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Abstract. Oppenheim’s determinantal inequality was originally proved for positive semidefinite
matrices and has produced many interesting consequences and applications. Positive semidefinite
matrices were a natural class to consider partly because they are closed under Hadamard (or
entry-wise) multiplication. Since Oppenheim’s original contribution, others have considered
similar inequalities for M -matrices, inverse M -matrices and totally nonnegative matrices. We
attempt to unify many of these existing results dealing with Oppenheim’s inequality, and our
approach relies on two major themes: retractions and Hadamard duals. Retractions are a type
of diagonal perturbation and the Hadamard dual is a maximal collection of matrices with a
closure property under Hadamard multiplication. These notions are applied to yield results that
generalize Oppenheim’s original result.

1. Introduction

The Hadamard product of two m -by-n matrices A = [aij] and B = [bij] is defined
and denoted by

A ◦ B = [aijbij].

The Hadamard product plays a substantial role within matrix analysis and in its ap-
plications (see, for example, [11, Chap. 5] and consult the comprehensive reference
[9]).

Some classes of matrices, such as the positive definite matrices, are closed under
Hadamard multiplication (see [10, pg. 458]), and given such closure, inequalities in-
volving the Hadamard product, usual product, determinants and eigenvalues, etc. may
be considered. For example, Oppenheim’s inequality states that

det(A ◦ B) �
n∏

i=1

aii detB,
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for any two n -by-n positive definite matrices A = [aij] and B (see [10, pg. 480]).
Since Hadamard’s inequality

detA �
n∏

i=1

aii,

also holds for positive definite matrices A = [aij] , it follows from Oppenheim that

det(A ◦ B) � det(AB),

i.e., the Hadamard product dominates the usual product in determinant.
Our interest here lay in studying the Hadamard product of two matrices from

a fixed subclass of the P -matrices (i.e., real square matrices with positive principal
minors). We are interested in the following key positivity classes of matrices: positive
(semi)-definite (PD, (PSD)); P -matrices (positive principal minors) (P); P0 -matrices
(nonnegativeprincipalminors) (P0 ); M -matrices (nonpositive off-diagonal entries and
positive principal minors) (M); inverse M -matrices (inverses of M -matrices) (IM);
totally nonnegative matrices (all minors nonnegative) (TN); totally positive matrices
(all minors positive) (TP); completely positive matrices (matrices of the form BBT with
B entry-wise nonnegative) (CP); doubly nonnegative matrices (positive semidefinite
and entry-wise nonnegative) (DN). See reference [14] for a broad survey of related
closure issues for various positivity classes of matrices.

Unfortunately, the class of totally nonnegative matrices is not in general closed
under Hadamard multiplication. Consider the following simple example:

W =

⎡
⎣ 1 1 0

1 1 1
1 1 1

⎤
⎦ , WT =

⎡
⎣ 1 1 1

1 1 1
0 1 1

⎤
⎦ , (1)

W (and, thus, WT ) is TN, but

W ◦ WT =

⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦

is not. Similarly, TP is not Hadamard closed. Not surprisingly, then, inequalities such
as Oppenheim’s do not generally hold for TP or TN matrices. However, there has been
interest in significant subclasses of the TP or TN matrices that are Hadamard closed,
i.e., are such that arbitrary Hadamard products from them are TP or TN, see [1, 4, 8, 19].

For M -matrices, the issue of closure under Hadamard multiplication does not
make much sense because of the sign-pattern restriction on M -matrices. However, by
considering comparison matrices such closure questions have been addressed. A more
interesting situation deals with the issue of the Hadamard product of an M -matrix and
an inverse M -matrix. In [12] it was verified that the Hadamard product of an M -matrix
and an inverse M -matrix is again an M -matrix.

Closure under Hadamard multiplication for the class of inverse M -matrices is
quite different from the previous cases, and was only recently resolved. The resolution
is as follows: For n � 3 the Hadamard product of two inverse M -matrices is again
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IM; however for n � 4 this is no longer true (see [20] for more details). See also
[3, 16, 18, 20] for other work on Hadamard products of IM matrices.

Taking into account all of the above situations, we define a unifying notion that we
refer to as the Hadamard dual for a class of matrices.

DEFINITION 1. Let C be a subclass of the P0 -matrices. Then the Hadamard dual
of C is defined to be

C(D) = {A : B ∈ C =⇒ A ◦ B ∈ C}.
One of our main objectives is to describe the Hadamard dual for the key subclasses

of the P0 -matrices such as PSD, PD, M, IM, TN, and P itself. See [4], in which this set
is referred to as the Hadamard core in the case of totally nonnegative matrices.

