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SPHERICAL POTENTIALS OF COMPLEX

ORDER IN WEIGHTED GENERALIZED HÖLDER

SPACES WITH RADIAL OSCILLATING WEIGHTS
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(communicated by Ilya Spitkovsky)

Abstract. For the spherical potential and hypersingular operators, in general of complex order
including the purely imaginary case, there are proved weighted Zygmund type estimates with
radial type weights of the Zygmund-Bary-Stechkin class, which may oscillate between power
functions. Bymeans of those estimates there are proved boundedness theorems for these operators
in weighted generalized Hölder spaces and it is shown that the potential type operator realizes a
certain isomorphism within the frameworks of such spaces.

1. Introduction

We consider the spherical potential operator

(Kα f )(x) =
1

γn−1(α)

∫
Sn−1

f (σ)
|x − σ|n−1−α dσ, x ∈ S

n−1, 0 < Reα < n − 1, (1.1)

see for instance [8], p.151, and the related hypersingular integral

(Dα f )(x) =
1

γn−1(−α)
lim
ε→0

∫
S
n−1

|x−σ|�ε

f (σ) − f (x)
|x − σ|n−1+α dσ, x ∈ S

n−1, (1.2)

where 0 � Reα < 2,α �= 0 and γn−1(α) is the known normalizing constant. We
refer to [8], Ch.6, for spherical hypersingular integrals.

Note that the operator (1.1) is well defined (almost everywhere) for all integrable
functions f ∈ L1(Sn−1) , while the domain of the operator (1.2) if studied within
the frameworks of Lebesgue integrable functions needs a special description and the
integral in (1.2) must be interpreted in the principal value sense, see details for the case
of Lebesgue spaces in [8], Ch.6. The advantage of using the generalized Hölder spaces
(as opposed to say weighted Lebesgue spaces) is that the hypersingular integrals on
these spaces converge absolutely everywhere except maybe for the nodes of the weight.
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In papers [10], [11] for the spherical operators (1.1)-(1.2) of real order α > 0
and in [12], [13], [14] for complex order with Reα ∈ (0, 1) there were obtained
Zygmund type estimates in non-weighted case and weighted case with power weight
ρ(x) = |x − a|μ , a ∈ S

n−1 . An extension of such estimates to more general weights
was an open problem. This problem is partially solved in this paper by admitting radial

type weights ρ(x) =
N∏

k=1
ϕk(|x − ak|) associated with some points ak ∈ S

n−1 , where

the functions ϕk belong to a certain subclass of the Bari-Stechkin class Φ0
n−1±Reα and

thereby may oscillate between two power functions.
Using the obtained weighted Zygmund type estimates we prove boundedness

theorems for operators (1.1)-(1.2) in weighted generalizedHölder spaces Hω(Sn−1, ρ) .
The characteristic ω(t) of the space is assumed to belong to a certain class Φδ

β of Bary-
Stechkin type, with the parameters β and δ depending on Reα and n . In its turn,
these boundedness theorems are used to prove that the operator Kα with 0 < Reα < 1
realizes the isomorphism

Kα [Hω
0 (Sn−1, ρ)] = H

ωα
0 (Sn−1, ρ),

and similarly
D±iθ [Hω

0 (Sn−1ρ)] = Hω
0 (Sn−1, ρ),

where ωα(t) = tReαω(t).
The result on the isomorphism is based on the fact that the operator

Dα =
1
bn

I + Dα with bn =
Γ
(

n−1−α
2

)
Γ
(

n−1+α
2

) ,

is left inverse to Kα , see [8], Ch.6.
Observe that the corresponding statements in the one-dimensional case, for the

Riemann-Liouville fractional integrals and Marchaud fractional derivatives, in a similar
setting were obtained in [9], Th. 6, see also [4] and [3], Th. 4.10.

Various constants, the value of which is not important, will be denoted in the sequel
by c or C .

The main results are proved for the case n � 3 . The case n = 2 may be treated
similarly but it requires some technical modifications.

2. Preliminaries

We use the following standard notation:
x = (x1, x2, ..., xn), |x| =

√
x2
1 + x2

2 + ... + x2
n;

x · y = x1y1 + x2y2 + ... + xnyn;

S
n−1 = {x : x ∈ R

n, |x| = 1}, n � 2; |Sn−1| = 2π
n−1

2

Γ( n−1
2 ) ;

γn−1(α) = 2απ
n−1

2
Γ( α

2 )
Γ( n−1−α

2 ) (treated as the analytical continuation when Reα � 0 ),

ω(f , h) = sup
|x−σ|�h
x,σ∈Sn−1

|f (x) − f (σ)|.
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2.1. On some spherical integrals

From the Catalan formula (see for instance, [8], Ch.6)

∫
Sn−1

f (x · σ) dσ = Cn

1∫
−1

f (t)(1 − t2)(n−3)/2 dt, x ∈ S
n−1,

where Cn = |Sn−2| , taking into account that |x − σ| =
√

2(1 − x · σ) , we derive that
the integral

J(a, b) =
∫

a<|x−σ|<b

g(|x − σ|) dσ, x ∈ S
n−1

where 0 � a < b � 2 , may be calculated by the formula

J(a, b) = 23−nCn

b∫
a

g(u)un−2(4 − u2)
n−3

2 du. (2.1)

From (2.1) it follows that

|J(a, b)| � Cn

b∫
a

|g(u)|un−2 du (2.2)

in the case n � 3 .

