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Abstract. It has long been known that the eigenvalues of a totally positive matrix interlace the
eigenvalues of its maximal leading principal submatrix. Motivated by recent questions arising
from studying the roots of certain biorthogonal polynomials, we extend the classical strict
interlacing fact to other classes of totally nonnegative matrices.

1. Introduction

An n× n matrix A is called totally nonnegative (positive), TN (TP), if all minors
of A are nonnegative (positive) (see also [1, 12, 14]). We write A ∈ TN (TP). An
important subclass of the totally nonnegativematrices, which arises in many motivating
applications, is called the oscillatory matrices. An n × n matrix is called oscillatory if
it is totally nonnegative and some positive integral power of it is totally positive. The
class of oscillatory matrices will be denoted by OSC. Finally, an n× n matrix A ∈ TN
is called reducible if A has a zero-block of size k × j with k + j = n , where the row
indices and column indices are contiguous, and the row indices either start with 1 or
end in n . If such a matrix is not reducible, then we say it is irreducible.

In their pioneering work on the theory of oscillatory matrices and sign-regular
matrices, Gantmacher and Krein [11] developed in large part the spectral theory of
oscillatory matrices. From the numerous results they established we will only mention
a few key facts.

THEOREM 1. [11] Suppose A is an n × n oscillatory matrix. Then:
1. The eigenvalues of A are real, positive and distinct.
2. If B is the (n− 1)× (n− 1) leading principal submatrix of A based on the first

n − 1 rows and columns, then B is an oscillatory matrix.
3. If B is as in (2) and the eigenvalues of A and B are denoted by λ1 < λ2 < · · · <

λn ; μ1 < μ2 < · · · < μn−1 , respectively, then

λ1 < μ1 < λ2 < μ2 < · · · < λn−1 < μn−1 < λn (1)
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As noted in [11], a classical example of an oscillatory matrix is an entry-wise
nonnegative and positive definite tridiagonal matrix – such matrices are referred to as
Jacobi matrices and appear naturally in the context of orthogonal polynomials. We
remind the reader that any irreducible entry-wise nonnegative tridiagonal matrix is
diagonally similar (via a positive diagonal matrix) to a symmetric matrix (see [11, pg.
71]). We will be making use of both of these facts throughout the paper.

Another important fact discovered by Gantmacher and Krein [11] and applied
elsewhere (see [8]) is a simple criterion for a totally nonnegativematrix to be oscillatory.

THEOREM 2. Let A = [aij] be an n × n totally nonnegative matrix. Then A
is oscillatory if and only if A is invertible and ai,i+1 > 0, ai+1,i > 0 , for each i =
1, 2, . . . , n − 1 .

In Theorem 1 (3), we refer to the list of inequalities in (1) as strict interlacing. If
we have instead the list of inequalities λ1 � μ1 � λ2 � μ2 � · · · � λn−1 � μn−1 � λn ,
then we say the eigenvalues of A and B interlace. If A is TN and not OSC, then the
eigenvalues of A and B (as defined in Theorem 1 (3)) interlace, but need not strictly
interlace (let A be the identity matrix, for example).

From an historical perspective eigenvalue interlacing type results were originally
studied in connection with Hermitian matrices (see [13, Thm. 4.3.8]). Of course for
Hermitian matrices the location of the principal submatrix is irrelevant, since Hermitian
matrices are closed under simultaneous row and column permutations. More precisely,
if A is an n × n Hermitian matrix and B = A(i) is the (n − 1) × (n − 1) principal
submatrix obtained from A by deleting the i th row and column, then the eigenvalues
of A and B interlace. For oscillatory matrices, it is crucial that i = 1 or i = n . As
a matter of completeness we demonstrate the previous claim with an example (see also
[15]). Let

B =

⎡
⎣ 1 1 0.1

2 2 1
2 2 1

⎤
⎦ . (2)

Then B is a TN matrix and the eigenvalues of B are approximately 0, .2111, 3.7889 .
Moreover, the eigenvalues of the 2 × 2 principal submatrix indexed by rows 1 and 3
(which is OSC) are .5528, 1.4472 . So in this case it is clear that conventional interlacing
of the eigenvalues does not hold for all principal submatrices of a TN matrix.

