

ABELIAN SELF-COMMUTATORS IN FINITE FACTORS

GABRIEL NAGY

(communicated by Hari Berkovici)

Abstract. An abelian self-commutator in a C*-algebra $\mathcal A$ is an element of the form $A=X^*X-XX^*$, with $X\in\mathcal A$, such that X^*X and XX^* commute. It is shown that, given a finite AW*-factor $\mathcal A$, there exists another finite AW*-factor $\mathcal M$ of same type as $\mathcal A$, that contains $\mathcal A$ as an AW*-subfactor, such that any self-adjoint element $X\in\mathcal M$ of quasitrace zero is an abelian self-commutator in $\mathcal M$.

Introduction

According to the Murray-von Neumann classification, finite von Neumann factors are either of type I_{fin} , or of type II_1 . For the non-expert, the easiest way to understand this classification is by accepting the famous result of Murray and von Neumann (see [6]) which states that every finite von Neumann factor $\mathcal M$ possesses a unique state-trace $\tau_{\mathcal M}$. Upon accepting this result, the type of $\mathcal M$ is decided by so-called dimension range: $\mathcal D_{\mathcal M} = \left\{\tau_{\mathcal M}(P): P \text{ projection in } \mathcal M\right\}$ as follows. If $\mathcal D_{\mathcal M}$ is finite, then $\mathcal M$ is of type I_{fin} (more explicitly, in this case $\mathcal D_{\mathcal M} = \left\{\frac{k}{n}: k=0,1,\ldots,n\right\}$ for some $n\in\mathbb N$, and $\mathcal M \simeq \operatorname{Mat}_n(\mathbb C)$ – the algebra of $n\times n$ matrices). If $\mathcal D_{\mathcal M}$ is infinite, then $\mathcal M$ is of type II_1 , and in fact one has $\mathcal D_{\mathcal M} = [0,1]$. From this point of view, the factors of type II_1 are the ones that are interesting, one reason being the fact that, although all factors of type II_1 have the same dimension range, there are uncountably many non-isomorphic ones (by some celebrated results of McDuff of Connes).

In this paper we deal with the problem of characterizing the self-adjoint elements of trace zero, in terms of simpler ones. We wish to carry this investigation in a "Hilbert-space-free" framework, so instead of von Neumann factors, we are going to work within the category of AW*-algebras. Such objects were introduced in the 1950's by Kaplansky ([4]) in an attempt to formalize the theory of von Neumann algebras without any use of pre-duals. Recall that A unital C*-algebra $\mathcal A$ is called an AW^* -algebra, if for every non-empty set $\mathcal X \subset \mathcal A$, the left annihilator set $\mathbf L(\mathcal X) = \left\{A \in \mathcal A: AX = 0, \ \forall X \in \mathcal X\right\}$ is the principal right ideal generated by a projection $P \in \mathcal A$, that is, $\mathbf L(\mathcal X) = \mathcal AP$.

Much of the theory – based on the geometry of projections – works for AW*-algebras exactly as in the von Neumann case, and one can classify the finite AW*-factors into the types $I_{\rm fin}$ and II_1 , exactly as above, but using the following alternative result:

Mathematics subject classification (2000): 46L35, 46L05.

Key words and phrases: Self-commutator, AW*-algebras, quasitrace.

258 GABRIEL NAGY

any finite AW*-factor \mathcal{A} possesses a unique normalized quasitrace $q_{\mathcal{A}}$. Recall that a quasitrace on a C*-algebra \mathfrak{A} is a map $q: \mathfrak{A} \to \mathbb{C}$ with the following properties:

- (i) if $A, B \in \mathfrak{A}$ are self-adjoint, then q(A + iB) = q(A) + iq(B);
- (ii) $q(AA^*) = q(A^*A) \geqslant 0, \forall A \in \mathfrak{A};$
- (iii) q is linear on all abelian C*-subalgebras of \mathfrak{A} ,
- (iv) there is a map $q_2: \operatorname{Mat}_2(\mathcal{A}) \to \mathbb{C}$ with properties (i)-(iii), such that

$$q_2\left(\left[egin{array}{cc} A & 0 \ 0 & 0 \end{array}
ight]
ight)=q(A), \ \ orall A\in \mathfrak{A}.$$

(The condition that q is *normalized* means that q(I) = 1.)

With this terminology, the dimension range of a finite AW*-factor is the set $\mathcal{D}_{\mathcal{A}} = \{q_{\mathcal{A}}(P): P \text{ projection in } \mathcal{A}\}$, and the classification into the two types is exactly as above. As in the case of von Neumann factors, one can show that the AW*-factors of type I_{fin} are again the matrix algebras $\text{Mat}_n(\mathbb{C})$, $n \in \mathbb{N}$. The type II_1 case however is still mysterious. In fact, a longstanding problem in the theory of AW*-algebras is the following:

KAPLANSKY'S CONJECTURE. Every AW*-factor of type II_1 is a von Neumann factor.

An equivalent formulation states that: if A is an AW^* -factor of type Π_1 , then the quasitrace q_A is linear (so it is in fact a trace). It is well known (see [3] for example) that Kaplansky's Conjecture implies:

QUASITRACE CONJECTURE. Quasitraces (on arbitrary C*-algebras) are traces.

A remarkable result of Haagerup ([3]) states that quasitraces on *exact* C*-algebras are traces, so if \mathcal{A} is an AW*-factor of type II_1 , generated (as an AW*-algebra) by an exact C*-algebra, then \mathcal{A} is a von Neumann algebra.

It is straightforward that if q is a quasitrace on some C*-algebra $\mathfrak A$, and $A \in \mathfrak A$ is some element that can be written as $A = XX^* - X^*X$ for some $X \in \mathfrak A$, such that XX^* and X^*X commute, then q(A) = 0. In this paper we are going to take a closer look at such A's, which will be referred to as abelian self-commutators.

Suppose now \mathcal{A} is a finite AW*-factor, which is contained as an AW*-subalgebra in a finite AW*-factor \mathcal{B} . Due to the uniqueness of the quasitrace, for $A \in \mathcal{A}$, one has the equivalence $q_{\mathcal{A}}(A) = 0 \Leftrightarrow q_{\mathcal{B}}(A) = 0$, so a sufficient condition for $q_{\mathcal{A}}(A) = 0$ is that A is an abelian self-commutator in \mathcal{B} . In this paper we prove the converse, namely: If \mathcal{A} is a finite AW*-factor, and $A \in \mathcal{A}$ is a self-adjoint element of quasitrace zero, then there exists a finite AW*-factor \mathcal{M} , that contains \mathcal{A} as an AW*-subfactor, such that A is an abelian self-commutator in \mathcal{M} . Moreover, \mathcal{M} can be chosen such that it is of same type as \mathcal{A} , and every self-adjoint element $X \in \mathcal{M}$ of quasitrace zero is an abelian self commutator in \mathcal{M} . Specifically, in the type I_n , \mathcal{M} is \mathcal{A} itself, and in the type I_1 case, \mathcal{M} is an ultraproduct.