2.2. The generalized Hölder spaces and classes of characteristics and weights

We recall that a non-negative function ω on [0, �] is called almost increasing (or
almost decreasing), if there exists a constant c � 1 , such that ω(x) � cω(y) for all
0 � x � y � � (or � � x � y � 0 , respectively), � > 0 . In the sequel we take � = 2 ,
when working with radial weights on the unit sphere.

DEFINITION 2.1. We say that ω(x) ∈ W = W([0, 2]) , if
1) ω is continuous on (0, 2] ;
2) lim

x→+0
ω(x) = 0 , ω(x) �= 0 , 0 < x � 2 ;

3) ω(x) is almost increasing.

The following numbers

m(w) = sup
x>1

ln
[
limh→0

w(xh)
w(h)

]
ln x

, M(w) = inf
x>1

ln
[
limh→0

w(xh)
w(h)

]
ln x

, (2.3)

introduced in such a form in [5], [6] are well defined for non-negative functions, in
particular, for w ∈ W they are known as the lower and upper indices of the function
w . In case w ∈ W we have 0 � m(w) � M(w) � ∞ ; we refer also to [3], [7] for
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properties of functions w ∈ W related to these indices. Observe that the relations below
follow directly from the definitions in (2.3):

m

(
1
w

)
= −M(w), (2.4)

m(u) + m(v) � m(uv) � M(uv) � M(u) + M(v). (2.5)

DEFINITION 2.2. Let ω ∈ W([0, 2]) . By Hω(Sn−1) we denote the Banach
algebra of functions f ∈ C(Sn−1) such that ω(f , t) � cω(t), equipped with the norm

‖f ‖Hω (Sn−1) = ‖f ‖C(Sn−1) + sup
0<t<2

ω(f , t)
ω(t)

, (2.6)

and define
Hω(Sn−1, ρ) = {f : ρf ∈ Hω(Sn−1)}

with the naturally defined norm. For a given finite set of points

Π = {a1, a2, . . . , aN} ⊂ S
n−1

we introduce also the subspace

Hω
0 (Sn−1) = Hω

Π,0(S
n−1) = {f ∈ Hω(Sn−1) : f (x) = 0, x ∈ Π}.

Finally, we introduce the weighted space

Hω
0 (Sn−1, ρ) = {f ∈ Hω(Sn−1, ρ) : lim

x→ak∈Π
(ρf )(x) = 0, k = 1, ..., N}.

The space Hω(Sn−1) is non-trivial, if sup
t>0

t
ω(t) < ∞ .

To define the class of admissible characteristics ω and weights ϕ(|x − a|) we
need the following definitions (following ideas in [9], [3]).

DEFINITION 2.3. By Wμ = Wμ([0, 2]) , μ > 0 , we denote the subclass of

functions ϕ ∈ W such that ϕ(x)
xμ is almost decreasing on [0, 2] , and by Wν , ν > 0 , we

denote the subclass of functions ω ∈ W such that ϕ(x)
xν is almost increasing on [0, 2] ,

and
Wν

μ = Wμ ∩ Wν,μ > ν. (2.7)
Observe that

ϕ ∈ Wμ , μ > 0 =⇒ ϕ(x + y) � c[ϕ(x) + ϕ(y)] (2.8)

(with c in general depending on ϕ ).

DEFINITION 2.4. We say that ϕ ∈ K∗ = K∗([0, 2]) or ϕ ∈ K∗ = K∗([0, 2]) , if
ϕ belongs to W and satisfies the condition

|ϕ(x) − ϕ(y)| � c|x − y|ϕ(ξ∗)
ξ∗ , ξ∗ = max(x, y). (2.9)

or

|ϕ(x) − ϕ(y)| � c|x − y|ϕ(ξ∗)
ξ∗

, ξ∗ = min(x, y), (2.10)

respectively.



SPHERICAL POTENTIALS OF COMPLEX ORDER . . . 287

Observe that functions ϕ ∈ K∗ ∩ W1 satisfy the inequalities

|ϕ(x) − ϕ(y)| � c|x − y|ϕ(x)
x

, y � x > 0, (2.11)

that is, K∗ ∩ W1 ⊂ K∗ ∩ W1 , and

|ϕ(x) − ϕ(y)| � cϕ(|x − y|). (2.12)

Note also that

|ϕ(x) − ϕ(y)| � c|x − y|ϕ(x + y)
x + y

(2.13)

for ϕ ∈ K∗ ∩ W1 , and∣∣∣∣ϕ(x) − ϕ(y)
ϕ(y)

∣∣∣∣ � c

[ |x − y|
x + y

+
ϕ(|x − y|)

ϕ(y)

]
(2.14)

for ϕ ∈ K∗∩W1
ν , ν > 1 . Inequality (2.14) is obtained from (2.13) taking into account

that x + y � |x − y| + 2|y|.
DEFINITION 2.5. By Zδ , δ � 0, we denote the class of functions ω ∈ W

satisfying the Zygmund condition
∫ x

0

(
x
t

)δ ω(t)
t dt � cω(x), and by Zβ , β > 0 , the

class of functions ω ∈ W , satisfying the condition
∫ 2

x

(
x
t

)β ω(t)
t dt � cω(x), and by

Φδ
β = Zδ ∩ Zβ , 0 � δ < β , we denote the Bari-Stechkin-type class.