For an m -by-n matrix A , α ⊆ {1, 2, . . . , m} , and β ⊆ {1, 2, . . . , n} , the
submatrix of A lying in rows indexed by α and the columns indexed by β will be
denoted by A[α|β ] . Similarly, A(α|β) is the submatrix obtained from A by deleting
the rows indexed by α and columns indexed by β . If A is square and α = β , then the
principal submatrix A[α|α] is abbreviated to A[α] , and the complementary principal
submatrix to A(α) . For brevity, if α = {i} , then A(α) is denoted by A(i) , or Aii .
The (i, j)th standard basis matrix, that is the m -by-n matrix whose only nonzero entry
is in the (i, j)th position and this entry is a one, will be denoted by Eij . The m -by-n
matrix of all ones is denoted by J .

The remainder of the paper is organized as follows: In section 2 we give conditions
for subclasses of P -matrices so that they enjoy Oppenheim’s inequality. In this section
we introduce the notion of retractability and re-visit Hadamard duality. In section
3, we elaborate on retractability and investigate this property for certain well known
subclasses of P -matrices. In the final section we investigate the Hadamard dual for the
same important subclasses of P -matrices.

2. Oppenheim’s Inequality for General Sets of P0 -Matrices

One proof of Oppenheim’s inequality for PSD matrices (see [10]) requires four
key facts. The first is Hadamard closure, and the second fact is that the property
of being positive semidefinite is inherited by principal submatrices. The third fact is
Fischer’s determinantal inequality (see [10]): detA � detA[α] det A[αc] for any index
set α ⊂ {1, 2, . . . , n} . Specifically, the type of inequality needed here is of the form
detA � a11 detA(1) . The final fact is that for any positive semidefinite matrix A the
matrices A − γE11 , are positive semidefinite for every γ ∈ [0, detA/ detA(1)] . If
detA(1) = 0 , then the interval is defined to be the singleton {0} . We call this property
retractability. Observe that if γ = det A/ detA(1) , then A − γE11 is necessarily
singular. This leads us to our first definition concerning retractions.

DEFINITION 2. Let C denote a given subclass of the P0 -matrices, and suppose A
is an n -by-n matrix. Then we define:
( i ) AR = {A − tE11 : t ∈ [0, det A

det A(1) ]} – “the set of retractions of A ”,

( ii ) C (R) = {A ∈ C : AR ⊆ C} – “the retractable subset of C ”,
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( iii ) C R = ∪A∈CAR – “the set of all retractions of matrices in C ”.

We now state and prove a general statement regarding the validity of Oppenheim’s
inequality for general subclasses of P0 -matrices.

THEOREM 3. Let C ⊂ P0 and D ⊂ P0 be two subclasses of the P0 -matrices that
are closed under extraction of principal submatrices. Assume that Fischer’s inequality
holds for all A ∈ C . Suppose A = [aij] and B = [bij] are two n -by- n matrices. Then

det(A ◦ B) � detA
n∏

i=1

bii, (2)

if for each n either
1. A ∈ C(R) and B ∈ C(D) , or
2. A ∈ C , B ∈ D , and CR ⊂ D(D)

Proof. If A is singular, then there is little to show, since det(A◦B) � 0 (in case 2.
observe that C ⊂ CR ⊂ D(D) ). Assume A is nonsingular. If n = 1 , then the inequality
is trivial. Suppose, by induction, that (2) holds for all (n − 1) -by- (n − 1) matrices A
and B under either situation. Then by induction

det(A(1) ◦ B(1)) � detA(1)
n∏

i=2

bii.

Suppose we are in case 1. Since A is nonsingular, and A ∈ C(R) , we have that
A ∈ C and thus by Fischer’s inequality A(1) is nonsingular. Consider the matrix
Ã = A − xE11 , where x = det A

det A(1) . Then det Ã = 0 , and Ã ∈ C . Therefore

B ◦ Ã is in C since B ∈ C(D) , and in particular, det(B ◦ Ã) � 0 . Observe that
det(B ◦ Ã) = det(A ◦ B) − xb11 det(A(1) ◦ B(1)) � 0. Thus

det(A ◦ B) � xb11 det(A(1) ◦ B(1))

� xb11 detA(1)
n∏

i=2

bii

= detA
n∏

i=1

bii.

