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PROJECTIONS AND THE KADISON–SINGER PROBLEM

PETE CASAZZA, DAN EDIDIN, DEEPTI KALRA AND VERN I. PAULSEN

(communicated by S. McCullough)

Abstract. We prove some new equivalences of the paving conjecture and obtain some estimates
on the paving constants. In addition we give a new family of counterexamples to one of the
Akemann-Anderson conjectures.

1. Introduction

Let H be a separable, infinite dimensional Hilbert space and let B(H) denote the
bounded, linear operators on H. By a MASA we mean a maximal, abelian subalgebra
of B(H) . R. Kadison and I. Singer studied [18] whether or not pure states on a
MASA extend uniquely to states on B(H). In their original work on this subject [18],
it was shown that this question has a negative answer if the MASA had any continuous
part. The remaining case, whether or not pure states on discrete MASA’s have unique
extensions to states on B(H), has come to be known as the Kadison-Singer problem.
The statement that pure states on discrete MASA’s have unique extensions has come to
be known as the Kadison-Singer conjecture, in spite of the fact that neither Kadison nor
Singer made this conjecture and quite possibly believed the opposite.

The work of Kadison-Singer showed that their problem was equivalent to certain
questions about "paving" operators by projections. J. Anderson[2] developed this idea
significantly into a series of so-called "paving" conjectures, which are true if and only
if the Kadison-Singer conjecture is true. Since the time of Anderson’s work, there has
been a great deal of research on these paving conjectures [1], [5], [6], [8], [10], [12], [14],
[15] and [16].

In this paper, we begin by restating some of these paving conjectures and add a
few new equivalent paving conjectures.
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2. Some New Equivalences of the Paving Conjecture

Let us begin with the familiar.
Given A ⊆ I, where I is some index set, we let QA ∈ B(�2(I)) denote the diagonal

projection defined by QA = (qi,j), qi,i = 1, i ∈ A, qi,i = 0, i /∈ A and qi,j = 0, i �= j.

DEFINITION 1. An operator T ∈ B(�2(I)) is said to have an (r, ε) -paving if there
is a partition of I into r subsets {Aj}r

j=1 such that ‖QAjTQAj‖ � ε. A collection of
operators C is said to be (r, ε) -pavable if each element of C has an (r, ε) -paving.

Note that in this definition, we do not require that the diagonal entries of the
operator be 0.

Some classes that will play a role are:
• C∞ = {T = (ti,j) ∈ B(�2(N)) : ‖T‖ � 1 , ti,i = 0 , ∀i ∈ N},
• C = ∪∞

n=2{T = (ti,j) ∈ Mn : ‖T‖ � 1 , ti,i = 0 , i = 1, ..., n},
• S∞ = {T ∈ C∞ : T = T∗},
• S = {T ∈ C : T = T∗},
• R∞ = {T ∈ S∞ : T2 = I},
• R = {T ∈ S : T2 = I},
• P∞

1/2 = {T = (ti,j) ∈ B(�2(N)) : T = T∗ = T2 , ti,i = 1/2 , ∀i ∈ N},
• P1/2 = ∪∞

n=2{T = (ti,j) ∈ Mn : T = T∗ = T2 , ti,i = 1/2 , i = 1, ..., n}.
Note that the operators satisfying, R = R∗ , R2 = I are reflections and that for

such an operator, σ(R) = {−1, +1} . Since the traces of our matrices are 0, in the
finite dimensional case these types of reflections can only exist in even dimensions. If
the space is 2n -dimensional, then there exists an n -dimensional subspace that is fixed
by R and such that for any vector x orthogonal to the subspace Rx = −x .

J. Anderson’s [2] remarkable contribution follows.
THEOREM 2. (Anderson)The following are equivalent:

(1) the Kadison-Singer conjecture is true,
(2) for each T ∈ C∞, there exists (r, ε) (depending on T) ε < 1 , such that T is

(r, ε) -pavable,
(3) there exists (r, ε), ε < 1, such that C∞ is (r, ε) -pavablle,
(4) there exists (r, ε), ε < 1 , such that C is (r, ε) -pavable,
(5) for each T ∈ S∞, there exists (r, ε), ε < 1 (depending on T), such that T is

(r, ε) -pavable,
(6) there exists (r, ε), ε < 1, such that S∞ is (r, ε) -pavable,
(7) there exists (r, ε), ε < 1, such that S is (r, ε) -pavable.

Generally, when people talk about the paving conjecture they mean one of the
above equivalences of the Kadison-Singer problem. Also, generally, when one looks at
operators on an infinite dimensional space, it is enough to find (r, ε) depending on the
operator, but for operators on finite dimensional spaces it is essential to have a uniform
(r, ε), for all operators of norm one. Finally, since S∞ ⊂ C∞ , people looking for
counterexamples tend to study C∞ , while people trying to prove the theorem is true,
study S∞ or S. However, by the above equivalences, if a counterexample exists in one
set then it must exist in the other as well.
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In this spirit, we prove that the following smaller sets with “more structure” are
sufficient for paving.

THEOREM 3. If ε < 1, then the following are equivalent:
(1) the set S∞ can be (r1, ε) -paved,
(2) the set R∞ can be (r1, ε) -paved,
(3) the set P∞

1/2 can be (r2,
1+ε
2 ) -paved,

(4) the set S can be (r1, ε) -paved,
(5) the set R can be (r1, ε) -paved,
(6) the set P1/2 can be (r2,

1+ε
2 ) -paved.