The class Φ0
β was introduced and studied in case of monotonic functions ω in

[1]. We refer for instance to [3], [7] for properties of functions ω ∈ Φδ
β , quoting some

of them:
Φδ
β = ∅ in the case δ � β ; (2.15)

Φδ1
β1
∩Φδ2

β2
= Φmax(δ1,δ2)

min(β1,β2)
and Φδ2

β2
⊂ Φδ1

β1
, δ2 � δ1, β2 � β1, (2.16)

ω ∈ Φδ
β ⇐⇒ δ < m(w) � M(w) < β , (2.17)

m(ω) = sup

{
ν > 0 :

ω(x)
xν

is almost increasing

}
, (2.18)

M(ω) = inf

{
μ > 0 :

ω(x)
xμ

is almost decreasing

}
, (2.19)

ω ∈ Φδ
β ⇐⇒ tρω(t) ∈ Φδ+ρ

β+ρ , ρ � −δ, (2.20)

ω ∈ Φδ
β =⇒ c1t

M(ω)+ε � ω(t) � c2t
m(ω)−ε , 0 � t � 2 (2.21)

for all ε > 0 , ci = ci(ε), i = 1, 2.
From properties (2.17), (2.18) and (2.19) it is easily derived that for 0 < ν <

μ < ∞ the following embeddings hold

Wν+δ
μ−δ ⊂ Φν

μ ⊂ Wν−ε
μ+ε , (2.22)

where 0 < δ < μ−ν
2 , 0 < ε � ν.

From (2.17) and (2.22) the following statement follows
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LEMMA 2.6. For a function ϕ ∈ W to belong to Wν
μ , the condition ν � m(ϕ) �

M(ϕ) � μ is necessary and the condition ν < m(ϕ) � M(ϕ) < μ is sufficient.

We need also the following lemma (compare with Lemma 8.2 in [6]).

LEMMA 2.7. Let ω ∈ Φ := Φ0
1 and let ϕ be a bounded function on [0, 2] ,

satisfying the condition

|ϕ(t) − ϕ(τ)| � C
|t − τ|

min(t, τ)
, t, τ ∈ (0, 2]. (2.23)

Then functions of the form ρ(x) = ϕ(|x−a|), a ∈ S
n−1 , are multipliers in Hω

Π,0(S
n−1) ,

Π = {a} .

Proof. Let f ∈ Hω
0 (Sn−1) , x, y ∈ S

n−1 and |x − y| � h . We have to show that

|ρ(x)f (x) − ρ(y)f (y)| � Cω(h). (2.24)

Suppose for definiteness that |x−a| � |y−a| . Taking into account that f (a) = 0 ,
we have

|ρ(x)f (x) − ρ(y)f (y)| � Cω(f , h) + ω(f , |x − a|)|ϕ(|x − a|) − ϕ(|y − a|)|.

If |x − a| � h , estimate (2.24) is obvious by the boundedness of ϕ . In the case
|x−a| > h , it suffices to make use of (2.23) and the fact that ω(f ,t)

t is almost decreasing
(see for instance, [2], p. 50):

ω(f 0, t2)
t2

� 2
ω(f 0, t1)

t1
forall 0 < t1 � t2. � (2.25)

COROLLARY 2.8. Any function ϕ(|x− a|), a ∈ S
n−1 , where ϕ ∈ K∗ ∩Wμ([0, 2])

or ϕ ∈ K∗∩Wμ([0, 2]) , 0 < μ < 2 , is a multiplier in the space Hω
Π,0(S

n−1), Π = {a} ,
ω ∈ Φ .

Indeed, if 0 < μ � 1 , then Corollary’s statement follows immediately from
Lemma 2.7. If μ > 1 , then ϕ(t) = tϕ0(t) , with ϕ0(t) = ϕ(t)

t , where t generates an
evident multiplier t = |x − a| , while ϕ0(t) satisfies the condition (2.23), which may
be directly checked. Hence ϕ0(|x − a|) is a multiplier as well.

3. On spherical potentials in non-weighted space Hω(Sn−1)

We will use the following Zygmund type estimates for spherical potentials and
spherical hypersingular integrals obtained in [10] for real exponents α and in [12] for
complex values of α , including also the purely imaginary case α = iθ (see also [11],
[13] and [14] for some modifications and generalizations).
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THEOREM 3.1. Let f ∈ C(Sn−1) and 0 < Reα < 1 . Then

ω(Kα f , h) � ch

2∫
h

ω(f , t)
t2−Reα dt and ω(Dα f , h) � c

h∫
0

ω(f , t)
t1+Re α dt, 0 < h < 1.

For the pure imaginary case α = iθ the corresponding statement is as follows.

THEOREM 3.2. Let f ∈ C(Sn−1) and θ ∈ R
1 \ {0} . Then

ω(Diθ f , h) � c

⎛
⎝ h∫

0

ω(f , t)
t

dt + h

2∫
h

ω(f , t)
t2

dt

⎞
⎠ .

The following theorems were obtained in [11] and [13] (see also[14]) by means of
the above estimates.

THEOREM 3.3. Let 0 < Reα < 1 . If ω ∈ Z1−Reα , then the operator Kα is
bounded from the space Hω(Sn−1) to the space Hωα (Sn−1) . If ω ∈ ZReα , then the
operator Dα is bounded from the space Hω(Sn−1) to the space Hω−α (Sn−1) .