The paper is organized as follows. In Section 1 we introduce our notations, and we recall several standard results from the literature, and in Section 2 we prove the main results.

1. Prelimiaries

NOTATIONS. Let A be a unital C*-algebra.

- A. We denote by A_{sa} the real linear space of self-adjoint elements. We denote by $\mathbf{U}(A)$ the group of unitaries in A. We denote by $\mathbf{P}(A)$ the collection of projections in A, that is, $\mathbf{P}(A) = \{P \in A_{sa} : P = P^2\}$.
- B. Two elements $A, B \in \mathcal{A}$ are said to be *unitarily equivalent in* \mathcal{A} , in which case we write $A \approx B$, if there exists $U \in \mathbf{U}(\mathcal{A})$ such that $B = UAU^*$.
- C. Two elements $A, B \in \mathcal{A}$ are said to be *orthogonal*, in which case we write $A \perp B$, if: $AB = BA = AB^* = B^*A = 0$. (Using the Fuglede-Putnam Theorem, in the case when one of the two is normal, the above condition reduces to: AB = BA = 0. If both A and B are normal, one only needs AB = 0.) A collection $(A_i)_{i \in J} \subset \mathcal{A}$ is said to be orthogonal, if $A_i \perp A_j$, $\forall i \neq j$.

Finite AW*-factors have several interesting features, contained in the following well-known result (stated without proof).

PROPOSITION 1.1. Assume A is a finite AW*-factor.

- A. For any element $X \in \mathcal{A}$, one has: $XX^* \approx X^*X$.
- *B.* If $X_1, X_2, Y_1, Y_2 \in A$ are such that $X_1 \approx X_2$, $Y_1 \approx Y_2$, and $X_k \perp Y_k$, k = 1, 2, then $X_1 + Y_1 \approx X_2 + Y_2$.

DEFINITION. Let \mathcal{A} be a unital C*-algebra. An element $A \in \mathcal{A}_{sa}$ is called an *abelian self-commutator*, if there exists $X \in \mathcal{A}$, such that

- $(XX^*)(X^*X) = (X^*X)(XX^*);$
- $\bullet \quad A = XX^* X^*X.$

REMARK 1.1. It is obvious that if $A \in \mathcal{A}_{sa}$ is an abelian self-commutator, then q(A) = 0, for any quasitrace q on \mathcal{A} .

Abelian self-commutators in finite AW*-factors can be characterized as follows.

PROPOSITION 1.2. Let A be a finite AW*-factor. For an element $A \in A_{sa}$, the following are equivalent:

- (i) A is an abelian self-commutator in A;
- (ii) there exists $A_1, A_2 \in \mathcal{A}_{sa}$ with:
 - $A_1A_2 = A_2A_1$;
 - $A = A_1 A_2$;
 - $A_1 \approx A_2$.

Proof. The implication (i) \Rightarrow (ii) is trivial by Proposition 1.1.

Conversely, assume A_1 and A_2 are as in (ii), and let $U \in \mathbf{U}(\mathcal{A})$ be such that $UA_1U^* = A_2$. Choose a real number t > 0, such that $A_1 + tI \geqslant 0$ (for example $t = \|A_1\|$), and define the element $X = (A_1 + tI)^{1/2}U^*$. Notice that $XX^* = A_1 + tI$, and $X^*X = A_2 + tI$, so XX^* and X^*X commute. Now we are done, since $XX^* - X^* = A_1 - A_2 = A$. \square

260 Gabriel Nagy

NOTATION. In [3] Haagerup shows that, given a normalized quasitrace q on a unital C*-algebra \mathcal{A} , the map $d_q: \mathcal{A} \times \mathcal{A} \to [0, \infty)$, given by

$$d_q(X,Y) = q((X-Y)^*(X-Y))^{\frac{1}{3}}, \ \forall X, Y \in \mathcal{A},$$

defines a metric. We refer to this metric as the *Haagerup* " $\frac{2}{3}$ -metric" associated with q. Using the inequality $|q(X)| \leq 2||X||$, one also has the inequality

$$d_a(X,Y) \leqslant \sqrt[3]{2} ||X - Y||^{\frac{2}{3}}, \ \forall X, Y \in \mathcal{A}. \tag{1}$$

If $\mathcal A$ is a finite AW*-factor, we denote by $q_{\mathcal A}$ the (unique) normalized quasitrace on $\mathcal A$, and we denote by $d_{\mathcal A}$ the Haagerup " $\frac{2}{3}$ -metric" associated with $q_{\mathcal A}$.

We now concentrate on some issues that deal with the problem of "enlarging" a finite AW*-factor to a "nicer" one. Recall that, given an AW*-algebra \mathcal{B} , a subset $\mathcal{A} \subset \mathcal{B}$ is declared an AW^* -subalgebra of \mathcal{B} , if it has the following properties:

- (i) A is a C*-subalgebra of B;
- (ii) $\mathbf{s}(A) \in \mathcal{A}, \forall A \in \mathcal{A}_{sa}$;
- (iii) if $(P_i)_{i\in I} \subset \mathbf{P}(\mathcal{A})$, then $\bigvee_{i\in I} P_i \in \mathcal{A}$.

(In condition (ii) the projection $\mathbf{s}(A)$ is the support of A in \mathcal{B} . In (iii) the supremum is computed in \mathcal{B} .) In this case it is pretty clear that \mathcal{A} is an AW*-algebra on its own, with unit $I_{\mathcal{A}} = \bigvee_{A \in \mathcal{A}_{sa}} \mathbf{s}(A)$. Below we take a look at the converse statement, namely at the question whether a C*-subalgebra \mathcal{A} of an AW*-algebra \mathcal{A} , which is an AW*-algebra on its own, is in fact an AW*-subalgebra of \mathcal{B} . We are going to restrict ourselves with the factor case, and for this purpose we introduce the following terminology.

DEFINITION. Let \mathcal{B} be an AW*-factor. An AW*-subalgebra $\mathcal{A} \subset \mathcal{B}$ is called an AW^* -subfactor of \mathcal{B} , if \mathcal{A} is a factor, and $\mathcal{A} \ni I$ – the unit in \mathcal{B} .

PROPOSITION 1.3. Let A and B be finite AW*-factors. If $\pi : A \to B$ be a unital (i.e. $\pi(I) = I$) *-homomorphism, then $\pi(A)$ is a AW*-subfactor of B.

