LOCALIZATIONS OF THE KLEINECKE-SHIROKOV THEOREM

Janko BračIČ and BoJan Kuzma

(communicated by M. Omladič)

Abstract

A local version of the Kleinecke-Shirokov theorem is proved. The results easily extend to bounded linear derivations on Banach algebras. In case of algebraic elements, an improved bound on the nilindex of a commutator is obtained as a consequence.

1. Localizations of the Kleinecke-Shirokov Theorem

Let \mathcal{X} be a complex Banach space and $\mathcal{B}(\mathcal{X})$ be the Banach algebra of all bounded linear operators on X. If $A, B \in \mathcal{B}(X)$ are operators such that the commutant $[A, B]:=A B-B A$ commutes with A, then the Kleinecke-Shirokov Theorem $[7,12]$ (see also [4, Problem 184], and [1, 2, 6, 8, 10] for some generalizations of the theme) asserts that $[A, B]$ is a quasinilpotent operator. Actually the Kleinecke-Shirokov theorem holds for any Banach algebra. It follows that the local spectral radius of $[A, B]$ at any vector $x \in \mathcal{X}$ is zero, that is

$$
r_{[A, B]}(x):=\limsup _{n \rightarrow \infty}\left\|[A, B]^{n} x\right\|^{1 / n}=0 \quad(x \in X)
$$

Now, assume that A and $[A, B]$ commute only locally, that is, there is a closed subspace y of X such that $[A,[A, B]] y=0$ for all $y \in \mathcal{y}$. Do there exist vectors $0 \neq x \in \mathcal{X}$ at which the local spectral radius of $[A, B]$ is zero? We shall give a positive answer for spaces related to the kernel and the range of A.

For $T \in \mathcal{B}(\mathcal{X})$, let Lat T be the lattice of all closed T-invariant subspaces of \mathcal{X}. We start with the following simple observation.

Proposition 1.1. Let $A, B \in \mathcal{B}(X)$ and assume that $y \in \operatorname{Lat} A \cap$ Lat B. If $[A,[A, B]] y=\{0\}$, then $r_{[A, B]}(y)=0$ for all $y \in y$.

Proof. Let $\widetilde{A}:=\left.A\right|_{y}$ and $\widetilde{B}:=\left.B\right|_{y}$. These are bounded operators on y and it follows from $[A,[A, B]] y=\{0\}$ that $[\widetilde{A},[\widetilde{A}, \widetilde{B}]]=0$. By Kleinecke-Shirokov theorem, the commutant $[\widetilde{A}, \widetilde{B}]$ is quasinilpotent, which gives

Mathematics subject classification (2000): 47B47, 47B48, 46H05.
Key words and phrases: Banach algebra, Kleinecke-Shirokov Theorem, nilindex.

$$
\begin{aligned}
r_{[A, B]}(y) & =\limsup _{n \rightarrow \infty}\left\|[A, B]^{n} y\right\|^{1 / n}=\limsup _{n \rightarrow \infty}\left\|[\widetilde{A}, \widetilde{B}]^{n} y\right\|^{1 / n} \\
& \leqslant \limsup _{n \rightarrow \infty}\left\|[\widetilde{A}, \widetilde{B}]^{n}\right\|^{1 / n} \cdot\|y\|^{1 / n}=0
\end{aligned}
$$

for any $y \in \mathcal{y}$.
Let $A \in \mathcal{B}(X)$. In the next proposition we will show that sometimes there are non-trivial proper subspaces y in Lat A such that $[A,[A, B]] y=\{0\}$ forces $y \in \operatorname{Lat} B$. We introduce the necessary notation.