THEOREM 3.4. Let ω ∈ Φ0
1 and θ ∈ R

1 \ {0} . Then the operator Diθ is
bounded in the space Hω

0 (Sn−1) .

In [11] the following lemma was proved, which will be used in the sequel.

LEMMA 3.5. Let x, y,σ ∈ S
n−1 . If |x − σ| � 2|x− y|, then for every γ > 0 the

following inequality holds∣∣|x − σ|−γ − |y − σ|−γ ∣∣ � c
|x − y|

|x − σ|γ (|x − σ| + |x − y|) . (3.1)

4. Weighted Zygmund type estimates

We consider the weights of the form

ρ(x) =
N∏

k=1

ϕk(|x − ak|), ak ∈ S
n−1. (4.1)

In Section 5. we formulate the boundedness theorems, which is our main goal,
for the case of weights (4.1). The proof of these theorems is based on the statements
on Zygmund type estimates, obtained in this Section. Since we may separate the
singularities of the weight, see Subsection 6.1., it suffices to prove the Zygmund type
estimates for the case of a single weight

ρ(x) = ϕ(|x − a|), a ∈ S
n−1. (4.2)

4.1. Formulation of the main results

Theorems4.1-4.3given belowwere proved in [10]-[14] in the case of powerweights
ϕ(t) = tμ . The proof for our more general weights follows mainly the same ideas,
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but require an essential modification, related to the usage of the technique of the index
numbers of almost monotonic functions. The most modifications is required for the
case of purely imaginary order α = iθ . For this reason we will dwell in the sequel
only on the proof of Theorem 4.3. The proof of Theorems 4.1-4.2 may be obtained by
the same scheme.

4.1.1. The case 0 < Reα < 1

THEOREM 4.1. Let ρ(x) be the weight (4.2) with ϕ ∈ K∗ ∩ W1 or ϕ ∈
K∗ ∩ W1

n−1−Reα , let ρ(x)f (x) ∈ C(Sn−1) and (ρf )(a) = 0 . Then the potential
operator Kα , 0 < Reα < 1, admits the following Zygmund type estimate

ω(ρKα f , h) � cψ(h)

2∫
h

ω(ρf , t)
t1−Reαψ(t)

dt, (4.3)

where ψ(t) =
{
ϕ(t), when ϕ ∈ K∗ ∩ W1,
t, when ϕ ∈ K∗ ∩ W1

n−1−Reα .

THEOREM 4.2. Let ρ(x) be the weight (4.2) with ϕ ∈ K∗ ∩ W1 or ϕ ∈
K∗ ∩ W1

n−1+Reα , let ρ(x)f (x) ∈ C(Sn−1) and (ρf )(a) = 0 . Then the hypersingular
operator Dα , 0 < Reα < 1, admits the following Zygmund type estimate

ω(ρDα f , h) � c

⎧⎨
⎩

h∫
0

ω(ρf , t)
t1+Reα dt + ψ(h)

2∫
h

ω(ρf , t)
t1+Re αψ(t)

dt

⎫⎬
⎭ (4.4)

where ψ(t) =
{
ϕ(t), when ϕ ∈ K∗ ∩ W1,
t, when ϕ ∈ K∗ ∩ W1

n−1+Reα .

4.1.2. The case Reα = 0,α �= 0

THEOREM 4.3. Let ρ(x) be the weight (4.2)with ϕ ∈ K∗∩W1 or ϕ ∈ K∗∩W1
n−1 ,

let ρ(x)f (x) ∈ C(Sn−1) and (ρf )(a) = 0 . Then

ω(ρDiθ f , h) � c

⎧⎨
⎩

h∫
0

ω(ρf , t)
t

dt + ψ(h)

2∫
h

ω(ρf , t)
tψ(t)

dt

⎫⎬
⎭ , (4.5)

where ψ(t) =
{
ϕ(t), when ϕ ∈ K∗ ∩ W1,
t, when ϕ ∈ K∗ ∩ W1

n−1.



SPHERICAL POTENTIALS OF COMPLEX ORDER . . . 291

REMARK 4.4. The estimates of the type (4.3), (4.4), (4.5) for the case of theweight
(4.1) are similar. The proof is the same, requiring only some technical complications.
For instance, estimate (4.4) is as follows

ω(ρDα f , h) � c

⎧⎨
⎩

h∫
0

ω(ρf , t)
t1+Reα dt +

N∑
k=1

ψk(h)

2∫
h

ω(ρf , t)
t1+Reαψk(t)

dt

⎫⎬
⎭ (4.6)

with

ψk(t) =
{
ϕk(t), when ϕk ∈ K∗ ∩ W1,
t, when ϕk ∈ K∗ ∩ W1

n−1+Reα .
(4.7)

4.2. Proof of Theorem 4.3

We denote f 0(σ) = ρ(σ)f (σ) = ϕ(|σ − a|)f (σ) for brevity, so that

f 0(a) = 0 and |f 0(σ)| � ω(f 0, |σ − a|) for f ∈ Hω
0 (ρ, Sn−1).

We have
ρ(x)(Diθ f )(x) = (Diθ f 0)(x) + g(x), (4.8)

where

g(x) =
1

γn−1(−iθ)

∫
Sn−1

ϕ(|x − a|) − ϕ(|σ − a|)
ϕ(|σ − a|)|x − σ|n−1+iθ f 0(σ)dσ.