Proof. Denote for simplicity $\pi(\mathcal{A})$ by \mathcal{M} . Since \mathcal{A} is simple, π is injective, so \mathcal{M} is *-isomorphic to \mathcal{A} . Among other things, this shows that \mathcal{M} is a factor, which contains the unit I of \mathcal{B} . We now proceed to check the two key conditions (ii) and (iii) that ensure that \mathcal{M} is an AW*-subalgebra in \mathcal{B} .

(ii). Start with some element $M \in \mathcal{M}_{sa}$, written as $M = \pi(A)$, for some $A \in \mathcal{A}_{sa}$, and let us show that $\mathbf{s}(M)$ – the support of M in \mathcal{B} – in fact belongs to \mathcal{M} . This will be the result of the following:

CLAIM 1. One has the equality $\mathbf{s}(M) = \pi(\mathbf{s}(A))$, where $\mathbf{s}(A)$ denotes the support of A in A.

Denote the projection $\pi(\mathbf{s}(A)) \in \mathbf{P}(\mathcal{M})$ by P. First of all, since $(I - \mathbf{s}(A))A = 0$ (in \mathcal{A}), we have (I - P)M = 0 in \mathcal{B} , so $(I - P) \perp \mathbf{s}(M)$, i.e. $\mathbf{s}(M) \geqslant P$. Secondly, since $q_{\mathcal{B}} \circ \pi : \mathcal{A} \to \mathbb{C}$ is a quasitrace, we must have the equality

$$q_{\mathcal{B}} \circ \pi = q_{\mathcal{A}}.\tag{2}$$

In particular the projection P has dimension $D_{\mathcal{B}}(P) = D_{\mathcal{A}}(\mathbf{s}(A))$. We know however that for a self-adjoint element X in a finite AW*-factor with quasitrace q, one has the equality $q(\mathbf{s}(X)) = \mu^X(\mathbb{R} \setminus \{0\})$, where μ^X is the scalar spectral measure, defined implicitly (using Riesz' Theorem) by

$$\int_{\mathbb{R}} f \ d\mu^{X} = q(f(X)), \ \forall f \in C_{0}(\mathbb{R}).$$

So in our case we have the equalities

$$D_{\mathcal{B}}(\mathbf{s}(M)) = \mu_{\mathcal{B}}^{M}(\mathbb{R} \setminus \{0\}), \tag{3}$$

$$D_{\mathcal{B}}(P) = D_{\mathcal{A}}(\mathbf{s}(A)) = \mu_A^A(\mathbb{R} \setminus \{0\}), \tag{4}$$

where the subscripts indicate the ambient AW*-factor. Since π is a *-homomorphism, one has the equality $\pi(f(A)) = f(M)$, $\forall f \in C_0(\mathbb{R})$, and then by (2) we get

$$\int_{\mathbb{R}} f \ d\mu_{\mathcal{B}}^{M} = q_{\mathcal{B}} \big(f(M) \big) = (q_{\mathcal{B}} \circ \pi) \big(f(A) \big) = q_{\mathcal{A}} \big(f(A) \big) = \int_{\mathbb{R}} f \ d\mu_{\mathcal{A}}^{A}, \ \forall f \in C_{0}(\mathbb{R}).$$

In particular we have the equality $\mu_{\mathcal{B}}^{M} = \mu_{\mathcal{A}}^{A}$, and then (3) and (4) will force $D_{\mathcal{B}}(\mathbf{s}(M)) = D_{\mathcal{B}}(P)$. Since $P \geqslant \mathbf{s}(M)$, the equality of dimensions will force $P = \mathbf{s}(M)$.

(iii). Start with a collection of projections $(P_i)_{i\in I} \subset \mathbf{P}(\mathcal{M})$, let $P = \bigvee_{i\in I} P_i$ (in \mathcal{B}), and let us prove that $P \in \mathcal{M}$. Write each $P_i = \pi(Q_i)$, with $Q_i \in \mathbf{P}(\mathcal{A})$, and let $Q = \bigvee_{i\in I} Q_i$ (in \mathcal{A}). The desired conclusion will result from the following.

CLAIM 2.
$$P = \pi(Q)$$
.

Denote by \mathcal{F} the collection of all finite subsets of I, which becomes a directed set with inclusion, and define the nets $P_F = \bigvee_{i \in F} P_i$ (in \mathcal{B}) and $Q_F = \bigvee_{i \in F} Q_i$ (in \mathcal{A}). On the one hand, if we consider the element $X_F = \sum_{i \in F} Q_i$, then $Q_F = \mathbf{s}(X_F)$ (in \mathcal{A}), and $P_F = \mathbf{s}\left(\sum_{i \in I} P_i\right) = \mathbf{s}\left(\pi(X_F)\right)$ (in \mathcal{B}), so by Claim 1, we have the equality $P_F = \pi(Q_F)$. On the other hand, we have $Q = \bigvee_{F \in \mathcal{F}} Q_F$ (in \mathcal{A}), with the net $Q_F = \mathbb{F}$ increasing, so we get the equality $D_{\mathcal{A}}(Q) = \lim_{F \in \mathcal{F}} D_{\mathcal{A}}(Q_F)$. Arguing the same way (in \mathcal{B}), and using the equalities $P_F = \pi(Q_F)$, we get

$$D_{\mathcal{B}}(P) = \lim_{F \in \mathcal{F}} D_{\mathcal{B}}(P_F) = \lim_{F \in \mathcal{F}} D_{\mathcal{B}} \big(\pi(Q_F) \big) = \lim_{F \in \mathcal{F}} D_{\mathcal{A}}(Q_F) = D_{\mathcal{A}}(Q) = D_{\mathcal{B}} \big(\pi(Q) \big).$$

Finally, since $[I - \pi(Q)]P_i = \pi([I - Q]Q_i) = 0$, $\forall i \in I$, we get the inequality $\pi(Q) \geqslant P$, and then the equality $D_{\mathcal{B}}(P) = D_{\mathcal{B}}(\pi(Q))$ will force $P = \pi(Q)$. \square

COMMENT. In the above proof we employed an argument based on the following property of the dimension function D on a finite AW*-factor \mathcal{A} :

(L) If a net $(P_{\lambda})_{\lambda \in \Lambda} \subset \mathbf{P}(\mathcal{A})$ is increasing, then $D(\bigvee_{\lambda \in \Lambda} P_{\lambda}) = \lim_{\lambda \in \Lambda} D(P_{\lambda})$. The literature ([1],[4]) often mentions a different feature: the complete additivity (C.A.) If $(E_i)_{i \in I} \subset \mathbf{P}(\mathcal{A})$ is an orthogonal family, then $D(\bigvee_{i \in I} E_i) = \sum_{i \in I} D(E_i)$.