For $\lambda \in \mathbb{C}$, let $\mathcal{N}_{\lambda}(A)$ be the closure of $\bigcup_{n=1}^{\infty} \operatorname{ker}(A-\lambda)^{n}$. If $A-\lambda$ has a finite ascent, that is, $a(A-\lambda):=\min \left\{n ; \operatorname{ker}(A-\lambda)^{n}=\operatorname{ker}(A-\lambda)^{n+1}\right\}$ is a positive integer, then $\mathcal{N}_{\lambda}(A)=\operatorname{ker}(A-\lambda)^{a(A-\lambda)}$. The cœur of A (see [11], [9, C.12.2], and [3] for relevant set-theoretical properties) is a linear subspace cœ A of X defined as follows. Let $\operatorname{im}_{0} A:=X$, let $\operatorname{im}_{\alpha+1} A:=A\left(\operatorname{im}_{\alpha} A\right)$, and let $\operatorname{im}_{\alpha} A:=\cap_{\beta<\alpha} \operatorname{im}_{\beta} A$ for a limit (that is, without predecessor) ordinal α. The collection of these subspaces is decreasing, and forms a set. It can, therefore, be shown that there exists an ordinal ξ with $\operatorname{im}_{\xi} A=\operatorname{im}_{\xi+1} A$. Then $\operatorname{cœ} A:=\operatorname{im}_{\xi} A=\cap_{\alpha<\xi+1} \operatorname{im}_{\alpha} A$. The cœur of A, though not necessarily closed, is the maximal subspace of X that satisfies the condition $A(\operatorname{co} A)=\operatorname{cœ} A($ see $[11])$. Let $\mathcal{R}_{\lambda}(A)$ be the closure of $\operatorname{cœ}(A-\lambda)$. If the descent of $A-\lambda$, that is, $d(A-\lambda):=\min \left\{n ; \operatorname{im}(A-\lambda)^{n}=\operatorname{im}(A-\lambda)^{n+1}\right\}$, is finite, then $\mathcal{R}_{\lambda}(A)=\overline{\operatorname{im}(A-\lambda)^{d(A-\lambda)}}$. Of course, $\mathcal{N}_{\lambda}(A)$ and $\mathcal{R}_{\lambda}(A)$ are in Lat A.

The inner derivation on $\mathcal{B}(X)$ induced by A is a bounded liner map given by $\delta_{A}(B):=[A, B] \quad(B \in \mathcal{B}(\mathcal{X}))$. Note that $\delta_{A}^{k}(B)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} A^{k-j} B A^{j}$, where we agreed upon $A^{0}:=\mathrm{Id}$.

Proposition 1.2. Let $A \in \mathcal{B}(X)$ and $\lambda \in \mathbb{C}$.
(i) If $\delta_{A}{ }^{k}(B) \mathcal{N}_{\lambda}(A)=\{0\}$, for some $B \in \mathcal{B}(\mathcal{X})$ and some positive integer k, then $\mathcal{N}_{\lambda}(A) \in \operatorname{Lat} B$.
(ii) If $\delta_{A}{ }^{k}(B) \mathcal{R}_{\lambda}(A)=\{0\}$, for some $B \in \mathcal{B}(\mathcal{X})$ and some positive integer k, then $\mathcal{R}_{\lambda}(A) \in \operatorname{Lat} B$.

Proof. Since $\delta_{A}=\delta_{A-\lambda}$, there is no loss of generality if we assume that $\lambda=0$.
To prove (i), choose an arbitrary vector $x \in \bigcup_{n=1}^{\infty} \operatorname{ker} A^{n}$. Then there exists a positive integer m such that $A^{m} x=0$. Clearly, the vectors $A^{i} x$ are in $\mathcal{N}_{0}(A)$, for each $i \in\{0,1, \ldots, m-1\}$ so, by the assumption, $\delta_{A}{ }^{k}(B) A^{i} x=0$. Hence, with $i:=m-1$ we have

$$
\begin{equation*}
0=\delta_{A}{ }^{k}(B) A^{m-1} x=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} A^{k-j} B A^{m-1+j} x=A^{k} B A^{m-1} x \tag{1}
\end{equation*}
$$

The equality $\delta_{A}{ }^{k}(B) A^{m-2} x=0$ similarly gives $A^{k} B A^{m-2} x-k A^{k-1} B A^{m-1} x=0$. If we multiply this equality by A and use (1), we get $A^{k+1} B A^{m-2} x=0$. Using induction backwards, we are left with $A^{k+m} B x=0$. Therefore, $B x \in \bigcup_{n=1}^{\infty} \operatorname{ker} A^{n}$, and so $B \mathcal{N}_{\lambda}(A) \subseteq \mathcal{N}_{\lambda}(A)$.