On the other hand in case 2 if A is nonsingular, then A ∈ C and satisfies Fischer’s
inequality, so A(1) is nonsingular. Proceeding as in case 1, consider the matrix
Ã = A − xE11 , where x = det A

det A(1) . Then Ã ∈ CR . Since B ∈ D , and CR ⊂ D(D) it

follows that det(B ◦ Ã) � 0 . The remainder of the proof is identical to case 1. �
Since for PSD matrices we have PSD = PSD (D) = PSDR (see sections 3 and 4),

Oppenheim’s Inequality is an immediate consequence of Theorem 3.

COROLLARY 4. Let A and B be two positive semidefinite matrices. Then

det(A ◦ B) � detB
n∏

i=1

aii.
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In section 3 we show that TN(R) = TNR = TN . Using this and Theorem 3 (case
1.) we have

COROLLARY 5. [4] Let A be an n -by- n matrix in TN(D) , and suppose B is any
n -by- n totally nonnegative matrix. Then

det(A ◦ B) � detB
n∏

i=1

aii.

If A, B ∈ PSD, then it is known (by interchanging the roles of A and B , since
PSD = PSD (D) = PSDR ) that:

det(A ◦ B) � max

{
det B

n∏
i=1

aii, detA
n∏

i=1

bii

}
. (3)

However, in the case in which A ∈ TN(D) and B is TN it is not true in general

that det(A ◦ B) � det A
n∏

i=1

bii . Consider the following example.

EXAMPLE 6. Let A be any 3 -by- 3 totally positive matrix in the Hadamard dual,

and let B = W =

⎡
⎣ 1 1 0

1 1 1
1 1 1

⎤
⎦ . Then since the (1,3) entry of A enters positively into

detA it follows that det(A ◦ B) < det A = detA
3∏

i=1

bii.

The next example sheds some light on the necessity that A be in TN(D) in order
for Oppenheim’s inequality to hold. In particular, we show that if A and B are TN and
A ◦ B is TN, then Oppenheim’s inequality need not hold.

EXAMPLE 7. Let A =

⎡
⎣ 1 .84 .7

.84 1 .84
0 .84 1

⎤
⎦ , and B = AT . Then A (and hence B )

is TN, and det A = detB = .08272 . Now A ◦ B =

⎡
⎣ 1 .7056 0

.7056 1 .7056
0 .7056 1

⎤
⎦ , and it

is not difficult to verify that A ◦ B is TN with det(A ◦ B) ≈ .00426 . However, in this
case

det(A ◦ B) ≈ .00426 < .08272 =

{
det A

∏3
i=1 bii

det B
∏3

i=1 aii.

See [4] for more information on Oppenheim’s inequality for TN matrices.
If CR ⊂ C(D) for a fixed subclass of the P0 -matrices, then we have the next result,

which is a direct consequence of Theorem 3.

COROLLARY 8. Let C ⊂ P0 be a subclass of the P0 -matrices that is closed under
extraction of principal submatrices, and assume that Fischer’s inequality is satisfied for
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all A ∈ C . Suppose A = [aij] and B = [bij] are two n -by- n matrices. If CR ⊂ C(D) ,
then

det(A ◦ B) � max

{
det B

n∏
i=1

aii, det A
n∏

i=1

bii

}
.

For the case of M -matrices and inverse M -matrices, the situation is very inter-
esting. We show that M(R) = MR = M (see section 3), and that IM ⊂ M(D) (see
Theorem 20). Finally, while the set of retractions of IM is still unclear we do establish
that IMR ⊂ M(D) (see Theorem 14). Taking the above facts into account along with
Theorem 3, we have the next result.

COROLLARY 9. Let A ∈ M and B ∈ IM be two n -by- n matrices. Then

det(A ◦ B) � max

{
det B

n∏
i=1

aii, det A
n∏

i=1

bii

}
.

We can even push this idea a bit further to prove the next result.