For generally positioned maximal principal submatrices of OSC matrices, the most
general eigenvalue interlacing results seems to be contained in the recent work of Pinkus
[18].

Our interest in eigenvalue interlacing of totally nonnegative matrices is motivated
from studying the roots of certain biorthogonal polynomials (see [20] for background
and section 4 for more detailed information).

2. Background and Key Lemmas

For an n×n matrix A , α ⊆ {1, 2, . . . , m} , and β ⊆ {1, 2, . . . , n} , the submatrix
of A lying in rows indexed by α and the columns indexed by β will be denoted by
A[α|β ] . Similarly, A(α|β) is the submatrix obtained from A by deleting the rows
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indexed by α and columns indexed by β . If α = β , then the principal submatrix
A[α|α] is abbreviated to A[α] , and the complementary principal submatrix to A(α) .
For brevity, if α = {i} , then A(α) is denoted by A(i) .

The (i, j)th standard basis matrix, that is the n × n matrix whose only nonzero
entry is in the (i, j)th position and this entry is a one, will be denoted by Eij . Let us
denote the matrix I + αEi,i−1 by Li(α) , i = 2, 3, . . . , n , where as usual I denotes
the identity matrix. Observe that Li(α)−1 = Li(−α) and that Li(α) is TN whenever
α � 0 .

The following lemma, originally proved by Whitney [21] in the 50’s, has become
a very powerful tool for studying many aspects of totally nonnegative matrices.

LEMMA 3. Suppose A = [aij] has the property that aj1 > 0 , and at1 = 0 for all
t > j + 1 . Then A is TN if and only if L(−aj+1,1/aj1)A is TN.

In essence, Lemma 3 claims that applying row operations on a totally nonnegative
matrix to annihilate certain entries preserves total nonnegativity. This result coupled
with the fact that total nonnegativity is closed under matrix multiplication was the
genesis for the so-called bidiagonal factorization of totally nonnegative matrices (see
[7, 10]).

As noted in the introduction if A = [aij] is an oscillatory matrix, then ai,i+1 >
0, ai+1,i > 0 , for each i = 1, 2, . . . , n−1 . Hence every oscillatory matrix is irreducible.
Furthermore, it is not difficult to verify (by considering 2 × 2 minors only) that any
totally nonnegative matrix A = [aij] is irreducible if and only if ai,i+1 > 0, ai+1,i > 0 ,
for each i = 1, 2, . . . , n − 1 . In fact much more is known about the patterns of zero
entries in an TN matrix. In the following definition the symbol ∗ in a matrix means the
corresponding entry is nonzero.

DEFINITION 4. An n × n matrix A is said to be in double echelon form if
( i ) Each row of A has one of the following forms:

1. (∗, ∗, · · · , ∗) ,
2. (∗, · · · , ∗, 0, · · · , 0) ,
3. (0, · · · , 0, ∗, · · · , ∗) , or
4. (0, · · · , 0, ∗, · · · , ∗, 0, · · · , 0) .

( ii ) The first and last nonzero entries in row i+ 1 are not to the left of the first and last
nonzero entries in row i , respectively ( i = 1, 2, . . . , n − 1 ).

Thus a matrix in double echelon form appears as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 · · · 0

∗ . . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . ∗

0 · · · 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is not difficult to see that any TN matrix with no zero rows or columns must be in
double echelon form (see also [9]). This result is sometimes referred to as shadows’
lemma (see [5]), although a more general version is also presented in [5] involving
minors of larger sizes.

Rainey and Halbetler [19] were interested in a reduction to tridiagonal form and
used Whitney’s result and the above criterion for irreducibility to demonstrate a useful
factorization result for TN matrices.

THEOREM 5. If A is an n × n nonsingular totally nonnegative matrix, then there
exists a nonsingular totally nonnegative matrix S and a tridiagonal totally nonnegative
matrix T such that

( i ) TS = SA , and

( ii ) the matrices A and T have the same eigenvalues.

Cryer [4] extended the above result to the singular case. It should be noted that if A
is irreducible and TN, then the TN tridiagonal matrix T produced during this reduction
process is reducible, only if it contains a zero line (that is either a zero row or a zero
column). For more details consult [9].