We proceed to prove (ii) with transfinite induction. It is trivial that $B(\mathrm{cc} A) \subseteq$ $\operatorname{im}_{0} A$. Pick an ordinal α, and assume that we have $B(\operatorname{cœ} A) \subseteq \operatorname{im}_{\beta} A$ for each ordinal $\beta<\alpha$. Consequently, if α is a limit ordinal then $B(\operatorname{cœ} A) \subseteq \cap_{\beta<\alpha} \operatorname{im}_{\beta} A=\operatorname{im}_{\alpha} A$.

Suppose lastly α is a nonlimit ordinal, say $\alpha=\alpha^{\prime}+1$. Let $x \in \operatorname{co} A$ be arbitrary. Since $\operatorname{cœ} A=A(\operatorname{cœ} A)=\cdots=A^{k}(\operatorname{c} A)$ there exists a vector $y \in \operatorname{cœ} A$ such that $x=A^{k} y$. It follows from $\delta_{A}{ }^{k}(B)(\operatorname{co} A)=\{0\}$ that

$$
\begin{equation*}
B x=B A^{k} y=-\left((-1)^{k} A^{k} B y+(-1)^{k-1}\binom{k}{1} A^{k-1} B A y \pm \cdots-\binom{k}{k-1} A B A^{k-1} y\right) \tag{2}
\end{equation*}
$$

Now, vectors $y, A y, \ldots, A^{k-1} y$ are in cœ A and therefore, by the induction hypothesis, $B y, B A y, \ldots, B A^{k-1} y$ are all in $B(\operatorname{cc} A) \subseteq \operatorname{im}_{\alpha^{\prime}} A$. Since $A^{k}\left(\operatorname{im}_{\alpha^{\prime}} A\right) \subseteq A\left(\operatorname{im}_{\alpha^{\prime}} A\right)$ for each $k \geqslant 1$, we conclude from (2) that $B x \in A^{k}\left(\operatorname{im}_{\alpha^{\prime}} A\right)+\cdots+A\left(\operatorname{im}_{\alpha^{\prime}} A\right)=$ $A\left(\operatorname{im}_{\alpha^{\prime}} A\right)=\operatorname{im}_{\alpha^{\prime}+1} A=\operatorname{im}_{\alpha} A$. Hence, $B(\operatorname{cœ} A) \subseteq \operatorname{im}_{\alpha} A$.

By transfinite induction, $B(\operatorname{cc} A) \subseteq \operatorname{cœ} A$ and consequently $\mathcal{R}_{0}(A)=\overline{\operatorname{cœ} A} \in$ Lat B.

ThEOREM 1.3. Let $A \in \mathcal{B}(X)$ and let y be the closure of finite sum of spaces $\mathcal{R}_{\lambda}(A)$ and $\mathcal{N}_{\mu}(A)$, for instance, let

$$
\begin{equation*}
y=\overline{\mathcal{R}_{\lambda_{1}}(A)+\cdots+\mathcal{R}_{\lambda_{m}}(A)+\mathcal{N}_{\mu_{1}}(A)+\cdots+\mathcal{N}_{\mu_{n}}(A)} \tag{3}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{n}$ are arbitrary complex numbers. If $B \in \mathcal{B}(\mathcal{X})$ is such that $[A,[A, B]] y=\{0\}$ then y is invariant for B and $r_{[A, B]}(y)=0$ for every $y \in y$.

Proof. Assume that y is of the form (3). It follows from $[A,[A, B]] y=\{0\}$ that $[A,[A, B]] \mathcal{R}_{\lambda_{i}}(A)=\{0\} \quad$ and $\quad[A,[A, B]] \mathcal{N}_{\mu_{j}}(A)=\{0\} \quad$ for all $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$.

Thus, all spaces $\mathcal{R}_{\lambda_{i}}(A)$ and $\mathcal{N}_{\mu_{j}}(A)$ are in Lat B, which gives $y \in \operatorname{Lat} B$. Now the assertion follows by Proposition 1.1.