THEOREM 10. Let A ∈ M and B ∈ IM be two n -by- n matrices. Then

det(A ◦ B) + detA detB � detB
n∏

i=1

aii + detA
n∏

i=1

bii. (4)

Proof. The proof is by induction on the size of A and B . For n = 1 , the equation
(4) is easily seen to be valid. Thus assume that (4) holds for all such A and B of size
at most n− 1 . Suppose A ∈ M and B ∈ IM are two n -by-n matrices. Since A ∈ M ,
if we let Ã = A − tE11 where t = det A

det A(1) = det A
det A11

, then Ã ∈ M . Hence we can apply

Oppenheim’s inequality to Ã and B (that is, we can use Corollary 9) and observe that(
a11 − detA

detA11

)( n∏
i=2

aii

)
det B � det(Ã ◦ B) (5)

= det(A ◦ B) − detA
det A11

b11 det(A11 ◦ B11), (6)

where A(1) = A11 . Thus we have,

det(A ◦ B) �
n∏

i=1

aii det B +
detA

detA11

(
b11 det(A11 ◦ B11) −

n∏
i=2

aii detB

)
. (7)

Applying the induction hypothesis to det(A11 ◦B11) (since A11 ∈ M , B ∈ IM ) yields:

det(A ◦ B) �
n∏

i=1

aii det B +
detA

detA11
·

·
(

b11

n∏
i=2

aii detB11 + b11

n∏
i=2

bii detA11 − b11 det A11 detB11 −
n∏

i=2

aii det B

)
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=
n∏

i=1

aii det B +
detA

detA11
b11

n∏
i=2

aii det B11 +
n∏

i=1

bii detA − b11 det B11 det A

− det A
det A11

n∏
i=2

aii det B

=
n∏

i=1

aii det B +
detA

detA11
b11

n∏
i=2

aii det B11 +
n∏

i=1

bii detA − b11 det B11 det A

− det A
det A11

n∏
i=2

aii det B + detA detB − det A detB

=
n∏

i=1

aii det B +
n∏

i=1

bii det A − detA detB

+
det A

det A11
(detB − b11 detB11)

(
detA11 −

n∏
i=2

aii

)

�
n∏

i=1

aii det B +
n∏

i=1

bii det A − detA detB.

The final inequality follows since detB � b11 detB11 for all inverse M -matrices and
since detA11 �

∏n
i=2 aii for all M -matrices (see [11]). �

It is not difficult to deduce that Theorem 10 also holds if both A and B are PSD
matrices.

We offer a final passing comment relating to Hadamard powers. If A is in C(D) ,
then certainly A(k) := A ◦ A ◦ · · · ◦ A ( k times) is in C(D) . Furthermore, if C contains
the matrix J and satisfies Fischer’s determinantal inequality, then we have

det A(k) � det Ak,

for each positive integer k .

3. Retractability of Classes of P-Matrices

Of interest here are certain perturbations which leave a given class invariant. For
example, if A is an n -by-n positive semidefinite, M -, P -, or inverse M -matrix, then
A+D (D a nonnegative diagonal matrix) is a positive semidefinite, M -, P -, or inverse
M -matrix, respectively (see [10, 11]). It is an easy exercise to show this result does not
hold in general for the class of totally nonnegative matrices, but a much weaker version
does hold. In fact, if A is an m -by-n totally nonnegative matrix, then increasing the
(1,1) or the (m, n ) entry of A results in a totally nonnegative matrix.

Let A = [aij] be fixed and define Aγ = A − γE11 , for γ ∈ [0, detA/ detA11] .
Further, assume that A is a P -matrix. Then the principal minors of Aγ are easily
computed as follows:

detAγ [α] =
{

det A[α] − γ detA[α \ {1}], if 1 ∈ α ,
det A[α], if 1 	∈ α ,
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A natural question to ask: Is Aγ a P -matrix for all γ ∈ [0, detA/ detA11] ?
This is easily reformulated as: Is detAγ0 [α] > 0 for γ0 = det A/ detA11 (keeping

in mind that A ∈ P)? In other words is

detA[α] − detA/ detA11 det A[α \ {1}] > 0?

The above inequality is equivalent to

detA[α] det A11 > det A detA[α \ {1}], (8)

for each α ⊂ {1, 2, . . . , n} with 1 ∈ α .
We have already mentioned the determinantal inequalities of Hadamard and Fis-

cher. A third and more general determinantal inequality is attributed to Koteljanskii.
For A ∈ P0 , and α, β ⊂ {1, 2, . . . , n} . Koteljanskii’s inequality states

det A[α ∪ β ] detA[α ∩ β ] � detA[α] det A[β ]. (9)