Proof. Since the reflections are a subset of the self-adjoint matrices, it is clear that
(1) implies (2) and that (4) implies (5).

To see that (2) implies (1), let A ∈ S∞, and set

R =
(

A
√

I − A2√
I − A2 −A

)
,

then R ∈ R∞ and clearly any (r, ε) -paving of R yields an (r, ε) -paving of A .
Thus, (1) and (2) are equivalent and similarly, (4) and (5) are equivalent.
To see the equivalence of (2) and (3), note that R ∈ R∞ (respectively, R ) if

and only if P = (I + R)/2 ∈ P∞
1/2 (respectively, P1/2 ). Also, if ‖QARQA‖ � ε,

then ‖QAPQA‖ � (1 + ε)/2. Thus, if R∞ can be (r1, ε) -paved, then P∞
1/2 can be

(r1,
1+ε
2 ) -paved.
Conversely, given R ∈ R∞ , let P = (I + R)/2. If ‖QAPQA‖ � (1 + ε)/2 = β ,

then,
0 � QAPQA � βQA,

and since R = 2P − I, we have that

−QA � QARQA � (2β − 1)QA = εQA.

Applying the same reasoning to the reflection −R , we get a new projection, P1 =
(I−R)/2 , with a possibly different paving of P1 , such that −QB � QB(−R)QB � εQB.
Thus, −εQB � QBRQB and if QC = QAQB, we have that −εQC � QCRQC � +εQC.
Therefore, we have that the set of all products of the QA ’s and QB ’s pave R. Thus, if
P∞

1/2 can be (r2,
1+ε
2 ) -paved, then R∞ can be (r2

2 , ε) -paved.
The proof of the equivalence of (5) and (6), is identical.
Finally, (1) and (4) are equivalent by the standard limiting argument. In particular,

see [10, Proposition 2.2] and the proof of [10, Theorem 2.3]. �

COROLLARY 4. The following are equivalent:
(1) the Kadison-Singer conjecture is true,
(2) for each R ∈ R∞ there is a (r, ε), ε < 1 (depending on R) such that R can be

(r, ε) -paved,
(3) there exists (r, ε), ε < 1, such that every R ∈ R can be (r, ε) -paved,
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(4) for each P ∈ P∞
1/2 there is a (r, ε), ε < 1 (depending on P) such that P can be

(r, ε) -paved,
(5) there exists (r, ε), ε < 1, such that every P ∈ P1/2 can be (r, ε) -paved.

We will need some results from frame theory in this paper. We refer the reader
to [13] for these. We will briefly give the definitions we will be using. If {f i}i∈I is
a set of vectors in a Hilbert space H , the analysis operator of this set is the operator
T : H → �2(I) given by T(f ) = {〈 f , f i〉 }i∈I , and the synthesis operator is the operator
T∗({ai}i∈I) =

∑
i∈I aif i . If T is bounded, we call {f i}i∈I a Bessel sequence. If T is

also onto we call the set a frame. If T is bounded, onto and invertible the set is called
a Riesz basis. A countable Riesz basis is, generally, called a Riesz basic sequence. A
frame is equal-norm or uniform if the f i all have the same norm and it is equiangular
if there is a constant c so that |〈 f i, f j〉 | = c for all i �= j ∈ I . A frame is called a
Parseval frame if T is a partial isometry. In this case, the Gram matrix (〈 f i, f j〉 )i,j∈I

is an orthogonal projection of �2(I) onto the range of the analysis operator and this
matrix takes ei to T(f i) where {ei}i∈I is the standard orthonormal basis of �2(I) .
We call a Parseval frame for a k -dimensional Hilbert space consisting of n vectors an
(n,k)-frame.

A sort of meta-corollary of Theorem 3 is that the frame based conjectures that
are known to be equivalent to the Kadison-Singer result can be reduced to the case
of uniform Parseval frames of redundancy 2. Similarly, for most harmonic analysis
analogues of paving, it is enough to consider say subsets E ⊆ [0, 1] of Lebesgue
measure 1/2. We state one such equivalence. The Feichtinger Conjecture in frame
theory asserts that every unit norm Bessel sequence is a finite union of Riesz basic
sequences. Casazza and Tremain [12] have shown that the Feichtinger conjecture is
equivalent to the Kadison-Singer conjecture.

THEOREM 5. The Feichtinger conjecture is true if and only if for each Parseval
frame {f n}n∈N for aHilbert spacewith ‖f n‖2 = 1/2 ∀n there is an r (with r depending
on the frame) and a partition of N into r disjoint subsets {Aj}r

j=1 such that for each
j, {f n}n∈Aj is a Riesz basis for the space that it spans.

Proof. Clearly, if the Feichtinger conjecture is true, then it is true for this special
class of frames.

Conversely, assume that the above holds and let P ∈ P∞
1/2 . Then there exists a

Parseval frame {f n}n∈N for some Hilbert space H, such that I−P = (〈 f j, f i〉 ) is their
Grammian. Now let {Ak}r

k=1 be the partition of N into r disjoint subsets as above and
let Hk = span{f n : n ∈ Ak} denote the closed linear span.

Since {f n : n ∈ Ak} is a Riesz basis for Hk , there exists an orthonormal basis,
{en : n ∈ Ak} for Hk and a bounded invertible operator, Sk : Hk → Hk, with
Sk(en) = f n.