262 Gabriel Nagy

To prove property (L) one can argue as follows. Let $P = \bigvee_{\lambda \in \Lambda} P_{\lambda}$, so that $D(P) \geqslant D(P_{\lambda})$, $\forall \lambda \in \Lambda$. In particular if we take $\ell = \lim_{\lambda \in \Lambda} D(P_{\lambda})$ (which exists by monotonicity), we get $D(P) \geqslant \ell$. To prove that in fact we have $D(P) = \ell$, we construct a sequence $\alpha_1 \prec \alpha_2 \prec \ldots$ in Λ , such that $\lim_{n \to \infty} D(P_{\alpha_n}) = \ell$, we consider the projection $Q = \bigvee_{n \in \mathbb{N}} P_{\alpha_n} \leqslant P$, and we show first that $D(Q) = \ell$, then Q = P. The equality $D(Q) = \ell$ follows from (C.A.) since now we can write $Q = P_{\alpha_1} \lor \bigvee_{n=1}^{\infty} [P_{\alpha_{n+1}} - P_{\alpha_n}]$ with all projections orthogonal, so we get

$$egin{aligned} D(Q) &= D(P_{lpha_1}) + \sum_{n=1}^{\infty} D(P_{lpha_{n+1}} - P_{lpha_n}) \ &= D(P_{lpha_1}) + \sum_{n=1}^{\infty} \left[D(P_{lpha_{n+1}}) - D(P_{lpha_n})
ight] = \lim_{n o \infty} D(P_{lpha_n}) = \ell. \end{aligned}$$

To prove the equality Q=P, we fix for the moment $\lambda\in\Lambda$, and integer $n\geqslant 1$, and some $\mu\in\Lambda$ with $\mu\succ\lambda$ and $\mu\succ\alpha_n$, and we observe that, using the Parallelogram Law, we have:

$$P_{\lambda} - P_{\lambda} \wedge Q \leqslant P_{\lambda} - P_{\lambda} \wedge P_{\alpha_n} \approx P_{\lambda} \vee P_{\alpha_n} - P_{\alpha_n} \leqslant P_{\mu} - P_{\alpha_n}$$

so applying the dimension function we get

$$D(P_{\lambda} - P_{\lambda} \wedge Q) \leqslant D(P_{\mu} - P_{\alpha_n}) = D(P_{\mu}) - D(P_{\alpha_n}) \leqslant \ell - D(P_{\alpha_n}).$$

Since the inequality $D(P_{\lambda}-P_{\lambda}\wedge Q)\leqslant \ell-D(P_{\alpha_n})$ holds for arbitrary $n\in\mathbb{N}$ and $\lambda\in\Lambda$, taking limit (as $n\to\infty$) yields $D(P_{\lambda}-P_{\lambda}\wedge Q)=0$, which in turn forces $P_{\lambda}=P_{\lambda}\wedge Q$, which means that $P_{\lambda}\leqslant Q$. Since this is true for all $\lambda\in\Lambda$, it will force $Q\geqslant P$, so we must have Q=P.

We now recall the ultraproduct construction of finite AW*-factors, discussed for example in [2] and [3].

NOTATIONS. Let $\mathbf{A}=(\mathcal{A}_n)_{n\in\mathbb{N}}$ be a sequence of finite AW*-factors, and let $q_n:\mathcal{A}_n\to\mathbb{C}$ denote the (unique) normalized quasitrace on \mathcal{A}_n . One considers the finite AW*-algebra

$$\mathbf{A}^{\infty} = \big\{ (X_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathcal{A}_n : \sup_{n \in \mathbb{N}} ||X_n|| < \infty \big\}.$$

Given a free ultrafilter \mathcal{U} on \mathbb{N} , one defines the quasitrace $\tau_{\mathcal{U}}: \mathbf{A}^{\infty} \to \mathbb{C}$ by

$$au_{\mathcal{U}}(\mathbf{x}) = \lim_{\mathcal{U}} q_n(X_n), \ \ \forall \, \mathbf{x} = (X_n)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}.$$

Next one considers the norm-closed ideal

$$\mathbf{J}_{\mathcal{U}} = \{ \mathbf{x} \in \mathbf{A}^{\infty} : \tau_{\mathcal{U}}(\mathbf{x}^*\mathbf{x}) = 0 \}.$$

It turns out that quotient C*-algebra $\mathbf{A}_{\mathcal{U}} = \mathbf{A}^{\infty}/\mathbf{J}_{\mathcal{U}}$ becomes a finite AW*-factor. Moreover, its (unique) normalized quasitrace $q_{\mathbf{A}_{\mathcal{U}}}$ is defined implicitly by $q_{\mathbf{A}_{\mathcal{U}}} \circ \Pi_{\mathcal{U}} = \tau_{\mathcal{U}}$, where $\Pi_{\mathcal{U}} : \mathbf{A}^{\infty} \to \mathbf{A}_{\mathcal{U}}$ denotes the quotient *-homomorphism.

The finite AW*-factor $\mathbf{A}_{\mathcal{U}}$ is referred to as the \mathcal{U} -ultraproduct of the sequence $\mathbf{A} = (\mathcal{A}_n)_{n \in \mathbb{N}}$.

REMARKS 1.2. Let $\mathbf{A} = (\mathcal{A}_n)_{n \in \mathbb{N}}$ be a sequence of finite factors.

A. With the notations above, if $\mathbf{x} = (X_n)_{n \in \mathbb{N}}$, $\mathbf{y} = (Y_n)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$ are elements that satisfy the condition $\lim_{\mathcal{U}} d_{\mathcal{A}_n}(X_n, Y_n) = 0$, then $\Pi_{\mathcal{U}}(\mathbf{x}) = \Pi_{\mathcal{U}}(\mathbf{y})$ in $\mathbf{A}_{\mathcal{U}}$. This is trivial, since the given condition forces

$$\lim_{\mathcal{U}} q_{\mathcal{A}_n} \big((X_n - Y_n)^* (X_n - Y_n) \big) = 0,$$

i.e. $\mathbf{x} - \mathbf{y} \in \mathbf{J}_{\mathcal{U}}$.