Observe that (8) is an example of a Koteljanskii type inequality (9) for α = α ,
β = {2, 3, . . . , n} . Denote by K (K0 ) the class of all A ∈ P (P0 ) satisfying
Koteljanskii’s inequality for all α, β . According to [2], A ∈ K0 if and only if A ∈ P0

and additionally satisfies
det A[S|T] detA[T|S] � 0,

whenever |S ∩ T| = |S ∪ T| − 1 (almost principal minors). In particular, M, IM,
PSD, and TN, all satisfy Koteljanskii’s determinantal inequality. Hence the set of all
retractions of matrices in M, IM, PSD, and TN are all contained in P0 (i.e., M R , IM R ,
PSD R , and TN R all lie in P0 by (8)). One goal here is to prove much more precise
statements about the set of all retractions for these (and other) subclasses of P and
P0 . For example, if A ∈ PSD , then AR ⊂ P0 , and since AR contains only symmetric
matrices it follows that AR ⊂ PSD . Hence PSD(R) = PSDR = PSD . Similarly,
M(R) = MR = M and DN(R) = DNR = DN . The case of completely positive matrices
(CP) is still unclear. Certainly for n � 4 , CP(R) = CPR = CP = DN . However, for
n � 5 , CPR and CP(R) have not been characterized.

Returning to P-matrices, it is straightforward to construct A ∈ P , such that AR 	⊂
P0 . For example, let

A =

⎡
⎣ 1 −1 0

1 1 1
0 −1 1

⎤
⎦ .

Then detA/ detA11 = 3/2 , and hence AR contains matrices with a negative (1,1) entry.
Thus AR 	⊂ P0 . Of course A 	∈ K . Having noted this example, the set PR , namely the
set of all retractions of matrices in P , is not well understood in general, and we do not
attempt to describe it here. However, the set P(R) is an interesting subset of P which
we discuss now. Given the example above we know that P(R) 	= P .

PROPOSITION 11. The retractable subset of P contains the set of Koteljanskii
matrices (i.e., K ⊂ P(R) ).
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Proof. Per the discussion above if A ∈ K , then AR ⊂ P . Hence K ⊂ P(R) . �

If we wanted a desirable statement regarding the reverse containment we would
need to generalize the definition of retraction to allow for retraction on any diagonal
entry, and even further define retraction on each principal submatrix.

Here is an example of a P -matrix that is not a Koteljanskii matrix, but still is
retractable. Consider

A =

⎡
⎣ 1 1/2 1/4

1 1 −1
1 1 1

⎤
⎦ .

Then A is a P -matrix and since the (2,3) and (3,2) entries have opposite sign it follows
that A 	∈ K . However, since detA = 1 and detA11 = 2 , it follows that A ∈ P(R) .
Furthermore, by considering A[{2, 3}] it is clear that retractability need not be an
inherited property.

Finally, we note that the class of Koteljanskii matrices is not itself retractable, that
is KR 	⊂ K . Let

A =

⎡
⎣ 1 1 1

1 2 1
1 2 2

⎤
⎦ .

Then A ∈ K and AR ∈ P , but if we decrease the (1,1) entry by x > 0 , then
detA[12|13] = x and det A[13|12] = −1 + 2x . Hence for 0 < x < 1/2 , Ax is not a
Koteljanskii matrix, and so K(R) 	⊂ K .

Unfortunately, inverse M -matrices are not in general retractable (on any diagonal
entry). Consider the following simple example. Let

A =

⎡
⎣ 4 1 2

2 4 1
1 2 4

⎤
⎦ .

Then A is in IM and detA/ detA11 = 3.5 . However, A − γE11 is not an inverse
M -matrix for any γ ∈ (0, 3.5] . Currently, we do not have a characterization of IM (R) .

We will establish, however, that IMR ⊂ M(D) . To verify this, we need some
definitions. An n -by-n A = [aij] is said to be diagonally dominant of its column
entries if for each i , |aii| � |aki| for k 	= i . It is known that if A = [aij] is row
diagonally dominant (i.e., |aii| �

∑
k �=i |aik| for all i ) and invertible, then A−1 is

diagonally dominant of its column entries (see [11, Chap. 2]). Furthermore, if A ∈ M
and is invertible, then there exists a positive diagonal matrix D such that AD is row
diagonally dominant (see [11, Chap. 2]). Define X to be the set of all n -by-n entry-wise
nonnegative matrices A with the property that there exists a positive diagonal matrix D
such that DA is diagonally dominant of its column entries. Given the comment above,
we know that IM ⊂ X . The next result connects the set X with the set IMR , butwe need
a lemma before we can prove this result. Recall that for a given n -by-n nonnegative
matrix A = [aij] , a cycle product is any product of the form ai1,i2ai2,i3 · · · aik ,i1 , in which
the indices i1, i2, . . . ik are distinct, and the corresponding cycle geometric mean is equal
to k