We have that QAk(I − P)QAk = (〈 f j, f j〉 )i,j∈Ak = (〈 S∗k Skej, ei〉 ) � ckQAk where
S∗k Sk � ckQAk for some constant 0 < ck � 1 since Sk is invertible. Hence, QAkPQAk �
(1 − ck)QAk and we have that, max{‖QAkPQAk‖ : 1 � k � r} < 1.

Hence, condition (5) of Corollary 4 is met and so Kadison-Singer is true and thus,
by [12, Theorem 5.3], the Feichtinger conjecture is true. �
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3. Some Paving Estimates

In this section we derive some estimates on paving constants that give some basic
relationships between r and ε. In particular, we will prove that P1/2 cannot be (2, ε) -
paved for any ε < 1.

We begin with a result on paving R.

THEOREM 6. Assume that R is (r, ε) -pavable. Then 1 � rε2.

Proof. Recall that an n × n matrix C is a conference matrix if C = C∗, ci,i =
0, ci,j = ±1, i �= j and C2 = (n − 1)I. Such matrices exist for infinitely many n .

If we Set A = 1√
n−1

C, then A is a unitary matrix with zero diagonal.

Assume that {1, ..., n} = B1 ∪ ...∪Br is a partition such that ‖QBiAQBi‖ � ε. Let
d = max{card(Bi)} and let Bj attain this max. Note that d � n

r . Setting Aj = QBjAQBj ,

the Schur product Aj ∗Aj = 1
n−1 [Jd − Id] where Jd denotes the matrix of all 1’s. Hence,

d−1
n−1 = ‖Aj ∗ Aj‖ � ‖Aj‖2 � ε2. Thus, n/r−1

n−1 � ε2, and the result follows by letting
n → +∞ �

PROPOSITION 7. If every projection P ∈ P1/2 can be (r, ε) -paved then every
projection Q = (qi,j) with

1
2
− δ � qi,i � 1

2
+ δ,

can be (r, β) -paved, where
β = (1 + 2δ)ε,

and so β < 1 when δ is small enough.

Proof. Let Q be a projection as above, let D be the diagonal of Q and set
B = Q − D . Then

‖B‖ � 1 + 2δ
2

.

To see this note that for any vector x

0 � 〈Bx, x〉 + 〈Dx, x〉 � 1,

since Q is a projection. Hence,

−〈Dx, x〉 � 〈Bx, x〉 � 1 − 〈Dx, x〉 .

Hence,

‖B‖ = sup
‖x‖=1

|〈Bx, x〉 | � max{|〈Dx, x〉 |, |1 − 〈Dx, x〉 |} � 1
2

+ δ =
1 + 2δ

2
.

Let R = R∗ be the symmetry we get by dilating

2
1 + 2δ

B,
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as in the proof of Theorem 3 and let P = 1
2 (I + R) be the corresponding projection,

which has 1/2′s on the diagonal.
By assumption, we can (r, ε) -pave P , which yields an (r, ε) -paving of

1
2
I +

1
1 + 2δ

B,

since this is the upper left hand corner of P . Substituting B = Q − D we have an
(r, ε) -paving of

1
1 + 2δ

Q +
1
2
I − 1

1 + 2δ
D =

1
1 + 2δ

(
Q +

1 + 2δ
2

I − D

)
.

Now, if {Aj}r
j=1 are the sets that yield the paving, then for any j = 1, 2, . . . , r since

1 + 2δ
2

I − D

is a positive operator,

‖QAjQQAj‖ � ‖QAj(Q +
1 + 2δ

2
I − D)QAj‖ � (1 + 2δ)ε = β ,

and hence these same sets yield a (r, β) -paving of Q . �

THEOREM 8. If P1/2 can be (r, ε) -paved, then r
2(r−1) � ε.

Proof. Let m > 2 be an integer and consider a uniform, Parseval (n,k)-frame with
n = mr, k = m(r − 1) + 1 . This will give rise to a projection Q with diagonal entries,
m(r−1)+1

mr = 1
2 + δ, where δ = m(r−2)+3

2mr . To see this, let

δ =
m(r − 1) + 1

mr
− 1

2

=
2[m(r − 1) + 1] − mr

2mr

=
m(r − 1) + 2

2mr
.

By the above result, Q can be (r, β) -paved, where β = (1 + 2δ)ε.
However, for any r paving of Q, one of the blocks must be of size at least

n/r = m = n − k + 1,

by the choice of n and k . Since Q is a rank k projection, this block will have norm
1 by the eigenvalue inclusion principle or by the eigenvalue interlacing results. Hence
β � 1. We solve for ε :

(1 + 2δ)ε � 1.
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So

ε � 1
1 + 2δ

=
mr

m(2r − 2) + 2
.

Letting m → +∞ yields

ε � r
2(r − 1)

.

�

COROLLARY 9. The set P1/2 is not 2 -pavable.

Proof. When r = 2, the formula implies that 1 � ε and hence 2-paving is
impossible. �

COROLLARY 10. The set R is not 2 -pavable.

We now generalize the results of the last theorem.

THEOREM 11. For each r, n ∈ N with r > 1 there is an εn > 0 so that if P
is a projection on �n

2 with 1
r � 〈Pei, ei〉 � 1 − 1

r for all i = 1, 2, . . . , n then P is
(r, 1 − εn) -pavable.

Moreover, for every r ∈ N and δ > 0 there is an n ∈ N and a projection P on
�2n
2 of rank n so that 1

r − δ � 〈Pei, ei〉 � 1 − 1
r + δ for all i = 1, 2, . . . , 2n while P

is not (r, ε) -pavable for any ε < 1 .