2. Jacobson's Lemma

If X is a finite dimensional vector space, then the Kleinecke-Shirokov Theorem reduces to the Jacobson's Lemma [5, Lemma 2], which says that $[A, B]$ is nilpotent if $A, B \in \mathcal{B}(X)$ are such that $[A,[A, B]]=0$. The original proof $[5$, Lemma 2], and its extension [6], bound the nilindex of $[A, B]$ above by $2^{n}-1$ where n is the degree of the minimal polynomial for A. Arguments run as follows: Let ' be a derivation such that A^{\prime} commutes with A and let f be the minimal polynomial of A. Differentiating $f(A)=0$ gives $f^{\prime}(A) A^{\prime}=0$, which is the case $k=1$ of $f^{(k)}(A)\left(A^{\prime}\right)^{2^{k}-1}=0$. Differentiating produces $f^{(k+1)}(A) A^{\prime}\left(A^{\prime}\right)^{2^{k}-1}+f^{(k)}(A)\left(A^{\prime \prime}\left(A^{\prime}\right)^{2^{k}-2}+A^{\prime} A^{\prime \prime}\left(A^{\prime}\right)^{2^{k}-3}+\right.$ $\left.\cdots+\left(A^{\prime}\right)^{2^{k}-2} A^{\prime \prime}\right)=0$. Now, premultiply with $\left(A^{\prime}\right)^{2^{k}-1}$ to get the induction step. We remark that if $A^{\prime \prime}$ commutes with A^{\prime}, similar arguments would bound nilindex above by $2 n-1$.

We shall use the results from the previous section to improve the estimate on the upper bound of the nilindex of $[A, B]$ (see Theorem 2.5 below).

Proposition 2.4. Let X be a complex Banach space.
(i) If $A \in \mathcal{B}(X)$ is a nilpotent operator with nilindex $n \geqslant 1$, then the inner derivation δ_{A} is a nilpotent operator on $\mathcal{B}(X)$ with nilindex $2 n-1$.
(ii) Let $A \in \mathcal{B}(\mathcal{X})$ be a nilpotent operator with nilindex $n \geqslant 1$ and let $B \in \mathcal{B}(\mathcal{X})$ be such that $\delta_{A}{ }^{2}(B)=0$. Then $\left(\delta_{A}(B)\right)^{2 n-1}=0$.

Proof. (i) For a nilpotent operator A with nilindex n, we have

$$
\delta_{A}^{2 n-1}(T)=\sum_{j=0}^{2 n-1}(-1)^{j}\binom{2 n-1}{j} A^{2 n-1-j} T A^{j}=0 \quad(T \in \mathcal{B}(X))
$$

which shows that $\delta_{A}{ }^{2 n-1}=0$.
On the other hand, let $x \in \mathcal{X}$ and $T \in \mathcal{B}(X)$ be such that $A^{n-1} x \neq 0$ and $T A^{n-1} x=x$. Then,

$$
\begin{aligned}
\delta_{A}^{2 n-2}(T) x & =\sum_{j=0}^{2 n-2}(-1)^{j}\binom{2 n-2}{j} A^{2 n-2-j} T A^{j} x=(-1)^{n-1}\binom{2 n-2}{n-1} A^{n-1} T A^{n-1} x \\
& =(-1)^{n-1}\binom{2 n-2}{n-1} x \neq 0
\end{aligned}
$$

gives $\delta_{A}{ }^{2 n-2} \neq 0$.
(ii) The classical proof of Kleinecke-Shirokov [4, Solution 184] shows that $\delta_{A}{ }^{2}(B)=$ 0 implies $\delta_{A}^{2 n-1}\left(B^{2 n-1}\right)=(2 n-1)!\left(\delta_{A}(B)\right)^{2 n-1}$. By the first part of this proposition, δ_{A} is a nilpotent operator with nilindex $2 n-1$. Thus, $\left(\delta_{A}(B)\right)^{2 n-1}=0$.