The estimate of the continuity modulus of the first term in (4.8) is given by Theorem
3.2. For the estimation of ω(g, h) , we denote

Δ(x,σ) =
ϕ(|x − a|) − ϕ(|σ − a|)
ϕ(|σ − a|)|x − σ|n−1+iθ (4.9)

and observe that
|Δ(x,σ)| � c

|σ − a||x − σ|n−2
(4.10)

in view of (2.9) and (2.12). We represent g(x) − g(y) as

g(x) − g(y) =
∫

|x−σ|<2h

Δ(x,σ)f 0(σ)dσ −
∫

|x−σ|<2h

Δ(y,σ)f 0(σ)dσ

+
∫

|x−σ|>2h

{Δ(x,σ) − Δ(y,σ)} f 0(σ)dσ = I1 + I2 + I3. (4.11)

We will separately estimate every term. We denote |x − y| = h and suppose that
|x − a| > |y − a| for definiteness.

1 ◦ . The case ϕ ∈ K∗ ∩ W1 .

For I1 we have

I1 =
∫

|x−σ|<2h
|σ−a|�|x−σ|

Δ(x,σ)f 0(σ)dσ +
∫

|x−σ|<2h
|σ−a|�|x−σ|

Δ(x,σ)f 0(σ)dσ =: I′i + I′′1 . (4.12)
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The term I′i is estimated as follows

|I′i | � c
∫

|x−σ|<2h
|x−σ|<|σ−a|

ω(f 0, |σ − a|)
|σ − a||x − σ|n−2

dσ � c

h∫
0

ω(f 0, t)
t

dt

by estimate (4.10), property (2.25) and inequality (2.2). For the integral I′′1 , by (4.10)
and the embedding {|σ − a| < |σ − x| < 2h} ⊂ {|σ − a| < 2h} and inequality (2.2)
we obtain

|I′′1 | � c
∫

|σ−a|<2h

w(f 0, |σ − a|)
|σ − a|n−1

dσ � c

h∫
0

ω(f 0, t)
t

dt.

Hence

|I1| � c

h∫
0

ω(f 0, t)
t

dt. (4.13)

The term I2 is similarly estimated.
To consider I3 , we first need to estimate the difference |Δ(x,σ) − Δ(y,σ)| . We

make use of inequalities (2.9), (2.12), (3.1), the fact that ϕ is almost increasing
and ϕ(t)

t is almost decreasing, the assumption |y − a| < |x − a| and the inequality
|σ − a| � |x − σ| + |x − a| , and get

|Δ(x,σ) − Δ(y,σ)| � ch
|σ − a||x − σ|n−1 +

cϕ(h)
|σ − a||x − σ|n−2ϕ(|x − σ|) . (4.14)

Since |x − σ| > h in I3 and ϕ(t)
t is almost decreasing, from (4.14) we finally have

|Δ(x,σ) − Δ(y,σ)| � cϕ(h)
|σ − a||x − σ|n−2ϕ(|x − σ|) . (4.15)

We split the integration in I3 :

I3 =
∫

|x−σ|>2h
|x−σ|<|a−σ|

· · · dσ +
∫

|x−σ|>2h
|x−σ|>|a−σ|>2h

· · · dσ +
∫

|x−σ|>2h
|x−σ|>2h>|a−σ|

· · · dσ =: I′3 + I′′3 + I′′′3 .

By (4.15) and (2.2) we obtain

|I′3| � cϕ(h)
∫

|x−σ|>2h

ω(f 0, |x − σ|)
|x − σ|n−1ϕ(|x − σ|)dσ � cϕ(h)

2∫
h

ω(f 0, t)
tϕ(t)

dt. (4.16)

Similarly

|I′′3 | � cϕ(h)
∫

|x−σ|>|a−σ|>2h

ω(f 0, |σ − a|)
|σ − a|n−1ϕ(|σ − a|)dσ � cϕ(h)

2∫
h

ω(f 0, t)
tϕ(t)

dt. (4.17)
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Finally, for I′′′3 we observe that the right hand side of (4.15) is dominated by ch2−n|σ−
a|−1 , which yields

|I3| � ch2−n
∫

|a−σ|<2h

ω(f 0, |σ − a|)
|σ − a| dσ � cω(f 0, h)

In view of (2.25) we have

ω(f 0, h) � 2

h∫
0

ω(f 0, t) dt
t

and then

|I3| � c

h∫
0

ω(f 0, t) dt
t

. (4.18)

Gathering estimates (4.13), a similar estimate for the term I2 and estimates (4.16),
(4.17) and (4.18), we arrive at (4.5).

2 ◦ . The case ϕ ∈ K∗ ∩ W1
n−1 .

We have to estimate the terms I1, I2, I3 in (4.11). For I1 we make use of splitting
(4.12) and instead of (4.10) apply the following estimate

|Δ(x,σ)| � c

⎧⎪⎨
⎪⎩

1
|σ−a||x−σ|n−2 , |x − σ| � |σ − a|

1
|σ−a|n−1 , |x − σ| > |σ − a|

, (4.19)

which follows directly from (4.9) by assumptions on ϕ . By property (2.25), the first
line in (4.19) and inequality (2.2), we get

|I′1| � c
∫

|x−σ|<2h
|x−σ|<|σ−a|

ω(f 0, |σ − a|)
|σ − a||x − σ|n−2

dσ � c

h∫
0

ω(f 0, t)
t

dt.