√
ai1,i2ai2,i3 · · · aik ,i1 .
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LEMMA 12. [11, 5.7.21] Suppose A is a nonnegative matrix with ones on the main
diagonal, and let μ be the maximum (over all possible cycles) cycle geometric mean.
Then there exists a positive diagonal matrix D such that all the entries of D−1AD are
at most μ . Furthermore, we have

min
D

(
max

i,j
diaijd

−1
j

)
= μ = max

i1,...ik
k
√

ai1,i2ai2,i3 · · · aik−1,ik aik ,i1 .

From this lemma we deduce the next result immediately.

COROLLARY 13. Suppose A is a nonnegative matrix with ones on the main diago-
nal. Then there exists a positive diagonal matrix D such that DA is column dominant
of its entries if and only if the maximum (over all possible cycles) cycle product of A is
at most one.

Recall that any IM matrix A = [aij] with ones on the main diagonal satisfies
the so-called path-product conditions aij � aikakj , for any triple of indices i, j, k .
These path-product inequalities can be realized by considering any 3 -by- 3 principal
submatrix of such an IM matrix (see also [15]).

THEOREM 14. The set of all retractions of matrices in IM is contained in X (that
is IMR ⊂ X ).

Proof. The proof is by induction on n . For n � 2 the result is trivial, since IM
matrices can be scaled to be diagonally dominant of their column entries. Suppose the
result is true for IM matrices of size at most n − 1 . Let A be an IM matrix of size
n and assume, without loss of generality, that A has ones on the main diagonal. Let
Ã = A − tE11 , where t = detA/ detA11 . Now assume that Ã has been diagonally
scaled so as to have ones on its main diagonal. Let B = A(n) and let B̃ = Ã(n) . Since
A is a Koteljanskii matrix, we have that B̃ is still an entry-wise nonnegative matrix,
and hence by Corollary 13 and the induction hypothesis, we may conclude that the
maximum cycle product in B̃ is at most one. For example if the cycle of interest is
(1, 2, . . . , n − 1) , then the corresponding cycle product in B̃ is given by

a1,2

1 − t
a2,3 · · · an−2,n−1an−1,1 � 1.

Since A is IM, A satisfies the path-product conditions, and in particular an−1,1 �
an−1,nan,1 . Hence we have

a1,2

1 − t
a2,3 · · · an−2,n−1an−1,nan,1 � 1.

Similar arguments can be applied to any such cycle product in B̃ . In other words, all
cycle products of Ã are at most one, and hence by Corollary 13, Ã can be scaled to be
column dominant of its entries, and hence AR is contained in X . This completes the
proof. �

We remark here that if a subclass C is closed under arbitrary permutation similarity,
then there is no distinction between the (1,1) entry and other main diagonal entries.
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However, for the class TN (which is not closed under arbitrary permutation similarity)
this is essential. We include the proof here for completeness (see [7] for more details).

THEOREM 15. [7] Let A be an n -by- n totally nonnegative matrix with det A(1) 	=
0 . Then A − xE11 is totally nonnegative for all x ∈ [0, det A

det A(1) ] .

Proof. Firstly, observe that for every value x ∈ [0, det A
det A(1) ] , det(A − xE11) � 0 .

Recall that A admits a UL -factorization (follows from the LU -factorization result and
reversal) into totally nonnegative matrices (see [5]). Partition A as follows,

A =
[

a11 aT
12

a21 A(1)

]
,

where a11 is a scalar. Partition L and U conformally with A . Then

A =
[

a11 aT
12

a21 A(1)

]
= UL =

[
u11 uT

12
0 U(1)

] [
l11 0
l21 L(1)

]

=
[

u11l11 + uT
12l21 uT

12L(1)
U(1)l21 U(1)L(1)

]
.

Consider the matrix A − xE11 , with x ∈ [0, det A
det A(1) ] . Then

A − xE11 =
[

u11l11 + uT
12l21 − x uT

12L(1)
U(1)l21 U(1)L(1)

]

=
[

u11 − x
l11

uT
12

0 U(1)

] [
l11 0
l21 L(1)

]
= U′L,

if l11 	= 0 . Note that if l11 = 0 , then L , and hence A , is singular. In this case x = 0
is the only allowed value for x . But in this case the desired result is trivial. Thus we
assume that l11 > 0 . To show that A− xE11 is totally nonnegative it is enough to verify
that u11 − x/l11 � 0 . Since l11 > 0 and detA(1) > 0 it follows that L and U(1) are
nonsingular. Hence 0 � det(A − xE11) = (u11 − x/l11) detU(1) detL , from which it
follows that u11 − x/l11 � 0 . �

COROLLARY 16. Let TN denote the class of all n -by- n totally nonnegative matri-
ces. Then TN(R) = TNR = TN .