B. For $\mathbf{x} = (X_n)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$, one has the inequality: $\|\Pi_{\mathcal{U}}(\mathbf{x})\| \leq \lim_{\mathcal{U}} \|X_n\|$. To prove this inequality we start off by denoting $\lim_{\mathcal{U}} \|X_n\|$ by ℓ , and we observe that given any $\varepsilon > 0$, the set

$$U_{\varepsilon} = \{ n \in \mathbb{N} : \ell - \varepsilon < ||X_n|| < \ell + \varepsilon \}$$

belongs to \mathcal{U} , so if we define the sequence $\mathbf{x}_{\varepsilon} = (X_n^{\varepsilon})_{n \in \mathbb{N}}$ by

$$X_n^{\varepsilon} = \begin{cases} X_n & \text{if } n \notin U_{\varepsilon} \\ 0 & \text{if } n \in U_{\varepsilon} \end{cases}$$

we clearly have $\lim_{\mathcal{U}} \|X_n^{\varepsilon}\| = 0$. In particular, by part A, we have $\Pi_{\mathcal{U}}(\mathbf{x}) = \Pi_{\mathcal{U}}(\mathbf{x} - \mathbf{x}_{\varepsilon})$. Since $\|X_n - X_n^{\varepsilon}\| \le \ell + \varepsilon$, $\forall n \in \mathbb{N}$, it follows that

$$\|\Pi_{\mathcal{U}}(\mathbf{x})\| = \|\Pi_{\mathcal{U}}(\mathbf{x} - \mathbf{x}_{\varepsilon})\| \leqslant \ell + \varepsilon,$$

and since the inequality $\|\Pi_{\mathcal{U}}(\mathbf{x})\| \leq \ell + \varepsilon$ holds for all $\varepsilon > 0$, it follows that we indeed have $\|\Pi_{\mathcal{U}}(\mathbf{x})\| \leq \ell$.

EXAMPLE 1.1. Start with a finite AW*-factor \mathcal{A} of type Π_1 and a free ultrafilter \mathcal{U} on \mathbb{N} . Let $\mathcal{A}_{\mathcal{U}}$ denote the ultraproduct of the constant sequence $\mathcal{A}_n = \mathcal{A}$. For every $X \in \mathcal{A}$ let $\Gamma(X) = (X_n)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$ be the constant sequence: $X_n = X$. It is obvious that $\Gamma: \mathcal{A} \to \mathbf{A}^{\infty}$ is a unital *-homomorphism, so the composition $\Delta_{\mathcal{U}} = \Pi_{\mathcal{U}} \circ \Gamma: \mathcal{A} \to \mathcal{A}_{\mathcal{U}}$ is again a unital *-homomorphism. Using Proposition 2.1 it follows that $\Delta_{\mathcal{U}}(\mathcal{A})$ is an AW*-subfactor in $\mathcal{A}_{\mathcal{U}}$.

Moreover, if $\mathcal B$ is some finite AW*-factor, and $\pi:\mathcal B\to\mathcal A$ is some unital *-homomorphism, then the *-homomorphism $\pi_{\mathcal U}=\Delta_{\mathcal U}\circ\pi:\mathcal B\to\mathcal A_{\mathcal U}$ gives rise to an AW*-subfactor $\pi_{\mathcal U}(\mathcal B)$ of $\mathcal A_{\mathcal U}$.

2. Main Results

We start off with the analysis of the type I_{fin} situation, i.e. the algebras of the form $\operatorname{Mat}_n(\mathbb{C})$ – the $n \times n$ complex matrices. To make the exposition a little easier, we are going to use the un-normalized trace $\tau : \operatorname{Mat}_n(\mathbb{C}) \to \mathbb{C}$ with $\tau(I_n) = n$.

The main result in the type $I_{\rm fin}$ – stated in a way that will allow an inductive proof – is as follows.

THEOREM 2.1. Let $n \geqslant 1$ be an integer, and let $X \in \operatorname{Mat}_n(\mathbb{C})_{sa}$ be a matrix with $\tau(X) = 0$.

264 GABRIEL NAGY

A. For any projection $P \in \operatorname{Mat}_n(\mathbb{C})$ with PX = XP and $\tau(P) = 1$, there exist elements $A, B \in \operatorname{Mat}_n(\mathbb{C})_{sa}$ with:

- \bullet AB = BA;
- $\bullet \quad X = A B$:
- $A \approx B$:
- $\max\{\|A\|, \|B\|\} \leqslant \|X\|;$
- \bullet $A \perp P$.
- *B. X* is an abelian self-commutator in $Mat_n(C)$.

Proof. A. We are going to use induction on n. The case n=1 is trivial, since it forces X = 0, so we can take A = B = 0. Assume now property A is true for all n < N, and let us prove it for n = N. Fix some $X \in \mathrm{Mat}_N(\mathbb{C})$ with $\tau(X) = 0$, and a projection $P \in Mat_N(\mathbb{C})$ with $\tau(P) = 1$ such that PX = XP. The case X=0 is trivial, so we are going to assume $X\neq 0$. Let us list the spectrum of X as $\operatorname{Spec}(X) = \{\alpha_1 < \alpha_2 < \cdots < \alpha_m\}$, and let $(E_i)_{i=1}^m$ be the corresponding spectral projections, so that

- (i) $\tau(E_i) > 0, \forall i \in \{1, \ldots, m\};$
- (ii) $E_i \perp E_j$, $\forall i \neq j$, and $\sum_{i=1}^m E_i = I_N$; (iii) $X = \sum_{i=1}^m \alpha_i E_i$, so $\tau(X) = \sum_{i=1}^m \alpha_i \tau(E_i)$.

Since $\tau(P) = 1$ and P commutes with X, there exists a unique index $i_0 \in \{1, \dots, m\}$ such that $P \leqslant E_{i_0}$. Since none of the inclusions $\operatorname{Spec}(X) \subset (0,\infty)$ or $\operatorname{Spec}(X) \subset$ $(-\infty,0)$ is possible, there exists $i_1 \in \{1,\ldots,m\}, i_1 \neq i_0$, such that one of the following inequalities holds

$$\alpha_{i_1} < 0 \leqslant \alpha_{i_0}, \tag{5}$$

$$\alpha_{i_1} > 0 \geqslant \alpha_{i_0}.$$
 (6)

Choose then a projection $Q \leqslant E_{i_1}$ with $\tau(Q) = 1$, and let us define the elements $S = \alpha_{i_0}(P - Q)$ and Y = X - S. Notice that

$$Y = \sum_{i \neq i_0, i_0} \alpha_i E_i + \alpha_{i_1} (E_{i_1} - Q) + \alpha_{i_0} (E_{i_0} - P) + (\alpha_{i_1} + \alpha_{i_0}) Q,$$

so in particular we have $Y \perp P$. Notice also that either one of (5) or (6) yields

$$|\alpha_{i_1} + \alpha_{i_0}| \leq \max\{|\alpha_{i_0}|, |\alpha_{i_1}|\} \leq ||X||,$$

so we have $||Y|| \leq ||X||$. Finally, since both Y an Q belong to the subalgebra

$$\mathcal{A}=(I_N-P)\mathrm{Mat}_N(\mathbb{C})(I_N-P),$$

which is *-isomorphic to $\mathrm{Mat}_{N-1}(\mathbb{C})$, using the inductive hypothesis, with Y and Q (which obviously commute), there exist $A_0, B_0 \in \mathcal{A}$, with

- $A_0B_0 = B_0A_0$;
- $Y = A_0 B_0$;
- $A_0 \approx B_0$;
- $\max\{\|A_0\|,\|B_0\|\} \leqslant \|Y\| \leqslant \|X\|;$
- $A_0 \perp Q$.