For I′′1 taking into account the second line in (4.19), the embedding {|σ−a| < |σ−x| <
2h} ⊂ {|σ − a| < 2h} and inequality (2.2), we obtain

|I′′1 | � c
∫

|σ−a|<2h

w(f 0, |σ − a|)
|σ − a|n−1

dσ � c

h∫
0

ω(f 0, t)
t

dt.

Therefore,

|I1| � c

h∫
0

ω(f 0, t)
t

dt.
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The estimate for I2 is the same.
To estimate I3 , we make use of the inequality

|Δ(x,σ) − Δ(y,σ)| � ch
|σ − a||x − σ|n−1

+
chϕ(|x − σ|)

ϕ(|σ − a|)|x − σ|n (4.20)

which is obtained by direct estimations with the help of (2.9), (2.14), (3.1), the in-
equalities |x − a| � |x − σ| + |σ − a| and |y − σ| � h + |x − σ| , and the assumption
|y − a| < |x − a| . We find it convenient to rewrite (4.20) in the form

|Δ(x,σ) − Δ(y,σ)| � ch

⎧⎪⎨
⎪⎩

1
|σ−a||x−σ|n−1 , |x − σ| � |σ − a|;

ϕ(|x−σ|)
ϕ(|σ−a|)|x−σ|n , |x − σ| > |σ − a|.

(4.21)

We split I3 :

I3 =
∫

|x−σ|>2h
|x−σ|<|σ−a|

· · · dσ +
∫

|x−σ|>2h
|x−σ|>|σ−a|

· · · dσ =: I′3 + I′′3

For I′3 by the first line in (4.21), property (2.25) and inequality (2.2), we get

|I′3| � ch
∫

|x−σ|>2h

ω(f 0, |x − σ|)
|x − σ|n dσ � ch

2∫
h

ω(f 0, u)
u2

du.

For I′′3 we use the second line in (4.21) and the fact that ϕ(t)
tn−1 is almost decreasing and

obtain

|I′′3 | � ch
∫

|a−σ|>2h

ω(f 0, |σ − a|)
|σ − a|n dσ.

Hence, by (2.2), we arrive at the same estimate as for I′3 .
Collecting all the estimates for I1, I2 and I3 , we get at (4.5).

5. The main results

In the theorems of this section we denote

wα(t) = tReαω(t), w−α(t) = t−Reαω(t).

5.1. Boundedness statements

In the theorems below, ρ(x) is the weight (4.1) and ψk is the notation introduced
in (4.7).
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5.1.1. The case 0 < Reα < 1

THEOREM 5.1. Let ϕk ∈ K∗ ∩ W1 or ϕk ∈ K∗ ∩ W1
n−1−Reα , and let

ω ∈ W and
tω(t)
ψk(t)

∈ Z1−Reα . (5.1)

Then the operator Kα is bounded from Hω
0 (Sn−1, ρ) to Hωα

0 (Sn−1, ρ) .

Theorem 5.1 may be reformulated in terms of the index numbers as follows.

THEOREM 5.2. Let ω ∈ W,ϕk ∈ W ∩K∗, and let the index numbers of the weight
functions ϕk satisfy conditions

0 < m(ϕk) � M(ϕk) < 1 or 1 < m(ϕk) � M(ϕk) < n − 1 − Reα. (5.2)

If

0 � m(ω) � M(ω) < 1 − Reα and m
(ϕk

ω

)
> Reα, k = 1, ..., N, (5.3)

then the operator Kα is bounded from Hω
0 (Sn−1, ρ) to Hωα

0 (Sn−1, ρ) .

REMARK 5.3. The condition m(ϕk) > Reα + M(ω) is sufficient for the second
inequality in (5.3) to hold.

Indeed, from formulas (2.4)-(2.5) it follows that

m(ϕk) > Reα + M(ω) ⇐⇒ m(ϕk) + m

(
1
w

)
> α =⇒ m

(ϕk

ω

)
> Reα.

The corresponding statements for the fractional differentiation operators Dα look
as follows.

THEOREM 5.4. Let ϕk ∈ K∗ ∩ W1 or ϕk ∈ K∗ ∩ W1
n−1+Reα , let ω ∈ ZReα

and let additionally
ω(t)
ϕk(t)

∈ ZReα (5.4)

in the case of “small” weights ϕk ∈ K∗ ∩W1 . Then the operator Dα is bounded from
Hω

0 (Sn−1, ρ) to H
ω−α
0 (Sn−1, ρ) .

THEOREM 5.5. Let ω ∈ W,ϕk ∈ W ∩ K∗ and

0 < m(ϕk) � M(ϕk) < 1 or 1 < m(ϕk) � M(ϕk) < n − 1 + Reα.

Let also

m(ω) > Reα and M

(
ω
ϕk

)
< Reα, k = 1, ..., N. (5.5)

Then the operator Dα is bounded from Hω
0 (Sn−1, ρ) to H

ω−α
0 (Sn−1, ρ) .

REMARK 5.6. The condition m(ϕk) > M(ω) − Reα is sufficient for the second
inequality in (5.5) to hold.
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5.1.2. The case Reα = 0

In the case of purely imaginary order we have the following statement.