Proof. Given our assumptions, we will check the Rado-Horn Theorem (see [11]
and its references) to see that the row vectors of our projection can be divided into r
linearly independent sets. Then the rest of the first part of the theorem follows by a
compactness argument. For any J ⊂ {1, 2, . . . , 2n} let PJ be the orthogonal projection
of �2n

2 onto the span {Pei}i∈J . Now,

dim span {Pei}i∈J =
2n∑
i=1

‖PJPei‖2 �
∑
i∈J

‖Pei‖2 � |J|1
r
.

By the Rado-Horn Theorem we can now write {Pei}2n
i=1 as a union of r -linearly

independent sets.
For the moreover part, choose a k ∈ N so that

1
r
− δ <

k
rk + 1

� 1
r

� 1 − 1
r
.

Now, choose an n so that

1
r
− δ � n − rk

2n − (rk + 1)
� 1 − 1

r
+ δ.
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With {ei}n
i=1 the canonical basis for �n

2 we can choose an equal norm Parseval frame
{f i}rk+1

i=1 for the span of {ei}k
i=1 . Next, choose an equal norm Parseval frame {f i}2n

i=rk+2
for the span of {ei}n

i=k+1 . Now,

1
r
− δ � ‖f i‖2 =

k
rk + 1

� 1
r

� 1 − 1
r
,

and
1
r
− δ � n − rk

2n − (rk + 1)
� 1 − 1

r
+ δ.

Taking the embedding of this Parseval frame with 2n -elements for �n
2 into �2n

2 we get
a projection P on �2n

2 which has rank n and is given by the matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖f 1‖2 b1,2 . . . b1,(rk+1) 0 0 . . . 0
b21 ‖f 1‖2 . . . b2,(rk+1) 0 0 . . . 0
...

... . . .
...

...
... . . .

...
b(rk+1),1 b(rk+1),2 . . . ‖f 1‖2 0 0 . . . 0

0 0 . . . 0 ‖f rk+2‖2 a(rk+2),(rk+3) . . . a(rk+2),2n

0 0 . . . 0 a(rk+3),(rk+2) ‖f rk+2‖2 . . . a(rk+3),2n

...
... . . .

...
...

... . . .
...

0 0 . . . 0 a(2n),(rk+2) a(2n),(rk+3) . . . ‖f rk+2‖2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For this projection, for any J ⊂ {1, 2, . . .n} with |J| > r the family {Pei}i∈J is
linearly dependent and so PQA has a zero eigenvalue. Hence, (I −P)QA has one as an
eigenvalue and hence I − P is not ε -pavable for any ε > 0 .

Note that the diagonal entries of I−P satisfy the same inequalities as P and hence
the result follows. �

4. Counterexamples to the Akemann-Anderson Conjecture

In [1] Akemann and Anderson introduce two paving conjectures, denoted Conjec-
ture A and Conjecture B. They prove that Conjecture A implies Conjecture B and that
Conjecture B implies Kadison-Singer, but it is not known if either of these implications
can be reversed. Weaver[21] provides a set of counterexamples to Conjecture A. Thus,
if these three statements were all equivalent then Weaver’s counterexamplewould be the
end of the story. However, it is generally believed that Conjecture A is strictly stronger
than the Kadison-Singer conjecture.

In this section, we show that the Grammian projection matrices of any uniform,
equiangular (n,k)-frame, with n > 5k yield counterexamples to Conjecture A. It
is known that infinitely many such frames exist for arbitrarily large n and k. The
significance of our new set of counterexamples is that by the results of J. Bourgain and
L. Tzafriri [8], there exists r and ε < 1, such that the family of self-adjoint, norm one,
0 diagonal matrices obtained from these frames is (r, ε) -pavable.

Thus, these new examples drive an additional wedge between Conjecture A and
Kadison-Singer.
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We then turn our techniques to Conjecture B and derive some results that could
lead to a counterexample to Conjecture B.

We now describe the Akemann-Anderson conjectures. Let P = (pi,j) ∈ Mn be the
matrix of a projection and set δP = max{pi,i : 1 � i � n}. By a diagonal symmetry
we mean a diagonal matrix whose diagonal entries are ±1, that is, S is a diagonal
self-adjoint unitary.

CONJECTURE A [1, 7.1.1]. For any projection P there exists a diagonal symmetry
S, such that ‖PSP‖ � 2δP.

CONJECTURE B [1, 7.1.3]. There exists γ , ε > 0 (and independent of n) such that
for any P with δP < γ there exists a diagonal symmetry, S, such that ‖PSP‖ < 1 − ε.

Weaver[21] states that a counterexample to Conjecture B would probably lead to
a negative solution to Kadison-Singer. We believe that these two conjectures are really
more closely related to 2-pavings and this is why we believe that counterexamples to
Conjecture B should be close at hand.

Finally, note that ConjectureB is about paving projectionswith small diagonal. But
our results show that Kadison-Singer is equivalent to paving projections with diagonal
1/2. This would also seem to put further distance between these Akemann-Anderson
conjectures and the Kadison-Singer conjecture.