It is now obvious that the elements $A = A_0 - \alpha_{i_0}Q$ and $B = B - \alpha_{i_0}P$ will satisfy the desired hypothesis (at one point, Proposition 1.1.B is invoked).

B. This statement is obvious from part A, since one can always start with an arbitrary projection $P \leqslant E_m$, with $\tau(P) = 1$, and such a projection obviously commutes with X. \square

In preparation for the type II_1 case, we have the following approximation result.

LEMMA 2.1. Let \mathcal{A} be an AW*-factor of type II_1 , and let $\varepsilon > 0$ be a real number. For any element $X \in \mathcal{A}_{sa}$, there exists an AW*-subfactor $\mathcal{B} \subset \mathcal{A}$, of type I_{fin} , and an element $B \in \mathcal{B}_{sa}$ with

- (i) $d_{\mathcal{A}}(X,B) < \varepsilon$;
- (ii) $q_{\mathcal{A}}(X) = q_{\mathcal{A}}(B)$;
- (iii) $||B|| \leq ||X|| + \varepsilon$.

Proof. We begin with the following

PARTICULAR CASE. Assume X has finite spectrum.

Let Spec(X) = { $\alpha_1 < \alpha_2 < \cdots < \alpha_m$ }, and let E_1, \ldots, E_m be the corresponding spectral projections, so that

- $D(E_i) > 0, \forall i \in \{1, ..., m\};$
- $E_i \perp E_j$, $\forall i \neq j$, and $\sum_{i=1}^m E_i = I$;
- $X = \sum_{i=1}^m \alpha_i E_i$, so $q_{\mathcal{A}}(X) = \sum_{i=1}^m \alpha_i D(E_i)$.

For any integer $n \geqslant 2$ define the set $Z_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$, and let $\theta_n : \{1, \dots, m\} \to Z_n$ be the map defined by

$$\theta_n(i) = \max \{ \zeta \in Z_n : \zeta \leqslant D(E_i) \}.$$

For every $i \in \{1, ..., m\}$, and every integer $n \ge 2$, chose $P_{ni} \in \mathbf{P}(\mathcal{A})$ be an arbitrary projection with $P_{ni} \le E_i$, and $D(P_{ni}) = \theta_n(i)$. Notice that, for a fixed $n \ge 2$, the projections $P_{n1}, ..., P_{nm}$ are pairwise orthogonal, and have dimensions in the set Z_n , hence there exists a subfactor \mathcal{B}_n of type I_n , that contains them. Define then the element $H_n = \sum_{i=1}^m \alpha_i P_{ni} \in (\mathcal{B}_n)_{sa}$. Note that $||H_n|| \le ||X||$. We wish to prove that

- (A) $\lim_{n\to\infty} d_{\mathcal{A}}(X,H_n) = 0$;
- (B) $\lim_{n\to\infty} q_{\mathcal{A}}(H_n) = q_{\mathcal{A}}(X)$.

To prove these assertions, we first observe that, for each $n \ge 2$, the elements X and H_n commute, and we have

$$X - H_n = \sum_{i=1}^m \alpha_i (E_i - P_{ni}).$$

In particular, one has

$$|q_{\mathcal{A}}(X) - q_{\mathcal{A}}(H_n)| \leqslant \sum_{i=1}^{m} |\alpha_i| \cdot D(E_i - P_{ni}) \leqslant m||X|| \cdot \max\{D(E_i - P_{ni})\}_{i=1}^{m}.$$
 (7)

Likewise, since

$$(X - H_n)^*(X - H_n) = \sum_{i=1}^m \alpha_i^2(E_i - P_{ni}),$$

we have

$$q_{\mathcal{A}}((X - H_n)^*(X - H_n)) = \sum_{i=1}^{m} \alpha_i^2 \cdot D(E_i - P_{ni})$$

$$\leq m||X||^2 \cdot \max \{D(E_i - P_{ni})\}_{i=1}^{m}.$$
(8)

By construction however we have $D(E_i - P_{ni}) < \frac{1}{n}$, so the estimates (7) and (8) give

$$|q_{\mathcal{A}}(X) - q_{\mathcal{A}}(H_n)| \leqslant \frac{m||X||}{n}$$
$$d_{\mathcal{A}}(X, H_n) \leqslant \sqrt[3]{\frac{m||X||^2}{n}},$$

which clearly give the desired assertions (A) and (B).

Using the conditions (A) and (B), we immediately see that, if we define the numbers $\beta = q_{\mathcal{A}}(X)$, $\beta_n = q_{\mathcal{A}}(H_n)$, and the elements $B_n = H_n + (\beta - \beta_n)I \in \mathcal{B}_n$, then the sequence $(B_n)_{n\geqslant 2}$ will still satisfy $\lim_{n\to\infty} d_{\mathcal{A}}(X,B_n) = 0$, but also $q_{\mathcal{A}}(B_n) = q_{\mathcal{A}}(B_n)$, and

$$||B_n|| \leq ||H_n|| + |\beta - \beta_n|| \leq ||X|| + |\beta - \beta_n|,$$

which concludes the proof of the Particular Case.

Having proven the Particular Case, we now proceed with the general case. Start with an arbitrary element $X \in \mathcal{A}_{sa}$, and pick a sequence $(T_n)_{n \in \mathbb{N}} \subset \mathcal{A}_{sa}$ of elements with finite spectrum, such that $\lim_{n \to \infty} \|T_n - X\| = 0$. (This can be done using Borel functional calculus.) Using the norm-continuity of the quasitrace, we have $\lim_{n \to \infty} q_{\mathcal{A}}(T_n) = q_{\mathcal{A}}(X)$, so if we define $X_n = T_n + \left(q_{\mathcal{A}}(X) - q_{\mathcal{A}}(T_n)\right)I$, we will still have $\lim_{n \to \infty} \|X_n - X\| = 0$, but also $q_{\mathcal{A}}(X_n) = q_{\mathcal{A}}(X)$. In particular, there exists some $k \ge 1$, such that

- $d_{\mathcal{A}}(X_k, X) < \varepsilon/2$;
- $\bullet \quad ||X_k|| < ||X|| + \varepsilon/2.$

Finally, applying the Particular Case, we can also find an AW*-subfactor $\mathcal{B} \subset \mathcal{A}$, of type I_{fin} , and an element $B \in \mathcal{B}_{sa}$ with

- $d_{\mathcal{A}}(X_k, B) < \varepsilon/2$;
- $\bullet \quad \|B\| < \|X_k\| + \varepsilon/2;$
- $\bullet \quad q_{\mathcal{A}}(X_k) = q_{\mathcal{A}}(B).$

It is then trivial that B satisfies conditions (i)-(iii). \Box

We are now in position to prove the main result in the type II_1 case.

