{A}_{\mathcal{U}}=\mathbf{A}^{\infty} / \mathbf{J}_{\mathcal{U}}$ becomes a finite AW^{*}-factor. Moreover, its (unique) normalized quasitrace $q_{\mathbf{A}_{\mathcal{U}}}$ is defined implicitly by $q_{\mathbf{A}_{\mathcal{U}}} \circ \Pi_{\mathcal{U}}=$ $\tau_{\mathcal{U}}$, where $\Pi_{\mathcal{U}}: \mathbf{A}^{\infty} \rightarrow \mathbf{A}_{\mathcal{U}}$ denotes the quotient $*$-homomorphism.

The finite AW^{*}-factor $\mathbf{A}_{\mathcal{U}}$ is referred to as the \mathcal{U}-ultraproduct of the sequence $\mathbf{A}=\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$.

Remarks 1.2. Let $\mathbf{A}=\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite factors.
A. With the notations above, if $\boldsymbol{x}=\left(X_{n}\right)_{n \in \mathbb{N}}, \boldsymbol{y}=\left(Y_{n}\right)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$ are elements that satisfy the condition $\lim _{\mathcal{U}} d_{\mathcal{A}_{n}}\left(X_{n}, Y_{n}\right)=0$, then $\Pi_{\mathcal{U}}(\boldsymbol{x})=\Pi_{\mathcal{U}}(\boldsymbol{y})$ in $\mathbf{A}_{\mathcal{U}}$. This is trivial, since the given condition forces

$$
\lim _{\mathcal{U}} q_{\mathcal{A}_{n}}\left(\left(X_{n}-Y_{n}\right)^{*}\left(X_{n}-Y_{n}\right)\right)=0
$$

i.e. $\boldsymbol{x}-\boldsymbol{y} \in \mathbf{J}_{\mathcal{U}}$.
B. For $\boldsymbol{x}=\left(X_{n}\right)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$, one has the inequality: $\left\|\Pi_{\mathcal{U}}(\boldsymbol{x})\right\| \leqslant \lim _{\mathcal{U}}\left\|X_{n}\right\|$. To prove this inequality we start off by denoting $\lim _{\mathcal{U}}\left\|X_{n}\right\|$ by ℓ, and we observe that given any $\varepsilon>0$, the set

$$
U_{\varepsilon}=\left\{n \in \mathbb{N}: \ell-\varepsilon<\left\|X_{n}\right\|<\ell+\varepsilon\right\}
$$

belongs to \mathcal{U}, so if we define the sequence $\boldsymbol{x}_{\varepsilon}=\left(X_{n}^{\varepsilon}\right)_{n \in \mathbb{N}}$ by

$$
X_{n}^{\varepsilon}=\left\{\begin{array}{cl}
X_{n} & \text { if } n \notin U_{\varepsilon} \\
0 & \text { if } n \in U_{\varepsilon}
\end{array}\right.
$$

we clearly have $\lim _{\mathcal{U}}\left\|X_{n}^{\varepsilon}\right\|=0$. In particular, by part A, we have $\Pi_{\mathcal{U}}(\boldsymbol{x})=$ $\Pi_{\mathcal{U}}\left(\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}\right)$. Since $\left\|X_{n}-X_{n}^{\varepsilon}\right\| \leqslant \ell+\varepsilon, \forall n \in \mathbb{N}$, it follows that

$$
\left\|\Pi_{\mathcal{U}}(\boldsymbol{x})\right\|=\left\|\Pi_{\mathcal{U}}\left(\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}\right)\right\| \leqslant \ell+\varepsilon
$$

and since the inequality $\left\|\Pi_{\mathcal{U}}(\boldsymbol{x})\right\| \leqslant \ell+\varepsilon$ holds for all $\varepsilon>0$, it follows that we indeed have $\left\|\Pi_{\mathcal{U}}(\boldsymbol{x})\right\| \leqslant \ell$.