THEOREM 5.7. Let

ϕk ∈ K∗ ∩ W1 or ϕk ∈ K∗ ∩ W1
n−1 and

tω(t)
ψk(t)

∈ Φ0
1, (5.6)

which certainly holds when

0 � m(ϕk) � M(ϕk) < 1 or 1 < m(ϕk) � M(ϕk) < n − 1. (5.7)

and

0 < m(ω) � M(ω) < 1 and 0 < m
(ϕk

ω

)
� M
(ϕk

ω

)
< 1, k = 1, ..., N.

(5.8)
Then the operator Diθ is bounded in the space Hω

0 (Sn−1, ρ) .

REMARK 5.8. The conditions

min{m(ϕk), 1} > M(ω), max{M(ϕk), 1} < m(ω) + 1, k = 1, ..., N,

are sufficient for (5.8) to hold.

5.2. Theorems on the isomorphism

THEOREM 5.9. I. Let ϕk ∈ K∗ ∩ W1 or ϕk ∈ K∗ ∩ W1
n−1−Reα , and

ω ∈ Z0 and
tω(t)
ψk(t)

∈ Z1−Reα . (5.9)

Then the operator Kα maps the space Hω
0 (Sn−1, ρ) isomorphically onto Hωα

0 (Sn−1, ρ) .
II. Let θ ∈ R

1, θ �= 0 . If ϕk ∈ K∗ ∩ W1 or ϕk ∈ K∗ ∩ W1
n−1 , and

ω ∈ Z0 and
tω(t)
ψk(t)

∈ Z1, (5.10)

then the operator Diθ maps the space Hω
0 (Sn−1, ρ) isomorphically onto itself.

Theorem 5.9 has the following equivalent reformulation in terms of the index
numbers.

THEOREM 5.10. Let ω ∈ W,ϕk ∈ W ∩ K∗.
I. Under conditions (5.2) and (5.3), the operator Kα maps the space Hω

0 (Sn−1, ρ)
isomorphically onto Hωα

0 (Sn−1, ρ) .
II. Let θ ∈ R

1, θ �= 0 . Under conditions (5.7) and (5.8), the operator Diθ maps
the space Hω

0 (Sn−1, ρ) isomorphically onto itself.
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6. Proofs

6.1. Reduction to the case of a single weight

The theorems on boundedness and isomorphism are formulated below for the case
of the product of weights, but the proof may be given for the case of a single weight
ρ(x) = ϕ(|x − a|), a ∈ S

n−1 . To show that this is possible, it suffices to separate the
singularities by introducing the standard partition of unity. Indeed, let 1 =

∑N
k=1 gk(x)

with gk(x) ∈ C∞(Sn−1) and gk ≡ 1 in some neighborhood of the point ak and gk ≡ 0
in a neighborhood of all other points aj with j �= k . We have

ρ(x)
ρ(y)

=
N∏

k=1

ϕk(|x − ak|)
ϕk(|y − ak|) =

N∑
j=1

Aj(x)Bj(y)
ϕj(|x − aj|)
ϕj(|y − aj|) (6.1)

where

Aj(x) =
N∏

k=1
k �=j

ϕk(|x − ak|), Bj(y) = gj(y)

⎛
⎜⎝ N∏

k=1
k �=j

ϕj(|y − ak|)

⎞
⎟⎠

−1

are multipliers in Hω
0 (Sn−1) . For Aj(x) this is valid by Corollary 2.8. Since μj(y) ≡ 0

in some neighbourhood of ak , k �= j , we may represent Bj(y) as

Bj(y) = gj(y)
N∏

k=1
k �=j

(ϕ̃j(|y − ak|))−1
, where ϕ̃j(x) =

{
ϕj(|x − aj|), ε � |x − aj| � 2
ϕj(ε), 0 � |x − aj| � ε,

ε being sufficiently small and this is a product of multipliers which is verified by means
of the same Lemma 2.7.

For the operator Diθ , for example, according to (6.1) we have

ρDiθ 1
ρ

f =
N∑

j=1

AjρjD
iθ 1
ρj

Bjf .

Since Aj and Bj are multipliers in Hω
0 (Sn−1) (and Aj, Bj are equal to zero at the points

ak with k �= j ), it suffices to prove boundedness of ρjS 1
ρj

Diθ in Hω
0 (Sn−1) , with the

zero index related to the set Π = {aj} consisting only of the point aj .
Similarly, the boundedness for the operator Kα is considered with the only differ-

ence that one has to check that Aj are multipliers in Hωα
0 (Sn−1) .

6.2. On the vanishing property ρKα f |x=a = 0

We recall that we prove the boundedness of the operators to weighted generalized
Hölder spaces with the vanishing property lim

x→a
ρ(x)f (x) = 0 . So we have to check that

this property holds for functions in the range of our operators. We consider the case of
purely imaginary order α = iθ , the proof for other cases being similar.
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According to (4.8) we have ρ(x)(Diθ f )(x)
∣∣∣∣
x=a

= (Diθ f 0)(a)+g(a) and it remains

to observe that (Diθ f 0)(a) = −g(a).

6.3. Proof of the statements on boundedness

The statements of Theorems 5.1, 5.4, 5.7, which are given in terms of Zygmund
type conditions, are in fact direct consequencesof the correspondingZygmundestimates
of Theorems 4.1, 4.2 and 4.3, respectively. We demonstrate this on example of Theorem
5.1.