PROPOSITION 12. Let P =
(

A B
B∗ C

)
be a projection, written in block-form with

A m × m, B m × (m + l), C (m + l) × (m + l) , where l � 0. Then there exists
a m × m unitary U1 and an (m + l) × (m + l) unitary U2 such that, U∗

1 AU1 =

D1, U∗
1 BU2 = (D2, 0), U∗

2 CU2 =
(

D3 0
0 D4

)
where each of the Di ’s is a diagonal

matrix with non-negative entries, D1, D2, D3 are all m × m, D4 is l × l with 1 ’s and
0 ’s for its diagonal entries and the 0 ’s represent matrices of all zeroes that are either
m × l or l × m.

Proof. First note that since P is a projection we have that A2 + BB∗ = A, B∗B +
C2 = C and AB + BC = B. Also, since the rank of B is at most m , the matrix B∗B
must have a kernel of dimension at least l .

Conjugating P by a unitary of the form U =
(

Im 0
0 U2

)
, we may diagonalize C

and the new matrix, P1 , will still be a projection. Since U∗
2 B∗BU2 = U∗

2 (C − C2)U2,
we see that both sides of this equation are in diagonal form. Since at least l of the
diagonal entries of U∗

2 B∗BU2 are zeroes, after applying a permutation if necessary, we
may assume that,

U∗
2 B∗BU2 =

(
D2

2 0
0 0

)
, U∗

2 CU2 =
(

D3 0
0 D4

)
,

where D2, D3, D4 are as claimed.
Now we may polar decompose the m × (m + l) matrix BU2 = W|BU2| =

W

(
D2 0
0 0

)
, where W is a m × (m + l) partial isometry whose initial space is
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the range of |BU2| . Thus, W = (W1, 0) where W1 is an m × m partial isometry.
Hence, we may extend W1 to an m × m unitary U1 with W1D2 = U1D2 and BU2 =

(U1, 0)
(

D2 0
0 0

)
= (U1D2, 0).

Conjugating P1 by the unitary

(
U1 0
0 Im+l

)
we arrive at a new projection of the

form, ⎛
⎝U∗

1 AU1 D2 0
D2 D3 0
0 0 D4

⎞
⎠ .

Note that since this last matrix is a projection, U∗
1 AU1D2 + D2D3 = D2 and so,

U∗
1 AU1D2 is diagonal. If all of the entries of D2 were non-zero, then this would imply

that U∗
2 AU2 is diagonal. In general, this implies that U∗

1 AU1 (which is self-adjoint)
is of the form a diagonal matrix direct sum with another matrix corresponding to the
block where D2 is 0. Conjugating U∗

1 AU1 by another unitary to diagonalize this lower
block, yields the desired form.

Finally, note that since D4 is a diagonal projection, all of its entries must be 0 ’s
or 1 ’s. �

LEMMA 13. Let P =
(

a b
b c

)
be a non-zero projection with real entries and let

S =
(

1 0
0 −1

)
. Then ‖PSP‖ = |1 − 2c|.

Proof. If P is rank 2 then P = I and the result is trivial. So assume that P is rank

one. We have that PSP =
(

a2 − b2 ab − bc
ab − bc b2 − c2

)
and since P is a rank one projection,

a + c = 1, b2 + c2 = c. A little calculation shows that the characteristic polynomial of
PSP is x2 − Tr(PSP)x + Det(PSP) = x2 − (1− 2c)x, and hence the eigenvalues are 0
and 1-2c, from which the result follows. �

Note that when S is a diagonal symmetry, then −S is also a diagonal symmetry,
and since ‖PSP‖ = ‖P(−S)P‖, we may and do assume in what follows that the number
of −1 ’s in S is greater than or equal to the number of +1 ’s. Also, given a matrix A ,
we let σ(A) denote the spectrum of A and set σ ′(A) ≡ σ(A)\{0}.

THEOREM 14. Let P =
(

A B
B∗ C

)
be an n×n projection and let S =

(
I 0
0 −I

)

be a diagonal symmetry. Then ‖PSP‖ � max{|1 − 2λ | : λ ∈ σ ′(C) ∪ σ ′(A)}.

Proof. Given any unitary of the type in the above Proposition, we have that
‖PSP‖ = ‖U∗PSPU‖ = ‖(U∗PU)(U∗SU)(U∗PU)‖ = ‖(U∗PU)S(U∗PU)‖. Thus,
we may and do assume that P has been replaced by U∗PU . But this reduces the norm
calculation to the direct sum of a set of 2×2 matrices of the form of the lemma together
with the diagonal projection D4 . Now if λ ∈ σ ′(C) , then this 2 × 2 matrix is neces-
sarily rank one and so the lemma applies. Note also that in this case the corresponding
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eigenvalue of D1 is 1 − λ and that |1 − 2(1 − λ )| = | − 1 + 2λ | = |1 − 2λ | so the
values of this function agree. When λ = 0, then this 2×2 matrix is either the 0 matrix
or it is rank 1 and the corresponding eigenvalue of D1 is 1 . �

We now provide a counterexample to Conjecture A.

THEOREM 15. Let {f 1, ..., f n} be a uniform equiangular Parseval frame for Ck

with n > 2k and let P = (〈 f i, f j〉 ) be the correlation matrix. If there exists a diagonal
symmetry, S, such that, ‖PSP‖ � 2δP = 2k

n , then (k − 1)n2 � 4k2(n − 1).

Proof. Without loss of generality we may assume that S is a diagonal symmetry
with m diagonal entries that are +1 and n − m diagonal entries that are −1 and,
m � n − m. Putting P into the form of the Proposition, we see that since D4 is a
projection, if it is non-zero, then ‖PSP‖ = 1 . So we may assume that D4 = 0.