EXAMPLE 1.1. Start with a finite AW^{*}-factor \mathcal{A} of type II_{1} and a free ultrafilter \mathcal{U} on \mathbb{N}. Let $\mathcal{A}_{\mathcal{U}}$ denote the ultraproduct of the constant sequence $\mathcal{A}_{n}=\mathcal{A}$. For every $X \in \mathcal{A}$ let $\Gamma(X)=\left(X_{n}\right)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$ be the constant sequence: $X_{n}=X$. It is obvious that $\Gamma: \mathcal{A} \rightarrow \mathbf{A}^{\infty}$ is a unital $*$-homomorphism, so the composition $\Delta_{\mathcal{U}}=\Pi_{\mathcal{U}} \Gamma \Gamma: \mathcal{A} \rightarrow \mathcal{A}_{\mathcal{U}}$ is again a unital $*$-homomorphism. Using Proposition 2.1 it follows that $\Delta_{\mathcal{U}}(\mathcal{A})$ is an AW*-subfactor in $\mathcal{A}_{\mathcal{U}}$.

Moreover, if \mathcal{B} is some finite AW^{*}-factor, and $\pi: \mathcal{B} \rightarrow \mathcal{A}$ is some unital $*-$ homomorphism, then the $*$-homomorphism $\pi_{\mathcal{U}}=\Delta_{\mathcal{U}} \circ \pi: \mathcal{B} \rightarrow \mathcal{A}_{\mathcal{U}}$ gives rise to an AW*-subfactor $\pi_{\mathcal{U}}(\mathcal{B})$ of $\mathcal{A}_{\mathcal{U}}$.

2. Main Results

We start off with the analysis of the type $\mathrm{I}_{\text {fin }}$ situation, i.e. the algebras of the form $\operatorname{Mat}_{n}(\mathbb{C})$ - the $n \times n$ complex matrices. To make the exposition a little easier, we are going to use the un-normalized trace $\tau: \operatorname{Mat}_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ with $\tau\left(I_{n}\right)=n$.

The main result in the type $\mathrm{I}_{\text {fin }}$ - stated in a way that will allow an inductive proof - is as follows.

THEOREM 2.1. Let $n \geqslant 1$ be an integer, and let $X \in \operatorname{Mat}_{n}(\mathbb{C})_{\text {sa }}$ be a matrix with $\tau(X)=0$.
A. For any projection $P \in \operatorname{Mat}_{n}(\mathbb{C})$ with $P X=X P$ and $\tau(P)=1$, there exist elements $A, B \in \operatorname{Mat}_{n}(\mathbb{C})_{\text {sa }}$ with:

- $A B=B A$;
- $X=A-B$;
- $A \approx B$;
- $\max \{\|A\|,\|B\|\} \leqslant\|X\|$;
- $A \perp P$.
B. X is an abelian self-commutator in $\operatorname{Mat}_{n}(\mathcal{C})$.

Proof. A. We are going to use induction on n. The case $n=1$ is trivial, since it forces $X=0$, so we can take $A=B=0$. Assume now property A is true for all $n<N$, and let us prove it for $n=N$. Fix some $X \in \operatorname{Mat}_{N}(\mathbb{C})$ with $\tau(X)=0$, and a projection $P \in \operatorname{Mat}_{N}(\mathbb{C})$ with $\tau(P)=1$ such that $P X=X P$. The case $X=0$ is trivial, so we are going to assume $X \neq 0$. Let us list the spectrum of X as $\operatorname{Spec}(X)=\left\{\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}\right\}$, and let $\left(E_{i}\right)_{i=1}^{m}$ be the corresponding spectral projections, so that
(i) $\tau\left(E_{i}\right)>0, \forall i \in\{1, \ldots, m\}$;
(ii) $E_{i} \perp E_{j}, \forall i \neq j$, and $\sum_{i=1}^{m} E_{i}=I_{N}$;
(iii) $X=\sum_{i=1}^{m} \alpha_{i} E_{i}$, so $\tau(X)=\sum_{i=1}^{m} \alpha_{i} \tau\left(E_{i}\right)$.