THEOREM 2.2. Let $\mathbf{A} = (\mathcal{A}_n)_{n \in \mathbb{N}}$ be a sequence of AW*-factors of type II_1 , let \mathcal{U} be a free ultrafilter on \mathbb{N} , and let $X \in (\mathbf{A}_{\mathcal{U}})_{sa}$ be an element with $q_{\mathbf{A}_{\mathcal{U}}}(X) = 0$. Then there exist elements $A, B \in (\mathbf{A}_{\mathcal{U}})_{sa}$ with

 \bullet AB = BA;

- $\bullet \quad X = A B$;
- $A \approx B$;
- $\max\{\|A\|,\|B\|\} \leqslant \|X\|$.

In particular, X is an abelian self-commutator in $\mathbf{A}_{\mathcal{U}}$.

Proof. Write $X = \Pi_{\mathcal{U}}(\mathbf{x})$, where $\mathbf{x} = (X_n)_{n \in \mathbb{N}} \in \mathbf{A}^{\infty}$. Without loss of generality, we can assume that all X_n 's are self-adjoint, and have norm $\leq ||X||$.

Consider the elements $\tilde{X}_n = X_n - q_{\mathcal{A}_n}(X_n)I \in \mathcal{A}_n$. Remark that, since X_n is self-adjoint, we have $|q_{\mathcal{A}_n}(X_n) \leqslant \|X_n\| \leqslant \|X\|$, so we have $\|\tilde{X}_n\| \leqslant 2\|X\|$, $\forall n \in \mathbb{N}$, hence the sequence $\tilde{\boldsymbol{x}} = (\tilde{X}_n)_{n \in \mathbb{N}}$ defines an element in \mathbf{A}^{∞} . By construction, we have $\lim_{\mathcal{U}} q_{\mathcal{A}_n}(X_n) = 0$, and $d_{\mathcal{A}_n}(\tilde{X}_n, X_n) = \left|q_{\mathcal{A}_n}(X_n)\right|^{\frac{2}{3}}$, so by Remark 1.2.A it follows that $X = \Pi_{\mathcal{U}}(\boldsymbol{x}) = \Pi_{\mathcal{U}}(\tilde{\boldsymbol{x}})$.

Use Lemma 2.1 to find, for each $n \in \mathbb{N}$, an AW*-subfactor \mathcal{B}_n of \mathcal{A}_n of type I_{fin} , and and elements $Y_n \in (\mathcal{B}_n)_{sa}$ with

- (i) $d_{\mathcal{A}_n}(Y_n, \tilde{X}_n) < \frac{1}{n}$;
- (ii) $q_{\mathcal{A}_n}(Y_n) = 0, \ \forall n \in \mathbb{N};$
- (iii) $||Y_n|| \leq ||\tilde{X}_n|| + \frac{1}{n}$.

Furthermore, using Theorem 2.1, for each $n \in \mathbb{N}$, combined with the fact that $q_{\mathcal{B}_n} = q_{\mathcal{A}_n}|_{\mathcal{B}_n}$ (which implies the equality $q_{\mathcal{B}_n}(Y_n) = 0$), there exist elements $A_n, B_n \in (\mathcal{B}_n)_{sa}$ such that

- (A) $A_nB_n = B_nA_n$;
- (B) $Y_n = A_n B_n$;
- (C) $A_n \approx B_n$;
- (D) $\max\{\|A_n\|,\|B_n\|\} \leqslant \|Y_n\|$.

Choose $U_n \in \mathbf{U}(\mathcal{B}_n)$, such that $B_n = U_n A_n U_n^*$.

Let us view the sequences $\mathbf{a}=(A_n)_{n\in\mathbb{N}}$, $\mathbf{b}=(B_n)_{n\in\mathbb{N}}$, $\mathbf{u}=(U_n)_{n\in\mathbb{N}}$ as elements in the AW*-algebra \mathbf{A}^{∞} , and let us define the elements $A=\Pi_{\mathcal{U}}(\mathbf{a})$, $B=\Pi_{\mathcal{U}}(\mathbf{b})$, and $U=\Pi_{\mathcal{U}}(\mathbf{u})$ in $\mathbf{A}_{\mathcal{U}}$. Obviously A and B are self-adjoint. Since \mathbf{u} is unitary in \mathbf{A}^{∞} , it follows that U is unitary in $\mathbf{A}_{\mathcal{U}}$. Moreover, since by construction we have $\mathbf{uau}^*=\mathbf{b}$, we also have the equality $UAU^*=B$, so $A\approx B$ in $\mathbf{A}_{\mathcal{U}}$. Finally, since by construction we also have $\mathbf{ab}=\mathbf{ba}$, we also get the equality AB=BA. Since by condition (D) we have

$$\max \{ \|A_n\|, \|B_n\| \} \leqslant \|Y_n\| \leqslant \|\tilde{X}_n\| + \frac{1}{n} \leqslant \|X\| + |q_{A_n}(X_n)| + \frac{1}{n},$$

by Remark 1.2.B (combined with $\lim_{\mathcal{U}} q_{\mathcal{A}_n}(X_n) = 0$), we get the inequality

$$\max \{ \|A\|, \|B\| \} \leqslant \|X\|.$$

The proof of the Theorem will then be finished, once we prove the equality X = A - B. For this purpose, we consider the sequences $\tilde{\mathbf{x}} = (\tilde{X}_n)_{n \in \mathbb{N}}$ and $\mathbf{y} = (Y_n)_{n \in \mathbb{N}}$, both viewed as elements in \mathbf{A}^{∞} . On the one hand, since by construction we have $\mathbf{y} = \mathbf{a} - \mathbf{b}$, we get the equality $\Pi_{\mathcal{U}}(\mathbf{y}) = A - B$. On the other hand, since $\lim_{n \to \infty} d_{\mathcal{A}}(Y_n, \tilde{X}_n) = 0$, we also have $\lim_{n \to \infty} d_{\mathcal{A}}(Y_n, \tilde{X}_n) = 0$, so by Remark 1.2.A we get the equalities $X = \Pi_{\mathcal{U}}(\mathbf{x}) = \Pi_{\mathcal{U}}(\tilde{\mathbf{x}}) = \Pi_{\mathcal{U}}(\mathbf{y})$, i.e. X = A - B. \square

COMMENT. Assume \mathcal{A} an AW*-factor of type II_1 , and let \mathcal{U} be a free ultrafilter on \mathbb{N} . Following Example 1.1, \mathcal{A} is identified with the AW*-subfactor $\Delta_{\mathcal{U}}(\mathcal{A})$ of $\mathcal{A}_{\mathcal{U}}$.