Similarly, if any of the diagonal entries of D1 or D3 are 1, then ‖PSP‖ = 1.
Thus, when we put P into the form of the above Proposition, we obtain a direct sum of
2 × 2 rank 1 projections, together with some matrices of all 0’s.

Let 0 < λ1 � ... � λt < 1, denote the non-zero diagonal entries of D1 , so that
the corresponding diagonal entries of D3 are 1 − λ1, ..., 1 − λt, and the remaining
entries of D3 are 0’s. Since P is a rank k projection, we have that k = Tr(P) =
Tr(D1) + Tr(D3) = t.

By the above Theorem, we have that ‖PSP‖ = max{|1 − 2λ1|, |1 − 2λk|} =
max{1 − 2λ1, 2λk − 1}. Since ‖PSP‖ � 2k

n , we have, n−2k
2n � λ1 and λk � n+2k

2n .

Since Tr(D1) = Tr(A) = mk/n , we have that 0 < λ1 � m/n � λk. Hence,
n−2k

2n � m/n � n+2k
2n and the left inequality yields n � 2k + 2m . Note that by the

choice of m we have that 2m � n, so that the inequality m/n � n+2k
2n is automatically

satisfied.
If we let, μ1, ...,μk be the corresponding entries of D2 , then since each matrix,(

λi μi

μi 1 − λi

)
is a rank one projection, we have that μ2

i = λi(1 − λi).

Since P is the correlation matrix of a uniform equiangular (n,k)-frame, by [17],

we have that every off-diagonal entry of P is of constant modulus, c =
√

k(n−k)
n2(n−1) . This

yields,
k∑

i=1

μ2
i = Tr(B∗B) = m(n − m)c2 � n2c2

4
=

k(n − k)
4(n − 1)

.

Now observe that the function t(1 − t) is increasing on [0,1/2] and decreasing
on [1/2,1]. Thus, we have that min{λ1(1 − λ1), λk(1 − λk)} = min{μ2

1 , ...,μ2
k } �

Tr(B∗B)/k � n−k
4(n−1) .

However, since n−2k
2n � λ1, we have n−2k

2n (1 − n−2k
2n ) = n2−4k2

4n2 � λ1(1 − λ1).
Similarly, using the fact that 1/2 < n+2k

2n , one sees that n+2k
2n (1 − n+2k

2n ) = n2−4k2

4n2 �
λk(1 − λk).

Combining these inequalities, yields n2−4k2

4n2 � n−k
4(n−1) . Cross-multiplying and

canceling like terms yields the result. �
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Note that the above inequality, for n and k large becomes asymptotically, n � 4k.
Thus, any uniform, equiangular (n,k)-frame with n/k >> 4, and n sufficiently large
will yield a counterexample to Conjecture A.

COROLLARY 16. There exist uniform, equiangular Parseval frames whose projec-
tion matrices are counterexamples to Conjecture A.

Proof. In [7, Example 6.4] a real uniform, equiangular (276, 23)-frame is exhibited
and these values satisfy (k − 1)n2 > 4k2(n − 1). In [19], uniform, equiangular (n,k)-
frames are constructed using Singer difference sets of size,

n =
qm+1 − 1

q − 1
, k =

qm − 1
q − 1

,

where q = pr with p a prime. Note that n/k > q − 1. Since Singer difference
sets are known to exist for infinitely large q , these frames give a whole family of
counterexamples. �

We now turn our attention to Conjecture B. We let γ , ε > 0 be as in the statement
of the conjecture. For each partition of {1, ..., n} = R ∪ T into two disjoint sets, R, T ,
we let QR, QT denote the corresponding diagonal projections.

THEOREM 17. Let γ , ε > 0 be fixed, let {f 1, ..., f n} be a uniform Parseval frame
for Rk with k/n < min{γ , ε/2, 1/2} and let P = (〈 f i, f j〉 ) be the correlation matrix.
If Conjecture B is true for the pair (γ , ε) , then there exists a partition {1, ..., n} = R∪T
such that Tr(QRPQTPQR) � kε(2−ε)

4 .

Proof. Each such partition defines a diagonal symmetry as before and correspond-

ing to such a partition we write

(
A B
B∗ C

)
. Note that QRPQT =

(
0 B
0 0

)
so that

Tr(QRPQTPQR) = Tr(BB∗).
We have that δP = k/n < γ . We repeat the proof above, with m = min{|R|, |T|} .
Letting λ1 be the minimum non-zero eigenvalue and λk the largest eigenvalue

of A as before, we have 1 − ε � ‖PSP‖ � max{|1 − 2λ1|, |1 − 2λk|} and, hence,
λ1 � ε/2 and 1 − λk � ε/2.

Using the properties of the function t → t(1−t) and the fact that
∑k

i=1 λi(1−λi) =
Tr(B∗B), we have that ε/2(1 − ε/2) � min{λ1(1 − λ1), λk(1 − λk)} � 1/k Tr(B∗B) ,
which yields the result. �

Using equiangular frames we can obtain a relation between γ and ε in Conjecture
B.

THEOREM 18. Assume that Conjecture B is true for a pair (γ , ε) and let {f 1, ..., f n}
be a uniform, equiangular (n,k)-frame with k/n � γ . Then ε(2 − ε) � n−k

n−1 .