Since $\tau(P)=1$ and P commutes with X, there exists a unique index $i_{0} \in\{1, \ldots, m\}$ such that $P \leqslant E_{i_{0}}$. Since none of the inclusions $\operatorname{Spec}(X) \subset(0, \infty)$ or $\operatorname{Spec}(X) \subset$ $(-\infty, 0)$ is possible, there exists $i_{1} \in\{1, \ldots, m\}, i_{1} \neq i_{0}$, such that one of the following inequalities holds

$$
\begin{align*}
& \alpha_{i_{1}}<0 \leqslant \alpha_{i_{0}} \tag{5}\\
& \alpha_{i_{1}}>0 \geqslant \alpha_{i_{0}} \tag{6}
\end{align*}
$$

Choose then a projection $Q \leqslant E_{i_{1}}$ with $\tau(Q)=1$, and let us define the elements $S=\alpha_{i_{0}}(P-Q)$ and $Y=X-S$. Notice that

$$
Y=\sum_{i \neq i_{0}, i_{0}} \alpha_{i} E_{i}+\alpha_{i_{1}}\left(E_{i_{1}}-Q\right)+\alpha_{i_{0}}\left(E_{i_{0}}-P\right)+\left(\alpha_{i_{1}}+\alpha_{i_{0}}\right) Q
$$

so in particular we have $Y \perp P$. Notice also that either one of (5) or (6) yields

$$
\left|\alpha_{i_{1}}+\alpha_{i_{0}}\right| \leqslant \max \left\{\left|\alpha_{i_{0}}\right|,\left|\alpha_{i_{1}}\right|\right\} \leqslant\|X\|
$$

so we have $\|Y\| \leqslant\|X\|$. Finally, since both Y an Q belong to the subalgebra

$$
\mathcal{A}=\left(I_{N}-P\right) \operatorname{Mat}_{N}(\mathbb{C})\left(I_{N}-P\right),
$$

which is $*$-isomorphic to $\operatorname{Mat}_{N-1}(\mathbb{C})$, using the inductive hypothesis, with Y and Q (which obviously commute), there exist $A_{0}, B_{0} \in \mathcal{A}$, with

- $A_{0} B_{0}=B_{0} A_{0}$;
- $Y=A_{0}-B_{0}$;
- $A_{0} \approx B_{0}$;
- $\max \left\{\left\|A_{0}\right\|,\left\|B_{0}\right\|\right\} \leqslant\|Y\| \leqslant\|X\|$;
- $A_{0} \perp Q$.

It is now obvious that the elements $A=A_{0}-\alpha_{i_{0}} Q$ and $B=B-\alpha_{i_{0}} P$ will satisfy the desired hypothesis (at one point, Proposition 1.1.B is invoked).
B. This statement is obvious from part A, since one can always start with an arbitrary projection $P \leqslant E_{m}$, with $\tau(P)=1$, and such a projection obviously commutes with X.

In preparation for the type II_{1} case, we have the following approximation result.
Lemma 2.1. Let \mathcal{A} be an $A W^{*}$-factor of type II_{1}, and let $\varepsilon>0$ be a real number. For any element $X \in \mathcal{A}_{\text {sa }}$, there exists an $A W^{*}$-subfactor $\mathcal{B} \subset \mathcal{A}$, of type $\mathrm{I}_{\mathrm{fin}}$, and an element $B \in \mathcal{B}_{\text {sa }}$ with
(i) $d_{\mathcal{A}}(X, B)<\varepsilon$;
(ii) $q_{\mathcal{A}}(X)=q_{\mathcal{A}}(B)$;
(iii) $\|B\| \leqslant\|X\|+\varepsilon$.

Proof. We begin with the following

Particular Case. Assume X has finite spectrum.

Let $\operatorname{Spec}(X)=\left\{\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}\right\}$, and let E_{1}, \ldots, E_{m} be the corresponding spectral projections, so that

- $D\left(E_{i}\right)>0, \forall i \in\{1, \ldots, m\}$;
- $E_{i} \perp E_{j}, \forall i \neq j$, and $\sum_{i=1}^{m} E_{i}=I$;
- $X=\sum_{i=1}^{m} \alpha_{i} E_{i}$, so $q_{\mathcal{A}}(X)=\sum_{i=1}^{m} \alpha_{i} D\left(E_{i}\right)$.