4. Hadamard Duals of Classes of P0 -Matrices

We begin by presenting a couple of basic properties about the Hadamard dual.
Observe that J is the Hadamard identity, that is A ◦ J = J ◦ A = A .

PROPOSITION 17. Let C denote a given subclass of the P0 -matrices that contains
the matrix J . Then C(D) ⊂ C .
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Proof. Since J is in C it follows that for any A in C(D) , we have A ◦ J = A is in
C . �

By sequential application of the definition of C(D) we have

PROPOSITION 18. Let C denote a given subclass of the P0 -matrices Suppose A
and B are two matrices in C(D) . Then A ◦ B is in C(D) .

From Proposition 17 we have that PSD(D) = PSD . Similar arguments can be used
to ascertain that DN(D) = DN and CP(D) = CP . There is only one subtle observation
to make and that is if A, B are two CP matrices, then A◦B is a CP matrix. This follows
since the Hadamard product of two matrices written as a sum of symmetric rank one
matrices can be realized as a sum of symmetric rank one matrices (see [10, Chap. 7]).

The Hadamard dual of the positive definite matrices is the set of all positive
semidefinite matrices with positive main diagonal. Observe that since the closure of
positive definite matrices, the positive semidefinite matrices, contains the matrix J , it
follows that PD(D) ⊂ PSD . However, if B is a PSD matrix with a zero main diagonal
entry, then A ◦ B is necessarily a singular PSD matrix, and therefore it will never be a
PD matrix, for any PD matrix A . So PD(D) is contained among the PSD matrices with
positive main diagonal. Let B be a PSD matrix with positive main diagonal entries.
Then by applying Oppenheim’s inequality it follows that det(A ◦ B) > 0 , whenever A
is PD. Hence A ◦ B is PD.

For M -matrices, we also have a complete characterization of the Hadamard dual,
and it is worth noting that M(D) is not comparable to the class of M -matrices. Before
we characterize M(D) , we state some necessary facts. Recall that X was defined as the
collection of n -by-n matrices A such that there exists a positive diagonal matrix D
for which DA is diagonally dominant of its column entries.

LEMMA 19. [12] If A is an M -matrix and B is an IM -matrix, then A ◦ B is an
M -matrix. Furthermore, if A is an M -matrix and B ∈ X , then A ◦ B is an M -matrix

We are now in a position to prove our main result on the Hadamard dual of the
M -matrices.

THEOREM 20. The Hadamard dual of the M -matrices coincideswith the collection
X of entry-wise nonnegative matrices A with positive main diagonal entries having the
property that there exists a positive diagonal matrix D such that DA is diagonally
dominant of its column entries.

Proof. The fact that X ⊂ M(D) follows from Lemma 19. To establish the reverse
containment we consider proof by contradiction. First note that any matrix in M(D)

must be entry-wise nonnegative and must have positive main diagonal entries. So
assume that for such a matrix A there does not exist a positive diagonal matrix D so
that DA is diagonally dominant of its column entries. We can assume without loss of
generality that A is normalized to have ones its main diagonal. Consider the matrix
DAD−1 . Since DA is not diagonally dominant of its column entries, neither is the
matrix DAD−1 , hence we have that

max
i,j

diaijd
−1
j > 1.
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Therefore, since this is true for all such D , we have

min
D

(
max

i,j
diaijd

−1
j

)
> 1.

So by Lemma 12, there exists a collection of distinct indices i1, i2, . . . ik such that

ai1,i2ai2,i3 · · · aik−1,ik aik ,i1 > 1.

Since permuting rows and columns simultaneously does not disturb any of the properties
or the analysis above, we may assume that {1, 2, . . . , k} = {i1, i2, . . . , ik} . Now let B
be the M -matrix of the form

B =
[

I − (1 − ε)P 0
0 I

]
,

where P is the k -by- k cyclic shift matrix and ε > 0 . Then for small enough ε ,
B ◦ A is not an M -matrix since the leading minor (B ◦ A)[1, 2, . . . , k] is negative. This
completes the proof. �

The Hadamard dual of the inverse M -matrices is still unknown in general, and
in fact appears to be rather complicated to describe. Certainly IM(D) is contained in
the entry-wise nonnegative matrices (in fact IM(D) is contained in the closure of IM),
and IM(D) 	= IM for n � 4 (see [20]). In addition, it is straightforward to verify that
matrices of the form D + EJF , where E and F are positive diagonal matrices, also
belong to IM(D) .