Assume that the ascent of $A \in \mathcal{B}(X)$ is a positive integer m. That is, $\mathcal{N}_{0}(A)=$ $\overline{\bigcup_{n=1}^{\infty} \operatorname{ker} A^{n}}=\operatorname{ker} A^{m}$. If $[A,[A, B]] \mathcal{N}_{0}(A)=\{0\}$, for some $B \in \mathcal{B}(\mathcal{X})$, then, by (i) of Proposition 1.2, $\mathcal{N}_{0}(A)$ is invariant for B. Let \tilde{A} and \tilde{B} be the restrictions of A and B to $\mathcal{N}_{0}(A)$. Then \tilde{A} is nilpotent with nilindex m and we have $[\tilde{A},[\tilde{A}, \tilde{B}]]=0$. It follows, by Proposition 2.4, that $[\tilde{A}, \tilde{B}]^{2 m-1}=0$, which gives $[A, B]^{2 m-1} \mathcal{N}_{0}=\{0\}$. Thus, the local nilindex of $[A, B]$ on $\mathcal{N}_{0}(A)$ is $2 m-1$.

THEOREM 2.5. Let $A \in \mathcal{B}(\mathcal{X})$ be an algebraic operator with the minimal polynomial $q_{A}(z)=\left(z-\lambda_{1}\right)^{m_{1}} \cdots\left(z-\lambda_{k}\right)^{m_{k}}$. If $[A,[A, B]]=0$ for $B \in \mathcal{B}(X)$, then $[A, B]$ is a nilpotent operator with nilindex at most $2 \cdot \max \left\{m_{1}, \ldots, m_{k}\right\}-1$.

Proof. For each $1 \leqslant i \leqslant k$, let $\mathcal{M}_{i}:=\operatorname{ker}\left(A-\lambda_{i}\right)^{m_{i}}$ (thus $\mathcal{M}_{i}=\mathcal{N}_{\lambda_{i}}(A)$ in the notation used above $)$. Then $X=\mathcal{M}_{1} \oplus \cdots \oplus \mathcal{M}_{k}$. Since $\left[A-\lambda_{i},\left[A-\lambda_{i}, B\right]\right]=$ $[A,[A, B]]=0$ we have $\left[A-\lambda_{i},\left[A-\lambda_{i}, B\right]\right] \mathcal{M}_{i}=\{0\}$. The restriction of $A-\lambda_{i}$ to \mathcal{M}_{i} is a nilpotent with nilindex m_{i}. It follows that the local nilindex of $\left[A-\lambda_{i}, B\right]=[A, B]$ on \mathcal{M}_{i} is at most $2 m_{i}-1$. Let $x=x_{1} \oplus \cdots \oplus x_{k}$ be the decomposition of $x \in \mathcal{X}$ with $x_{i} \in \mathcal{M}_{i}$. Then, of course, $[A, B]^{2 m-1} x=0$, where $m=\max \left\{m_{1}, \ldots, m_{k}\right\}$.

COROLLARY 2.6. If A is a diagonalizable matrix then $[A,[A, B]]=0$ implies $[A, B]=0$.

Proof. The minimal polynomial of A is a product of distinct linear factors.
Note that a diagonalizable matrix is similar to a diagonal, hence to a normal matrix. With this in mind, Corollary 2.6 can also be derived from Anderson's results [1] on range-kernel orthogonality of normal derivations; see also [10, Theorem 3].

REFERENCES

[1] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135-140.
[2] M. Brešar, A. Fošner, and M. Fošner, Jordan ideals revisited, Monatsh. Math. 145 (2005), no. 1, 1-10.
[3] J. DugundiI, Topology, Wm. C. Brown publishers, 1989.
[4] P. R. Halmos, A Hilbert Space Problem Book, Springer, 1974.
[5] N. Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. 36 (1935), 875-881.
[6] I. Kaplansky, Jacobson's Lemma Revisited, Journal of Algebra, 62 (1980), 473-476.
[7] D. C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc. 8 (1957) 535-536.
[8] M. Mathieu, Where to find the image of a derivation, Functional analysis and operator theory (Warsaw, 1992), 237-249, Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994.
[9] V. MüLLER, Spectral Theory of Linear Operators, Birkhäuser, 2003.
[10] M. Roitman, Some commutativity results, Bull. Sci. Math. 108 (1984), no. 3, 289-296.
[11] P. SAPHAR, Contribution a l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France, 92 1964, 363-384.
[12] F. V. Shirokov, Proof of a conjecture by Kaplansky, Uspekhi Mat. Nauk 11 (1956), no. 4, 167-168 (in Russian).