For any integer $n \geqslant 2$ define the set $Z_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$, and let θ_{n} : $\{1, \ldots, m\} \rightarrow Z_{n}$ be the map defined by

$$
\theta_{n}(i)=\max \left\{\zeta \in Z_{n}: \zeta \leqslant D\left(E_{i}\right)\right\} .
$$

For every $i \in\{1, \ldots, m\}$, and every integer $n \geqslant 2$, chose $P_{n i} \in \mathbf{P}(\mathcal{A})$ be an arbitrary projection with $P_{n i} \leqslant E_{i}$, and $D\left(P_{n i}\right)=\theta_{n}(i)$. Notice that, for a fixed $n \geqslant 2$, the projections $P_{n 1}, \ldots, P_{n m}$ are pairwise orthogonal, and have dimensions in the set Z_{n}, hence there exists a subfactor \mathcal{B}_{n} of type I_{n}, that contains them. Define then the element $H_{n}=\sum_{i=1}^{m} \alpha_{i} P_{n i} \in\left(\mathcal{B}_{n}\right)_{s a}$. Note that $\left\|H_{n}\right\| \leqslant\|X\|$. We wish to prove that
(A) $\lim _{n \rightarrow \infty} d_{\mathcal{A}}\left(X, H_{n}\right)=0$;
(B) $\lim _{n \rightarrow \infty} q_{\mathcal{A}}\left(H_{n}\right)=q_{\mathcal{A}}(X)$.

To prove these assertions, we first observe that, for each $n \geqslant 2$, the elements X and H_{n} commute, and we have

$$
X-H_{n}=\sum_{i=1}^{m} \alpha_{i}\left(E_{i}-P_{n i}\right)
$$

In particular, one has

$$
\begin{equation*}
\left|q_{\mathcal{A}}(X)-q_{\mathcal{A}}\left(H_{n}\right)\right| \leqslant \sum_{i=1}^{m}\left|\alpha_{i}\right| \cdot D\left(E_{i}-P_{n i}\right) \leqslant m\|X\| \cdot \max \left\{D\left(E_{i}-P_{n i}\right)\right\}_{i=1}^{m} \tag{7}
\end{equation*}
$$

Likewise, since

$$
\left(X-H_{n}\right)^{*}\left(X-H_{n}\right)=\sum_{i=1}^{m} \alpha_{i}^{2}\left(E_{i}-P_{n i}\right)
$$

we have

$$
\begin{align*}
q_{\mathcal{A}}\left(\left(X-H_{n}\right)^{*}\left(X-H_{n}\right)\right) & =\sum_{i=1}^{m} \alpha_{i}^{2} \cdot D\left(E_{i}-P_{n i}\right) \\
& \leqslant m\|X\|^{2} \cdot \max \left\{D\left(E_{i}-P_{n i}\right)\right\}_{i=1}^{m} \tag{8}
\end{align*}
$$

By construction however we have $D\left(E_{i}-P_{n i}\right)<\frac{1}{n}$, so the estimates (7) and (8) give

$$
\begin{aligned}
& \left|q_{\mathcal{A}}(X)-q_{\mathcal{A}}\left(H_{n}\right)\right| \leqslant \frac{m\|X\|}{n} \\
& d_{\mathcal{A}}\left(X, H_{n}\right) \leqslant \sqrt[3]{\frac{m\|X\|^{2}}{n}}
\end{aligned}
$$

which clearly give the desired assertions (A) and (B).
Using the conditions (A) and (B), we immediately see that, if we define the numbers $\beta=q_{\mathcal{A}}(X), \beta_{n}=q_{\mathcal{A}}\left(H_{n}\right)$, and the elements $B_{n}=H_{n}+\left(\beta-\beta_{n}\right) I \in \mathcal{B}_{n}$, then the sequence $\left(B_{n}\right)_{n \geqslant 2}$ will still satisfy $\lim _{n \rightarrow \infty} d_{\mathcal{A}}\left(X, B_{n}\right)=0$, but also $q_{\mathcal{A}}\left(B_{n}\right)=$ $q_{\mathcal{A}}\left(B_{n}\right)$, and