Proof. By the above theorem, we have that there exists a partition with |R| = m,

such that kε(2−ε)
4 � Tr(QRPQTPQR) = m(n − m)c2 � n2

4 c2 = k(n−k)
4(n−1) . �

There are very few pairs (n, k) for which uniform, equiangular Parseval (n, k) -
frames exist and, consequently, it is difficult to determine which real numbers can arise
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as limits of rational numbers of the form k/n for such pairs. If we have that infinitely
many uniform, equiangular (n,k)-frames exist for which n → +∞ and k/n → γ , then

n − k
n − 1

=
1 − k/n

(1 − 1/n)
→ 1 − γ ,

and hence, ε(2 − ε) � 1 − γ . If for a given prime p, there are infinitely many Singer
difference sets, with q = pr, and we choose, 1/q � γ then we get that ε(2−ε) < q−1

q .

Unfortunately, there are no uniform Parseval (n,k) frames which violate the trace
inequality in Theorem 17, so that finding a counter-example to Conjecture B is more
subtle. We will show this below.

First, let us change the notation. If {f i}n
i=1 is a Parseval frame for lk2 with analysis

operator V then the frame operator is S = V∗V = I and P = VV∗ is a projection on
ln2 onto the image of the analysis operator (which is now an isometry). Let {R, T} be
a partition of {1, 2, . . . , n} . If x =

∑n
i=1 aiei then

QRx =
∑
i∈R

aiei.

Next,

PQRx =
n∑

j=1

〈
∑
i∈R

aif i, f j〉 ej.

Finally,
QTPQRx =

∑
j∈T

〈
∑
i∈R

aif i, f j〉 ej.

It follows that
QTPQRei =

∑
i∈R

∑
j∈T

〈 f i, f j〉 ej.

Now we have:

LEMMA 19. Given the conditions above we have

Tr(QRPQTPQR) =
∑
i∈R

∑
j∈T

|〈 f i, f j〉 |2.

Proof. We compute:

n∑
i=1

〈QRPQTPQRei, ei〉 =
n∑

i=1

〈QTPQRei, PQRei〉

=
n∑

i=1

〈QTPQRei, QTPQRei〉

=
n∑

i=1

‖QTPQRei‖2

=
∑
i∈R

∑
j∈T

|〈 f i, f j〉 |2.
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�

Now we need to recall a result of Berman, Halpern, Kaftal and Weiss [5].

THEOREM 20. Let (aij)n
i,j=1 be a self-adjoint matrix with non-negative entries and

with zero diagonal so that

n∑
m=1

aim � B, for all i = 1, 2, . . . , n .

Then for every r ∈ N there is a partition {Aj}r
j=1 of {1, 2, . . . , n} so that for every

j = 1, 2, . . . , r ,
∑
m∈Aj

aim �
∑
m∈A�

aim, for every i ∈ Aj and � �= j . (1)

Now we are ready for our result.

PROPOSITION 21. If {f i}n
i=1 is a uniform (n,k)-Parseval frame, then there is a

partition {R, T} of {1, 2, . . . , n} so that

Tr(QRPQTPQR) � k
4
(1 − k

n
).

In particular, if k
n is small then the trace inequality of Theorem 17 holds.

Proof. Applying 20 to the matrix of values (aij)n
i,j=1 where aii = 0 and aij =

|〈 f i, f j〉 |2 for i �= j we can find a partition {R, T} of {1, 2, . . . , n} (and without loss
of generality we may assume that |R| � n

2 ) satisfying for all i ∈ R :

∑
i	=j∈R

|〈 f i, f j〉 |2 �
∑
j∈T

|〈 f i, f j〉 |2.

It follows that for all i ∈ R :

k
n

=
n∑

j=1

|〈 f i, f j〉 |2

=
k2

n2
+

∑
i	=j∈R

|〈 f i, f j〉 |2 +
∑
j∈T

|〈 f i, f j〉 |2

� k2

n2
+ 2

∑
j∈T

|〈 f i, f j〉 |2.

It follows that for all i ∈ R

∑
j∈T

|〈 f i, f j〉 |2 � 1
2

(
k
n
− k2

n2

)
.
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Now,

∑
i∈R

∑
j∈T

|〈 f i, f j〉 |2 � |R|1
2

(
k
n
− k2

n2

)

� n
2

1
2

(
k
n
− k2

n2

)

=
k
4

(
1 − k

n

)
.

Now, given 0 < ε < 1 ,
ε

2
(1 − ε

2
) <

1
4

So the trace inequaltiy of Theorem 17 will hold provided

k
4
(1 − k

n
) � kε(2 − ε)

4
),

which is true for k/n small enough. �
In fact, as with the case of equiangular frames, we see that if 1 − γ � ε(2 − ε),

then whenever k
n � γ , we have that

Tr(QRPQTPQR) � k
4
(1 − k

n
) � k

4
(1 − γ ) � k

4
ε(2 − ε).

5. A Family of Potential Counterexamples

It is still unknown if the paving conjectures are true even for a smaller family
of operators known as the Laurent operators. In this section we introduce a family of
Laurent operators thatwe believe are potential counterexamples to the paving conjecture.
We also prove some results about these operators that lends credence to the belief that
they might yield counterexamples. For the purposes of this section, it will be convenient
to replace the countable index set N by Z.