We recall that we may deal with the weight

ρ(x) = ϕ(|x − a|)

and we use the notation ψ(t) =
{
ϕ(t), when ϕ ∈ K∗ ∩ W1,
t, when ϕ ∈ K∗ ∩ W1

n−1−Reα .

According to (2.6), we have to show that

ω(ρKα f , h)
hReαω(h)

� c < ∞ for f ∈ Hω
0 (Sn−1, ρ).

Under conditions of Theorem 5.1, Zygmund estimate (4.3) is applicable. Then by (4.3)
with condition (5.1) in mind we get

ω(ρKα f , h)
hReαω(h)

�
c‖ρf ‖Hω

0 (Sn−1)

ω(h)

2∫
h

ψ(h)
ψ(t)

(
h
t

)−Reα ω(t)
t

dt � c‖f ‖Hω
0 (Sn−1,ρ).

Taking also into account the statement of Subsection 6.2.,weobtain ‖Kα f ‖
H
ωα
0 (Sn−1,ρ)

� c‖f ‖Hω
0 (Sn−1,ρ).

As regards the reformulation of Theorem 5.1 made in Theorem 5.2, it suffices to
observe that conditions (5.2) are sufficient for the conditions ϕk ∈ K∗∩W1 or ϕk ∈
K∗ ∩W1

n−1−Reα to hold according to Lemma 2.6, while conditions (5.3) are equivalent
to (5.1) by property (2.17).

Similarly one can prove Theorems 5.4, 5.5, 5.7.

6.4. Proofs of the theorems on isomorphism

We dwell on the proof of Part I of Theorems 5.9 and 5.10. The proof of part II of
these theorems for the pure imaginary order α = iθ follows the same lines with slight
modifications.

By Theorems 5.1 and 5.4, we have

Kα : Hω
0 (Sn−1, ρ) → Hωα

0 (Sn−1, ρ) (6.2)



SPHERICAL POTENTIALS OF COMPLEX ORDER . . . 299

and

Dα =
1
bn

I + Dα : Hωα
0 (Sn−1, ρ) → Hω

0 (Sn−1, ρ). (6.3)

To state that the results in (6.2) and (6.3) already guarantee the existence of an
isomorphism between the spaces Hω

0 (Sn−1, ρ) and Hωα
0 (Sn−1, ρ) , it remains to prove

that the range of the operator Kα coincides with the space Hωα
0 (Sn−1, ρ) :

Kα(Hω
0 (Sn−1, ρ)) = Hωα

0 (Sn−1, ρ). (6.4)

We do not have an independent characterization of the range Kα(Hω
0 (Sn−1, ρ)) ,

but in the case of the Lebesgue spaces Lp(Sn−1) , a characterization of the range
Kα(Lp(Sn−1)) is known and runs as follows, see [8], Th. 7.70.

THEOREM 6.1. A function f belongs to Kα(Lp(Sn−1)), 1 < p < ∞, if and only
if f ∈ Lp(Sn−1) and Dα f ∈ Lp(Sn−1) .

REMARK 6.2. Observe that in the case of Lebesgue integrable functions, the hy-
persingular integral Dα f is treated as the limit of the corresponding truncated integrals
over {σ ∈ S

n−1 : |x− σ| > ε} with respect to the norm of the space Lp(Sn−1) . In our
case, the hypersingular integral on functions in the range Kα(Lp(Sn−1)) is absolutely
convergent for all x ∈ S

n−1) except for probably the points ak, k = 1, ...N .

Therefore, to state that a function f ∈ Hωα
0 (Sn−1, ρ) belongs to the range

Kα(Hω
0 (ρ)) , it suffices to prove that there exists p > 1 such that conditions f ∈

Lp(Sn−1) and Dα f ∈ Lp(Sn−1) of Theorem 6.1 are satisfied for f ∈ Hωα
0 (ρ) . This

will yield
Hωα

0 (Sn−1, ρ) ⊂ Kα(Lp)

and then Theorem 6.1 and mapping (6.3) will guarantee that coincidence (6.4) holds.

Let us consider for definiteness the case ϕ ∈ K∗ ∩ W1
n−1−Reα . Since

|f (x)| � C
|x − a|αω(|x − a|)

ϕ(|x − a|) ,

we easily obtain from the assumptions of Theorems 5.1 and 5.4 that

|f (x)| � C
|x − a|n−1−α ∈ Lp(Sn−1), 1 < p <

n − 1
n − 1 − Reα

.

It remains to prove that Dα f ∈ Lp(Sn−1) for some p > 1 . Taking into account (2.2),
we have

∫
Sn−1

|ρDα f )(σ)|p dσ � c
∫

Sn−1

∣∣∣∣ω(ρDα f , |a − σ|)
ρ(σ)

∣∣∣∣
p

dσ � c

2∫
0

∣∣∣∣ω(t)
ϕ(t)

∣∣∣∣
p

tn−2dt � C

2∫
0

dt
tλ

,

where λ = pm
(
ω
ϕ

)
+ n − 2 − ε , so that λ < 1 under the choice of ε sufficiently

small and p sufficiently close to 1.
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in generalized weighted Hölder spaces, Dokl. Akad. Nauk, 382 (3) (2002) 301–304.

(Received October 7, 2006) Natasha Samko
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