$$
\left\|B_{n}\right\| \leqslant\left\|H_{n}\right\|+\left|\beta-\beta_{n}\|\leqslant\| X \|+\left|\beta-\beta_{n}\right|\right.
$$

which concludes the proof of the Particular Case.
Having proven the Particular Case, we now proceed with the general case. Start with an arbitrary element $X \in \mathcal{A}_{s a}$, and pick a sequence $\left(T_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{s a}$ of elements with finite spectrum, such that $\lim _{n \rightarrow \infty}\left\|T_{n}-X\right\|=0$. (This can be done using Borel functional calculus.) Using the norm-continuity of the quasitrace, we have $\lim _{n \rightarrow \infty} q_{\mathcal{A}}\left(T_{n}\right)=q_{\mathcal{A}}(X)$, so if we define $X_{n}=T_{n}+\left(q_{\mathcal{A}}(X)-q_{\mathcal{A}}\left(T_{n}\right)\right) I$, we will still have $\lim _{n \rightarrow \infty}\left\|X_{n}-X\right\|=0$, but also $q_{\mathcal{A}}\left(X_{n}\right)=q_{\mathcal{A}}(X)$. In particular, there exists some $k \geqslant 1$, such that

- $d_{\mathcal{A}}\left(X_{k}, X\right)<\varepsilon / 2$;
- $\left\|X_{k}\right\|<\|X\|+\varepsilon / 2$.

Finally, applying the Particular Case, we can also find an AW^{*}-subfactor $\mathcal{B} \subset \mathcal{A}$, of type $\mathrm{I}_{\mathrm{fin}}$, and an element $B \in \mathcal{B}_{s a}$ with

- $d_{\mathcal{A}}\left(X_{k}, B\right)<\varepsilon / 2$;
- $\|B\|<\left\|X_{k}\right\|+\varepsilon / 2$;
- $q_{\mathcal{A}}\left(X_{k}\right)=q_{\mathcal{A}}(B)$.

It is then trivial that B satisfies conditions (i)-(iii).
We are now in position to prove the main result in the type II_{1} case.
THEOREM 2.2. Let $\mathbf{A}=\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $A W^{*}$-factors of type II_{1}, let \mathcal{U} be a free ultrafilter on \mathbb{N}, and let $X \in\left(\mathbf{A}_{\mathcal{U}}\right)_{\text {sa }}$ be an element with $q_{\mathbf{A}_{\mathcal{U}}}(X)=0$. Then there exist elements $A, B \in\left(\mathbf{A}_{\mathcal{U}}\right)_{\text {sa }}$ with

- $A B=B A$;
- $X=A-B$;
- $A \approx B$;
- $\max \{\|A\|,\|B\|\} \leqslant\|X\|$.

In particular, X is an abelian self-commutator in $\mathbf{A}_{\mathcal{U}}$.
Proof. Write $X=\Pi_{\mathcal{U}}(\boldsymbol{x})$, where $\boldsymbol{x}=\left(X_{n}\right)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$. Without loss of generality, we can assume that all X_{n} 's are self-adjoint, and have norm $\leqslant\|X\|$.

Consider the elements $\tilde{X}_{n}=X_{n}-q_{\mathcal{A}_{n}}\left(X_{n}\right) I \in \mathcal{A}_{n}$. Remark that, since X_{n} is self-adjoint, we have $\mid q_{\mathcal{A}_{n}}\left(X_{n}\right) \leqslant\left\|X_{n}\right\| \leqslant\|X\|$, so we have $\left\|\tilde{X}_{n}\right\| \leqslant 2\|X\|, \forall n \in \mathbb{N}$, hence the sequence $\tilde{\boldsymbol{x}}=\left(\tilde{X}_{n}\right)_{n \in \mathbb{N}}$ defines an element in \mathbf{A}^{∞}. By construction, we have $\lim _{\mathcal{U}} q_{\mathcal{A}_{n}}\left(X_{n}\right)=0$, and $d_{\mathcal{A}_{n}}\left(\tilde{X}_{n}, X_{n}\right)=\left|q_{\mathcal{A}_{n}}\left(X_{n}\right)\right|^{\frac{2}{3}}$, so by Remark 1.2.A it follows that $X=\Pi_{\mathcal{U}}(\boldsymbol{x})=\Pi_{\mathcal{U}}(\tilde{\boldsymbol{x}})$.