We finish this preparatory section with two final remarks on certain spectral prop-
erties of irreducible TN matrices.

The first result is concernedwith the positive eigenvalues of irreducible TNmatrices
(see [9]).

THEOREM 6. Let A be an n × n irreducible totally nonnegative matrix. Then the
positive eigenvalues of A are distinct.

Finally, we close by mentioning that in a recent paper by Li and Mathias [17]
an alternative proof was presented for the eigenvalue interlacing result (Theorem 1)
of Gantmacher and Krein. Their key idea was the fact that applying Whitney type
row operations to reduce an oscillatory matrix A to tridiagonal form T still yields a
similarity between A[{2, 3, . . . , n}] and T[{2, 3, . . . , n}] . Consequently, eigenvalue
interlacing of A reduces to the well-known tridiagonal case.

3. Main Results and Proofs

In this sectionwe state and prove ourmain result,whichmildly extendsGantmacher
and Krein’s original result on the strict interlacing of the eigenvalues of totally positive
matrices.

THEOREM 7. Suppose A = [aij] is an n×n totally nonnegativematrix and assume
that A(1) (respectively, A(n) ) is oscillatory. Then strict interlacing holds between the
eigenvalues of A and of A(1) (respectively, A(n) ) if and only if A is irreducible.

We prove the theorem for the case that A(1) is oscillatory. The other case is proved
in a similar way.
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Proof. (=⇒ ) If A is TN, reducible and A(1) is oscillatory, then from the remarks
in the previous section it follows that either a12 = 0 or a21 = 0 , or both are zero.
Assume, without loss of generality, that a12 = 0 (consider transposition otherwise).
Since A(1) is OSC, it follows that A(1) does not contain any zero lines. Hence a1k = 0
for each k = 2, 3, . . . , n . Thus A has the form,

A =
[

a11 0
y A(1)

]
.

From which it follows that the eigenvalues of A(1) are contained among the eigenvalues
of A , and consequently strict interlacing does not hold.

(⇐=) Suppose A is TN, irreducible, and that A(1) is OSC. Now if the rank
of A is n , then it follows from Theorem 2 that A is OSC. Thus an application of
Theorem 1 implies that the eigenvalues of A and of A(1) strictly interlace. Thus
assume that A is not invertible. Then, by hypothesis, the rank of A must be n − 1 .
Since A(1) is invertible and A is TN, it follows that the coefficient of x (the linear
term) in the characteristic polynomial of A is different than zero. Thus the algebraic
multiplicity of the eigenvalue zero is equal to one. Therefore A must have n − 1
positive eigenvalues. Furthermore, by an application of Theorem 6 we know that these
n − 1 positive eigenvalues must be distinct. Hence the eigenvalues of A are distinct
real numbers and the eigenvalues of A(1) are also distinct real numbers.

The idea now is to use the elementary matrices Li to eliminate the entries in the
first column (and row) of A up to a21 > 0 (and a12 > 0 ). Suppose A is of the form

A =
[

a11 xt

y A(1)

]
,

and assume that an invertible TN elementary matrix Li ( i > 2 ) is partitioned confor-
mally with A and denoted by

Li =
[

1 0
0 L′

]
.

Then applying the similarity LiA(Li)−1 yields the matrix

B = LiA(Li)−1 =
[

a11 xt(L′)−1

L′y L′A(1)(L′)−1

]
. (3)