Recall that a matrix, A = (ai,j)i,j∈Z is called a Laurent matrix if it is constant on
diagonals, i.e., ai,j = a(i− j) and that in this case A determines a bounded operator on

�2(Z) if and only if there exists f ∈ L∞[0, 1] such that a(n) = ˆf (n) ≡ ∫ 1
0 f (t)e−2πintdt

and in this case we set A = Lf and call it the Laurent operatorwith symbol f. Indeed, the
Laurent operator Lf is just the matrix representation of the operator of multiplication
by f , Mf on the space L2[0, 1] with respect to the orthonormal basis, {e2πint}n∈Z. So,
in particular, Lf is self-adjoint with diagonal 0 if and only if f is real-valued a.e. and∫ 1

0 f (t)dt = 0.
The problem of paving Laurent operators was first studied in [16] where it was

shown that Laurent operators with Riemann integrable symbols can be paved. Further
work on the relation between Laurent operators and the Feichtinger conjecture can be
found in Bownik and Speegle [9].

Note that Lf is a projection if and only if f = χE for some measurable set E and
Lf is a reflection if and only if f = 2χE−1, for some measurable set E . This reflection
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will have 0 diagonal when m(E) = 1/2, where m denotes Lebesgue measure. Thus,
modulo the change from N to Z , the family of Laurent operators corresponding to our
set R is exactly the set of operators of the form, Lf , f = 2χE − 1, m(E) = 1/2 and to
P1/2 is the set of operators of the form Lf , f = χE, m(E) = 1/2.

Hence, we are interested in the Laurent operators that arise from certain subsets E
with m(E) = 1/2. It is known that for every t, 0 < t < 1, there exists a measurable
set E = Et with m(E) = t, and such that for every 0 < a < b < 1, m(E ∩ (a, b)) > 0
and m(Ec ∩ (a, b)) > 0, where Ec = [0, 1] \ E. One way to construct such a set is as a
countable union of fat Cantor sets.

We believe that the projections and reflections coming from such sets for t = 1/2,
are good candidates for counterexamples to the paving conjectures and we outline our
reasons below.

PROPOSITION 22. Let E be a set as above for any 0 < t < 1. If f 1, f 2 are
continuous functions such that f 1 � χE � f 2, a.e., then f 1 � 0 and 1 � f 2.

Proof. Since χE is zero on a set of positive measure in every interval, f 1 � 0.
Similarly, χE is one on a set of positivemeasure in every interval and hence, 1 � f 2. �

The above inequalities show that χE is far from Riemann integrable.

PROPOSITION 23. Let g, h ∈ L∞[0, 1], with 0 � h � 1. If for every f 1, f 2 ∈
C[0, 1], we have that f 1 � g � f 2, a.e., implies that f 1 � 0, 1 � f 2, then there exists a
positive linear map, φ : L∞[0, 1] → L∞[0, 1] such that φ(f ) = f for every f ∈ C[0, 1]
and φ(g) = h.

Proof. First define φ on the linear span of C[0, 1] and g by φ(f +αg) = f +αh,
and note that the inequalities imply that if f + αg � 0, then f + αh � 0. Hence, φ
is a positive map. Now using the fact that L∞[0, 1] is an abelian, injective operator
system, this map has a (completely) positive extension to all of L∞[0, 1]. �

PROPOSITION 24. Let g, h ∈ L∞[0, 1], with 0 � h � 1. If for every f 1, f 2 ∈
C[0, 1], we have that f 1 � g � f 2, a.e., implies that f 1 � 0, 1 � f 2, then there exists
a completely positive linear map, φ : B(�2(Z)) → B(�2(Z)) such that φ(Lf ) = Lf for
every Laurent operator with continuous symbol, f ∈ C[0, 1] and φ(Lg) = Lh.

Proof. The identification of L∞[0, 1] with the space of Laurent operators is a
complete order isomorphism. Hence, there exists a completely positive projection of
B(�2(Z)) onto the space of Laurent operators. The remainder of the proof now follows
from the last Proposition. �

THEOREM 25. Let E ⊂ [0, 1] be a measurable set with m(E) = 1/2 such that for
every 0 < a < b < 1, m(E ∩ (a, b)) > 0 and m(Ec ∩ (a, b)) > 0 and let P denote
the projection that is the Laurent operator with symbol χE. Then there exist completely
positive maps, φ,ψ : B(�2(Z)) → B(�2(Z)) such that φ(Lf ) = ψ(Lf ) = Lf for every
Laurent operator with continuous symbol f , but φ(P) = 0,ψ(P) = I.
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Proof. Apply the above Proposition with h = 0 and h = 1, respectively. �

Thus, for the Laurent reflection with 0 diagonal, R = 2P − I, we have that
φ(R) = −I,ψ(R) = +I even though these maps fix all Laurent operators with continu-
ous symbols. In this sense, the "value" of the diagonal of R is not very stationary under
completely positive maps which fix all Laurent operators with continuous symbol. In
fact, it follows from the theory of completely positivemaps, that the maps φ and ψ con-
structed aboveare actually bimodulemaps over the C*-algebraof Laurent operatorswith
continuous symbol. That is, φ(Lf 1XLf 2) = Lf 1φ(X)Lf 2 , and ψ(Lf 1XLf 2) = Lf 1ψ(X)Lf 2

for any continuous functions, f 1, f 2 and any X ∈ B(�2(Z)).
One suspects that the fact that the diagonal of R can be altered so dramatically,

while fixing so many other operators, might be an obstruction to R being paved. It
is also intriguing that for a suitable choice of the set E , one can actually compute the
coefficients of the Laurent matrix for R , albeit as power series.
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