An entry-wise positive matrix A = [aij] is called a path-product matrix (PP) if,
for any triple of indices i, j, k ∈ {1, 2, . . . , n} ,

aijajk

ajj
� aik,

and strict path product (SPP) if it is PP and the above inequality is strict whenever
i = k (see [15]). If A = [aij] is a path-product matrix with ones on its main diagonal,
then the path-product inequalities become aijajk � aik . It is well-known, and can be
easily verified by considering the 3 -by- 3 principal submatrix of A based on the indices
{i, j, k} , that IM ⊂ SPP (see also [15, 16, 17]). Furthermore, for n � 3 , IM = SPP
(see [15]). We claim that PP(D) = PP . To verify this note that since J is a PP matrix
we have that PP(D) ⊂ PP , and if A and B are two PP matrices then, clearly A ◦ B is
a PP matrix. Knowing that the Hadamard dual of the PP matrices is precisely the PP
matrices, we can deduce that the dual of the IM matrices is contained in the PP matrices
(again consider arbitrary 3 -by- 3 principal submatrices).

Recall that adding to the main diagonal of an IM matrix yields an IM matrix (see
[13]). In fact, we have the following sufficient condition for membership in IM (D) .

THEOREM 21. Suppose A is an n -by- n IM matrix, normalized in such a way that
all of its main diagonal entries are equal to n− 2 . If A− (n− 3)I is a PP matrix, then
A is in IM(D) .
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Proof. Let B be any n -by-n IM matrix with ones on its main diagonal. Then
C = B ◦ (A− (n− 3)I) is a PP matrix with ones on its main diagonal. Hence it follows
that C + (n − 3)I is an IM matrix (see [17]). Hence A ◦ B is an IM matrix, which
implies that A is in IM(D) . �

For the class TN, we do not have a complete characterization of the Hadamard
dual, but we refer the reader to the paper [4], that contains numerous results on the
Hadamard dual of TN. We mention just two relevant results here for completeness.

THEOREM 22. [4] Let T be an n -by- n totally nonnegative tridiagonal matrix.
Then T is in TN(D) .

For n � 3 we have the following characterization of the Hadamard dual for the
TN matrices (see [4] for more details).

THEOREM 23. [4] Let A be a 3 -by- 3 matrix. Then A is in TN(D) if and only if

A ◦ W and A ◦ WT are both totally nonnegative, in which W =

⎡
⎣ 1 1 0

1 1 1
1 1 1

⎤
⎦ .

Finally, for the class of P -matrices (or P0 -matrices) the Hadamard dual seems
rather unclear and we close this section with a suggestion for a description of the set
P(D) . Suppose that

A =
[

A′ a12

a21 a22

]
∈ Mm(C) and B =

[
b22 b23

b32 B′

]
∈ Mn(C),

in which a22, b22 are scalars. Then we call

C =

⎡
⎣ A′ a12 0

a21 a22 + a22 b23

0 b32 B′

⎤
⎦

the 1 -subdirect sum of A and B , which we denote by A ⊕1 B . A basic fact of interest
here is that if A and B are two P -matrices, then so is A ⊕1 B (see [6]).

Now suppose that D and E are two diagonal matrices with the property that DE is
nonnegative. Then observe that for any P -matrix A , we have A ◦DJE = D(A ◦ J)E =
DAE is also a P -matrix. Also adding a positive diagonal matrix to any P -matrix results
in a P -matrix.

Let Y denote the collection of n -by-n matrices of the form A1⊕1 A2⊕1 · · ·⊕1 Ak ,
where each summand Ai can be written as Di+EiJFi in which Di is a positive diagonal
matrix and Ei, Fi are diagonal matrices that satisfy EiFi is nonnegative.

Then, we conjecture that the Hadamard dual of the P -matrices (or P0 -matrices)
is Y . In fact from the discussions above it is clear that Y is contained in the Hadamard
dual of the P - or P0 -matrices. The reverse containment is true for n � 3 , and we
suspect that it may be true for n � 4 .
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