There are two things to note about the matrix B in (3). Firstly, it follows that B(1) is
similar to A(1) , and since A(1) is invertible, so is B(1) . Secondly, if B is formed by
applyingWhitney’s theorem (Lemma3), then B will remain TN.Now suppose A = [aij]
satisfies aj+1,1 > 0 , for some j with 2 � j + 1 � n and at1 = 0 for all t > j + 1 (if
j + 1 = n , then ignore t ). Then there exists an irreducible totally nonnegative matrix
B = [bij] as in (3) such that bj+1,1 = 0 . Define i1 to be the smallest column index
such that aj+2,i1 > 0 . (Note that since A is irreducible i1 � j + 1 .) If j + 1 = 2 , then
proceed to column i1 . Since A is irreducible, ast > 0 for all s, t with |s − t| � 1 ,
hence it follows that i1 = 2 , in the case when j+1 = 2 . Otherwise j+1 > 2 . Use row
j � 2 to eliminate aj+1,1 (note that since A is irreducible aj1 > 0 ), via the elementary
nonsingular matrix Lj(α) . Consider the matrix B = Lj(α)A(Lj(α))−1 . By Lemma 3,
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Lj(α)A is totally nonnegative, and since (Lj(α))−1 is totally nonnegative, we have that
B is totally nonnegative. Clearly the (j + 1, 1)st entry of B is zero. Observe that the
only possible zero row that could arise in B is necessarily the (j + 1)st row. However,
this is impossible since B(1) is similar to the OSC matrix A(1) and j + 1 � 2 . Then
we must show that B is irreducible. There are two cases to consider: (1): i1 < j + 1 ;
or (2): i1 = j + 1 . Suppose that the first nonzero entry in row j + 1 of B is in column
t , where 2 � t � i1 . If i1 < j+1 , then we have t � i1 < j+1 and in this case bkl > 0
whenever |k − l| � 1 , so in particular, bj+1,j > 0 , bj+1,j+1 > 0 , and bj+1,j+2 > 0 .
Otherwise, suppose i1 = j+1 . Now if t < i1 , then the same reasoning as above applies.
Therefore assume that t = i1 = j + 1 . After eliminating aj+1,1 , the worst possible
case for row j + 1 of Lj(α)A is that it has the form [0, 0, . . . , 0, ∗, . . .] , where the first
nonzero occurs in column j + 1 . However, upon premultiplying Lj(α)A by Lj(α)−1

we add a positive multiple of column j+1 to column j . By the definition of t , it follows
that the (j + 1, j + 1)st entry of Lj(α)A is nonzero, and hence bj+1,j > 0 . Consider the
entry bj+1,j+2 . To show that this entry must be positive, suppose otherwise, i.e., assume
bj+1,j+2 = 0 . But in this case aj,j+2 must be positive since it was used to eliminate
this entry. Hence it is not possible that bj+1,j+2 = 0 ; otherwise the 2 × 2 minor based
on rows {j, j + 1} and columns {j + 1, j + 2} is negative, which is a contradiction.
Therefore B is irreducible since bkl > 0 for all k, l with |k − l| � 1 . Thus since B
is irreducible it follows that B(1) must be OSC. Continue this process until we have
eliminated all of the entries in column 1, below row 2. According to the above analysis
A will then be similar to an irreducible TN matrix C whose principal submatrix is
similar to A(1) . To continue the proof, we proceed on to column 2 and eliminate the
entries in column 2 below row 3. This process is continued until all the entries below
the subdiagonal of A have been eliminated. We then consider transposition, and apply
the above process to the transpose of the resulting matrix. Once all of the entries below
the subdiagonal of the transposed matrix have been eliminated, we arrive at the final
matrix D . It is crucial to observe that D is an irreducible, TN, tridiagonal matrix whose
eigenvalues are identical with the eigenvalues of A . Furthermore, the eigenvalues of
D(1) are equal to the eigenvalues of A(1) . This follows since both similarity and
transposition preserves eigenvalues. Thus we have reduced interlacing to the classical
tridiagonal case and since D is irreducible and has rank n− 1 strict interlacing follows
(see [11, pg. 68, item 2◦ ]). This completes the proof. �

We note that simple eigenvalues played a role in the above analysis, but it seems
that assuming A(1) is OSC is critical. For example, if we had just assumed that A is
TN, A(1) irreducible, and that the eigenvalues of both A and A(1) are distinct, then
strict interlacing need not hold. Consider the matrix

A =

⎡
⎢⎢⎣

10 2 1 1
2 2 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ .

Then A and A(1) satisfy the hypothesis above but both are singular, so strict interlacing
does not hold. Of course, if A(1) has distinct positive eigenvalues only, then A(1) is
OSC and we are back to Theorem 7.
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In addition, given the example in (2) it is clear that the principal submatrix of
interest must be (at least) based upon contiguous index sets (observe that B in (2)
satisfies the hypotheses in Theorem 7). Thus there is no generalization of Theorem 7
that consists of replacing A(1) by A(i) , where i ∈ {2, 3, . . . , n − 1} .