Use Lemma 2.1 to find, for each $n \in \mathbb{N}$, an AW^{*}-subfactor \mathcal{B}_{n} of \mathcal{A}_{n} of type $\mathrm{I}_{\text {fin }}$, and and elements $Y_{n} \in\left(\mathcal{B}_{n}\right)_{s a}$ with
(i) $d_{\mathcal{A}_{n}}\left(Y_{n}, \tilde{X}_{n}\right)<\frac{1}{n}$;
(ii) $q_{\mathcal{A}_{n}}\left(Y_{n}\right)=0, \forall n \in \mathbb{N}$;
(iii) $\left\|Y_{n}\right\| \leqslant\left\|\tilde{X}_{n}\right\|+\frac{1}{n}$.

Furthermore, using Theorem 2.1, for each $n \in \mathbb{N}$, combined with the fact that $q_{\mathcal{B}_{n}}=$ $\left.q_{\mathcal{A}_{n}}\right|_{\mathcal{B}_{n}}$ (which implies the equality $q_{\mathcal{B}_{n}}\left(Y_{n}\right)=0$), there exist elements $A_{n}, B_{n} \in\left(\mathcal{B}_{n}\right)_{s a}$ such that
(A) $A_{n} B_{n}=B_{n} A_{n}$;
(B) $Y_{n}=A_{n}-B_{n}$;
(C) $A_{n} \approx B_{n}$;
(D) $\max \left\{\left\|A_{n}\right\|,\left\|B_{n}\right\|\right\} \leqslant\left\|Y_{n}\right\|$.

Choose $U_{n} \in \mathbf{U}\left(\mathcal{B}_{n}\right)$, such that $B_{n}=U_{n} A_{n} U_{n}^{*}$.
Let us view the sequences $\boldsymbol{a}=\left(A_{n}\right)_{n \in \mathbb{N}}, \boldsymbol{b}=\left(B_{n}\right)_{n \in \mathbb{N}}, \boldsymbol{u}=\left(U_{n}\right)_{n \in \mathbb{N}}$ as elements in the AW *-algebra \mathbf{A}^{∞}, and let us define the elements $A=\Pi_{\mathcal{U}}(\boldsymbol{a}), B=\Pi_{\mathcal{U}}(\boldsymbol{b})$, and $U=\Pi_{\mathcal{U}}(\boldsymbol{u})$ in $\mathbf{A}_{\mathcal{U}}$. Obviously A and B are self-adjoint. Since \boldsymbol{u} is unitary in \mathbf{A}^{∞}, it follows that U is unitary in $\mathbf{A}_{\mathcal{U}}$. Moreover, since by construction we have $\boldsymbol{u} \boldsymbol{a} \boldsymbol{u}^{*}=\boldsymbol{b}$, we also have the equality $U A U^{*}=B$, so $A \approx B$ in $\mathbf{A}_{\mathcal{U}}$. Finally, since by construction we also have $\boldsymbol{a} \boldsymbol{b}=\boldsymbol{b} \boldsymbol{a}$, we also get the equality $A B=B A$. Since by condition (D) we have

$$
\max \left\{\left\|A_{n}\right\|,\left\|B_{n}\right\|\right\} \leqslant\left\|Y_{n}\right\| \leqslant\left\|\tilde{X}_{n}\right\|+\frac{1}{n} \leqslant\|X\|+\left|q_{\mathcal{A}_{n}}\left(X_{n}\right)\right|+\frac{1}{n}
$$

by Remark 1.2.B (combined with $\lim _{\mathcal{U}} q_{\mathcal{A}_{n}}\left(X_{n}\right)=0$), we get the inequality