268 Gabriel Nagy

Under this identification, by Theorem 2.2, every element $A \in \mathcal{A}_{sa}$ of quasitrace zero is an abelian self-commutator in \mathcal{A}_{td} .

In connection with this observation, it is legitimate to ask whether A is in fact an abelian self-commutator in \mathcal{A} itself. The discussion below aims at answering this question in a somewhat different spirit, based on the results from [5].

DEFINITION. Let \mathcal{A} be an AW*-factor of type Π_1 . An element $A \in \mathcal{A}_{sa}$ is called an *abelian approximate self-commutator in* \mathcal{A} , if there exist commuting elements $A_1, A_2 \in \mathcal{A}_{sa}$ with $A = A_1 - A_2$, and such that A_1 and A_2 are approximately unitary equivalent, i.e. there exists a sequence $(U_n)_{n \in \mathbb{N}}$ of unitaries in \mathcal{A} such that $\lim_{n \to \infty} \|U_n A_1 U_n^* - A_2\| = 0$. By [5, Theorem 2.1] the condition that A_1 and A_2 are approximately unitary equivalent – denoted by $A_1 \sim A_2$ – is equivalent to the condition $q_{\mathcal{A}}(A_1^k) = q_{\mathcal{A}}(A_2^k)$, $\forall k \in \mathbb{N}$. In particular, it is obvious that abelian approximate self-commutators have quasitrace zero.

With this terminology, one has the following result.

THEOREM 2.3. Let A be an AW^* -factor of type II_1 , and let $X \in A_{sa}$ be an element with $q_A(X) = 0$. If $D(\mathbf{s}(X)) < 1$, then X can be written as a sum $X = X_1 + X_2$, where X_1, X_2 are two commuting abelian approximate self-commutators in A.

Proof. Let $P = I - \mathbf{s}(X)$. Using the proof of Theorem 5.2 from [5], there exist elements $A_1, A_2, B_1, B_2, Y_1, Y_2, S_1, S_2 \in \mathcal{A}_{sa}$, with the following properties:

- (i) $A_1, A_2, B_1, B_2, Y_1, Y_2, S_1, S_2$ all commute;
- (ii) $A_1 \sim B_1$, $A_2 \sim B_2$, $Y_1 \sim S_1$, $Y_2 \sim S_2$, and $S_1 + S_2$ is spectrally symmetric, i.e. $(S_1 + S_2) \sim -(S_1 + S_2)$;
- (iii) $A_1 \perp A_2, B_1, P, A_2 \perp B_2, P, B_1 \perp B_2, P, \text{ and } B_2P = PB_2 = Y_1 + Y_2;$
- (iv) $Y_1, Y_2 \perp S_1, S_2$;
- (v) $Y_1, Y_2, S_1, S_2 \in PAP$;
- (vi) $X = A_1 B_1 + A_2 B_2 + Y_1 + Y_2$.

Consider then the elements

$$V_1 = A_1 + Y_1 - S_2;$$
 $V_2 = A_2 + \frac{1}{2}(S_1 + S_2);$ $W_1 = B_1 + S_1 - Y_2;$ $W_2 = B_2 - \frac{1}{2}(S_1 + S_2).$

Using the orthogonal additivity of approximate unitary equivalence (Corollary 2.1 from [5]), and the above conditions, it follows that $V_1 \sim W_1$ and $V_2 \sim W_2$. Since V_1, V_2, W_1, W_2 all commute, it follows that the elements $X_1 = V_1 - W_1$ and $X_2 = V_2 - W_2$ are abelian approximate self-commutators, and they commute. Finally, one has $X_1 + X_2 = A_1 - B_1 + A_2 - B_2 + Y_1 + Y_2 = X$. \square

COROLLARY 2.1. Let A be an AW^* -factor of type II_1 , and let $X \in A_{sa}$ be an element with $q_A(X) = 0$. There exist two commuting abelian approximate self-commutators $X_1, X_2 \in Mat_2(A)$ – the 2×2 matrix algebra – such that

$$X_1 + X_2 = \left[\begin{array}{cc} X & 0 \\ 0 & 0 \end{array} \right]. \tag{9}$$

(According to Berberian's Theorem (see [1]), the matrix algebra $Mat_2(A)$ is an AW^* -factor of type II_1 .)

Proof. Denote the matrix algebra $\operatorname{Mat}_2(\mathcal{A})$ by \mathcal{A}_2 , and let $\tilde{X} \in \mathcal{A}_2$ denote the matrix in the right hand side of (9). It is obvious that, if we consider the projection

$$E = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right],$$

then $\mathbf{s}(\tilde{X}) \leqslant E$. Since $D_{\mathcal{A}_2}(E) = \frac{1}{2} < 1$, and $q_{\mathcal{A}_2}(\tilde{X}) = \frac{1}{2}q_{\mathcal{A}}(X) = 0$, the desired conclusion follows immediately from Theorem 2.3. \square

REFERENCES

- [1] S. BERBERIAN, Baer *-rings, Springer-Verlag, New York-Heidelberg-Berlin, 1972
- [2] B. BLACKADAR, D. HANDELMAN, Dimension functions and traces on C*-algebras, J. Funct. Analysis. Vol. 45, 1982
- [3] U. HAAGERUP, Quasitraces on exact C*-algebras are traces, Preprint 1991
- [4] I. KAPLANSKY, Rings of Operators, W. A. Benjamin Inc. New York, 1968
- [5] S.H. KIM, G. NAGY, Spectral symmetry in II₁-factors, Preprint 2004, arXiv.org: math.OA/0408275
- [6] F.J. MURRAY, J. VON NEUMANN, On Rings of Operators, Ann. Math. Vol. 37, No. 1, 1937

(Received January 22, 2007)

Gabriel Nagy Department of Mathematics Kansas State University Manhattan KS 66506, U.S.A. e-mail: nagy@math.ksu.edu