Also, it is not clear that you can consider smaller oscillatory submatrices, that
is, assume that A({1, 2}) is OSC and hope to ensure some alternate version of strict
interlacing. For example, consider the irreducible TN matrix:

A =

⎡
⎢⎢⎣

2 2 2 1
2 2 2 1
2 2 2 1
1 1 1 1

⎤
⎥⎥⎦ .

Then A({1, 2}) is OSC, but both A and A(1) are singular, and A has zero as an
eigenvalue of mutliplicity two.

However, we can offer a mild generalization of Theorem 7 to include smaller sized
contiguous principal submatrices. A simple consequence of (1) (consult [13] for the
Hermitian case) is that if A is an n × n TN matrix and B is an (n − r) × (n − r)
principal submatrix of A based on a contiguous index set, and if the eigenvalues of A
and B are denoted by λ1 � λ2 � · · · � λn ; μ1 � μ2 � · · · � μn−r , respectively, then

λk � μk � λk+r, (4)

where k = 1, 2, . . . , n − r . When A is OSC the interlacing is strict, and we have

λk < μk < λk+r, (5)

where k = 1, 2, . . . , n − r .
We are now in a position to extend Theorem 7 to include certain smaller sized

principal submatrices.

COROLLARY 8. Suppose A is an n×n totally nonnegativematrix and assume that
B = A[{i, i+1, . . . , i+n−r−1}] is an (n−r)×(n−r) contiguousprincipal submatrix
of A that is oscillatory. Then strict interlacing holds (in the sense of (5)) between the
eigenvalues of A and of B if and only if at least one of A[{i−1, i, i+1, . . . , i+n−r−1}]
or A[{i, i + 1, . . . , i + n − r − 1, i + n − r}] is irreducible.

Proof. Suppose that C = A[{i−1, i, i+1, . . . , i+n− r−1}] is irreducible (in the
event that i = 1 it is evident that the only submatrix of interest is A[{i, i+1, . . . , i+n−
r− 1, i + n− r}] , to which a similar argument will apply). Let the eigenvalues of C be
ν1 < ν2 < · · · < νn−r+1 (from the proof of Theorem 7 we know that the eigenvalues
of C are distinct). Applying Theorem 7 to the submatrix C , we may conclude that
strict interlacing holds between the eigenvalues of C and B ; that is, νk < μk < νk+1,
for k = 1, 2, . . . , n − r . These strict inequalities combined with the usual interlacing
inequalities that hold between the eigenvalues of A and C (see (5)) imply

λk � νk < μk < νk+1 � λk+r.

Hence strict interlacing holds between the eigenvalues of A and B , as desired.
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The converse follows easily from the proof of Theorem 7 in the sense that if both
A[{i− 1, i, i + 1, . . . , i + n − r − 1}] or A[{i, i + 1, . . . , i + n − r − 1, i + n − r}] are
reducible, then A will be block triangularwith B as one of its main diagonal blocks. �

4. Applications to Biorthogonal Polynomials

In the theory of coupled random matrices it is of interest to study the biorthogonal
polynomials associated with the measure dμ(x, y) = e−V(x)−W(y)+2τxy , where V and W
are polynomials of even degree and τ ∈ R\ {0} (see, e.g., [2], [6], [16]). The biorthog-
onal polynomials related to this measure are defined as two families of polynomials
{pj} and {qk} , so that degpj = j and degqk = k and

∫
R

∫
R

pj(x)qk(y)dμ(x, y) = 0, j �= k. (6)

When we normalize the polynomials pj and qk to be monic, they are uniquely defined
by (6). While traditional orthogonal polynomials have the interlacing roots property
(see, e.g., [3]) it is still an open question whether biorthogonal polynomials exhibit this
property (see [6]). In [20] it was recently shown that the biorthogonal polynomials
related to the measure e−x4−y2+2τxydxdy have the interlacing property. To be precise,
the following was the main result in [20].

THEOREM 9. [20] Let dμ(x, y) = e−x4−y2+2τxydxdy . The roots of the polynomials
qk and qk−1 interlace. When k is even the interlacing is strict.