$$
\max \{\|A\|,\|B\|\} \leqslant\|X\|
$$

The proof of the Theorem will then be finished, once we prove the equality $X=A-B$. For this purpose, we consider the sequences $\tilde{\boldsymbol{x}}=\left(\tilde{X}_{n}\right)_{n \in \mathbb{N}}$ and $\boldsymbol{y}=\left(Y_{n}\right)_{n \in \mathbb{N}}$, both viewed as elements in \mathbf{A}^{∞}. On the one hand, since by construction we have $\boldsymbol{y}=\boldsymbol{a}-\boldsymbol{b}$, we get the equality $\Pi_{\mathcal{U}}(\boldsymbol{y})=A-B$. On the other hand, since $\lim _{n \rightarrow \infty} d_{\mathcal{A}}\left(Y_{n}, \tilde{X}_{n}\right)=0$, we also have $\lim _{\mathcal{U}} d_{\mathcal{A}}\left(Y_{n}, \tilde{X}_{n}\right)=0$, so by Remark 1.2.A we get the equalities $X=$ $\Pi_{\mathcal{U}}(\boldsymbol{x})=\Pi_{\mathcal{U}}(\tilde{\boldsymbol{x}})=\Pi_{\mathcal{U}}(\boldsymbol{y})$, i.e. $X=A-B$.

Comment. Assume \mathcal{A} an AW^{*}-factor of type II_{1}, and let \mathcal{U} be a free ultrafilter on \mathbb{N}. Following Example 1.1, \mathcal{A} is identified with the AW^{*}-subfactor $\Delta_{\mathcal{U}}(\mathcal{A})$ of $\mathcal{A}_{\mathcal{U}}$.

Under this identification, by Theorem 2.2, every element $A \in \mathcal{A}_{s a}$ of quasitrace zero is an abelian self-commutator in $\mathcal{A}_{\mathcal{U}}$.

In connection with this observation, it is legitimate to ask whether A is in fact an abelian self-commutator in \mathcal{A} itself. The discussion below aims at answering this question in a somewhat different spirit, based on the results from [5].

Definition. Let \mathcal{A} be an AW^{*}-factor of type II_{1}. An element $A \in \mathcal{A}_{s a}$ is called an abelian approximate self-commutator in \mathcal{A}, if there exist commuting elements $A_{1}, A_{2} \in \mathcal{A}_{s a}$ with $A=A_{1}-A_{2}$, and such that A_{1} and A_{2} are approximately unitary equivalent, i.e. there exists a sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of unitaries in \mathcal{A} such that $\lim _{n \rightarrow \infty}\left\|U_{n} A_{1} U_{n}^{*}-A_{2}\right\|=0$. By [5, Theorem 2.1] the condition that A_{1} and A_{2} are approximately unitary equivalent - denoted by $A_{1} \sim A_{2}$ - is equivalent to the condition $q_{\mathcal{A}}\left(A_{1}^{k}\right)=q_{\mathcal{A}}\left(A_{2}^{k}\right), \forall k \in \mathbb{N}$. In particular, it is obvious that abelian approximate self-commutators have quasitrace zero.

With this terminology, one has the following result.
THEOREM 2.3. Let \mathcal{A} be an $A W^{*}$-factor of type II_{1}, and let $X \in \mathcal{A}_{\text {sa }}$ be an element with $q_{\mathcal{A}}(X)=0$. If $D(\mathbf{s}(X))<1$, then X can be written as a sum $X=X_{1}+X_{2}$, where X_{1}, X_{2} are two commuting abelian approximate self-commutators in \mathcal{A}.