For the particular measure above the polynomials pj are traditional orthogonal

polynomials with respect to the measure e−x4+τ2x2
dx on R , and therefore they have the

interlacing roots property automatically. As a corollary of Theorem 7 we now have the
following sharpening of Theorem 9.

COROLLARY 10. Let dμ(x, y) = e−x4−y2+2τxydxdy . The roots of the polynomials
qk and qk−1 also interlace strictly when k is odd.

In order to prove Corollary 10, we need to recall some of the arguments used in
[20]. As the polynomials pj(x) are classical orthogonal polynomials they satisfy a three
term recurrence relation which in this case has the form

xpj(x) = pj+1(x) + a2
j pj−1(x), j = 0, 1, . . . , (7)

where p−1 ≡ 0 , a0 = 0 and aj > 0 , j � 1 . The polynomials qk satisfy a five term
recurrence relation of the form

yqk(y) = qk+1(y) + bkqk−1(y) + ckqk−3(y) (8)
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(see [2, Section 2.1]). In fact, the polynomial qn(y) is the characteristic polynomials of
the banded Hessenberg matrix

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 · · ·
b1 0 1 0 0 · · ·
0 b2 0 1 0 · · ·
c3 0 b3 0 1

. . .
. . .

. . .
. . .

. . .
cn−1 0 bn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Using integration by parts one can show (see [20]) that the coefficients ak , bk and ck

are related in the following way:

bk = 2(a2
k+1 + a2

k + a2
k−1)a

2
k =

k
2

+ τ2a2
k , k � 1, (9)

ck+2 = 2τ2a2
ka

2
k+1a

2
k+2, k � 1. (10)

A crucial result in [20] was that (9) and (10) imply that the tridiagonal matrices

Gm =

⎛
⎜⎜⎜⎝

b1 1 0 · · ·
c3 b3 1

. . .
. . .

. . .
. . .

· · · 0 c2m−1 b2m−1

⎞
⎟⎟⎟⎠ , Lm :=

⎛
⎜⎜⎜⎝

b2 1 0 · · ·
c4 b4 1

. . .
. . .

. . .
. . .

· · · 0 c2m b2m

⎞
⎟⎟⎟⎠

are oscillatory. We now have what we need to prove the Corollary 10. We let ej denote
the j th standard vector containing all zeros except in the j th position. The size of the
vector ej should be clear from the context.

Proof of Corollary 10. Reordering the rows and columns of An in such a way that
the odd numbered rows and columns come first and then the even rows and numbers,
we easily see that xI2m − A2m is permutation similar to(

xIm −
(

eT
1 0

Lm−1 em−1

)
−Gm xIm

)
(11)

and that xI2m+1 − A2m+1 is permutation similar to⎛
⎝ xIm+1 −

(
eT
1

Lm

)
− ( Gm em ) xIm

⎞
⎠ . (12)

In general we have the observation that for x �= 0

det

(
xIk P
Q xIl

)
= xl det(xIk − 1

x
PQ) = xl−k det(x2Ik − PQ) = xk−l det(x2Il − QP).

If we apply this observation to (11) and (12) we get that



280 SHAUN M. FALLAT AND HUGO J. WOERDEMAN

• the eigenvalues of A2m are the positive and negative square roots of the eigenvalues
of (

eT
1 0

Lm−1 em−1

)
Gm, (13)

• the eigenvalues of A2m+1 are the positive and negative square roots of the eigen-
values of (

eT
1

Lm

)
( Gm em ) , (14)

where the zero eigenvalue should be counted only once.
Notice that the matrices in (13) and (14) are easily seen to be totally nonnegative (as
they are products of totally nonnegative matrices) and irreducible. In addition, the
matrix in (13) is nonsingular and has positive sub- and superdiagonal entries, and is
therefore oscillatory (Theorem 2). As

(
eT
1

Lm

)
( Gm em ) =

⎛
⎝ eT

1 0
Lm−1 em−1

c2meT
m−1 b2m

⎞
⎠ ( Gm em ) ,

we have that the matrix in (13) is obtained from the matrix in (14) by removing the
last row and column. We now obtain from Theorem 7 that the roots of q2m and q2m+1

strictly interlace. �
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