Proof. Let $P=I-\mathbf{s}(X)$. Using the proof of Theorem 5.2 from [5], there exist elements $A_{1}, A_{2}, B_{1}, B_{2}, Y_{1}, Y_{2}, S_{1}, S_{2} \in \mathcal{A}_{s a}$, with the following properties:
(i) $A_{1}, A_{2}, B_{1}, B_{2}, Y_{1}, Y_{2}, S_{1}, S_{2}$ all commute;
(ii) $A_{1} \sim B_{1}, A_{2} \sim B_{2}, Y_{1} \sim S_{1}, Y_{2} \sim S_{2}$, and $S_{1}+S_{2}$ is spectrally symmetric, i.e. $\left(S_{1}+S_{2}\right) \sim-\left(S_{1}+S_{2}\right)$;
(iii) $A_{1} \perp A_{2}, B_{1}, P, A_{2} \perp B_{2}, P, B_{1} \perp B_{2}, P$, and $B_{2} P=P B_{2}=Y_{1}+Y_{2}$;
(iv) $Y_{1}, Y_{2} \perp S_{1}, S_{2}$;
(v) $Y_{1}, Y_{2}, S_{1}, S_{2} \in P \mathcal{A} P$;
(vi) $X=A_{1}-B_{1}+A_{2}-B_{2}+Y_{1}+Y_{2}$.

Consider then the elements

$$
\begin{aligned}
V_{1} & =A_{1}+Y_{1}-S_{2} ; & & V_{2}=A_{2}+\frac{1}{2}\left(S_{1}+S_{2}\right) \\
W_{1} & =B_{1}+S_{1}-Y_{2} ; & & W_{2}=B_{2}-\frac{1}{2}\left(S_{1}+S_{2}\right)
\end{aligned}
$$

Using the orthogonal additivity of approximate unitary equivalence (Corollary 2.1 from [5]), and the above conditions, it follows that $V_{1} \sim W_{1}$ and $V_{2} \sim W_{2}$. Since $V_{1}, V_{2}, W_{1}, W_{2}$ all commute, it follows that the elements $X_{1}=V_{1}-W_{1}$ and $X_{2}=$ $V_{2}-W_{2}$ are abelian approximate self-commutators, and they commute. Finally, one has $X_{1}+X_{2}=A_{1}-B_{1}+A_{2}-B_{2}+Y_{1}+Y_{2}=X$.

Corollary 2.1. Let \mathcal{A} be an $A W^{*}$-factor of type II_{1}, and let $X \in \mathcal{A}_{\text {sa }}$ be an element with $q_{\mathcal{A}}(X)=0$. There exist two commuting abelian approximate selfcommutators $X_{1}, X_{2} \in \operatorname{Mat}_{2}(\mathcal{A})$ - the 2×2 matrix algebra - such that

$$
X_{1}+X_{2}=\left[\begin{array}{cc}
X & 0 \tag{9}\\
0 & 0
\end{array}\right]
$$

(According to Berberian's Theorem (see [1]), the matrix algebra $\operatorname{Mat}_{2}(\mathcal{A})$ is an AW^{*} factor of type II_{1}.)

Proof. Denote the matrix algebra $\operatorname{Mat}_{2}(\mathcal{A})$ by \mathcal{A}_{2}, and let $\tilde{X} \in \mathcal{A}_{2}$ denote the matrix in the right hand side of (9). It is obvious that, if we consider the projection

$$
E=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

then $\mathbf{s}(\tilde{X}) \leqslant E$. Since $D_{\mathcal{A}_{2}}(E)=\frac{1}{2}<1$, and $q_{\mathcal{A}_{2}}(\tilde{X})=\frac{1}{2} q_{\mathcal{A}}(X)=0$, the desired conclusion follows immediately from Theorem 2.3.

REFERENCES

[1] S. Berberian, Baer *-rings, Springer-Verlag, New York-Heidelberg-Berlin, 1972
[2] B. Blackadar, D. Handelman, Dimension functions and traces on C^{*}-algebras, J. Funct. Analysis. Vol. 45, 1982
[3] U. HAAGERUP, Quasitraces on exact C*-algebras are traces, Preprint 1991
[4] I. Kaplansky, Rings of Operators, W. A. Benjamin Inc. New York, 1968
[5] S.H. Kim, G. Nagy, Spectral symmetry in II_{1}-factors, Preprint 2004, arXiv.org: math.OA/0408275
[6] F.J. Murray, J. von Neumann, On Rings of Operators, Ann. Math. Vol. 37, No. 1, 1937

