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Abstract. We verify a conjecture on the structure of higher-rank numerical ranges for a wide class
of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how
the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons
determined by the spectral structure of the matrix. We discuss applications of the results to
quantum error correction, specifically to the problem of identification and construction of codes
for binary unitary noise models.

1. Introduction

The study of higher-rank numerical ranges of matrices was initiated in [6], with a
basic problem in quantum error correction [5] giving the primary motivation. Higher-
rank numerical ranges generalize the classical numerical range of a matrix, and arise as
a special case of the matricial range for a matrix [8, 17]. In [6], three of us conjectured
that the higher-rank numerical ranges of normal matrices depend, in a very precise way,
on the spectral structure of the matrix. The conjecture reduces in the rank-1 case to a
well-known property of the classical numerical range for a normal matrix, and it has
opened the door to some interesting new mathematical problems. Its verification (or
refutation) would also yield information for quantum error correction.

In this paper we verify the higher-rank numerical range conjecture for a wide
variety of unitary and normal matrices. This is accomplished by introducing a number
of new geometric techniques into the analysis. We show in the case of a generic N ×N
unitary with non-degenerate spectrum and positive integer k � 1 with N � 3k , that
the k th numerical range is given by a certain polygon in the complex plane determined
by the eigenvalues of the unitary, and thus verify the conjecture. In other cases, such as
N = 5m and k = 2m , we also verify the conjecture. But the analysis in these cases is
more delicate, and our proof is non-constructive in nature. Figure 1 below provides a
chart indicating the cases we verify, together with the various constraints.

Our results may be applied to construct error correcting codes for a special class
of quantum channels. A “binary unitary channel” [5] E is a noise model described by
two unitary errors that can occur during the time evolution of a given quantum system.
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The construction of codes for such a channel relies on the structure of the higher-rank
numerical ranges for a single unitary U . Suppose U acts on N -dimensional Hilbert
space. Then an “ [N, k] -code” for E is a k -dimensional subspace code that is correctable
for E . The results described above for N � 3k yield a simple algorithm to determine
the existence of codes, and an explicit construction of codes when they exist.

The paper is organized as follows. Section 2 contains a discussion of some basics of
quantumerror correction that give importantmotivation for consideration of higher-rank
numerical ranges. In Section 3 we discuss the conjecture, and show in particular how
the general normal case relies on the unitary case. Section 4 deals with the structure of
the aforementioned polygon and a derivation of conditions under which it is nonempty.
Section 5 includes the proof for N � 3k and the construction of codes for binary unitary
channels. In Section 6 we derive a number of other cases non-constructively based on
the case N = 5 and k = 2 . We finish with a brief discussion on possible further
avenues of research and limitations in Section 7.

Note Added In Proof. We are pleased to report that following submission of this
paper there has been considerable progress on the problems outlined here. First, Wo-
erdeman [19] established convexity of the higher-rank numerical ranges by combining
results in [4] with the theory of algebraic Riccati equations. Subsequently, Li and Sze
[15] followed a different approach that yields convexity and appears to resolve Conjec-
ture A in all cases. Additionally, Li, Poon and Sze [16] have derived a condition for the
higher-rank numerical range to be non-empty.

2. Error Correction in Quantum Computing and Binary Unitary Channels

For a more complete discussion on the material of this section see [5] and the
references therein. We start with a quantum system in contact with an external envi-
ronment having finitely many degrees of freedom represented on a Hilbert space H
such that dimH = N < ∞ . Consider a unitary time evolution of the combined sys-
tem and environment induced by a given Hamiltonian associated with some quantum
computation implemented on H . The action of the evolution map on the system is
obtained by tracing out the environment, and the resulting map is called a quantum
channel or operation. Such a map is described by a completely positive, trace preserv-
ing map E : L(H) → L(H) , and can always be represented in the operator-sum form
as E(ρ) =

∑
a EaρE†

a for a set of operators {Ea} ⊆ L(H) satisfying
∑

a E†
aEa = I .

As a convenience we shall write E = {Ea} when the operators Ea determine E in this
way. The Ea are interpreted as the noise or errors induced by E .

In the standard approach to quantum error correction, a code on H is given by a
subspace C ⊆ H of dimension at least two. Denote the projection of H onto C by PC .
A code C is (ideally) correctable for an operation E if there is a quantum operation
R : L(H) → L(H) that acts as a left inverse of E on C ;(R ◦ E)(ρ) = ρ ∀ρ ∈ PC L(H) PC. (1)

Given a representation for E = {Ea} , a code C is correctable for E if and only if there
are complex numbers (λab) such that

PCE†
aEbPC = λabPC ∀ a, b. (2)
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Thus, the problem of finding correctable codes for E is equivalent to simultaneously
solving the family of equations in Eqs. (2) for the scalars λab and projections PC , for
all pairs a, b .

Of central importance in quantum computing, communication and cryptography
is the class of randomized unitary channels [1, 3]. Such a channel has a representation
of the form E = {√pa Ua} where each Ua is a unitary operator and the {pa} form a
classical probability distribution; pa > 0 ,

∑
a pa = 1 . Hence,

E(ρ) =
∑

a

paUaρU†
a ∀ρ ∈ L(H). (3)

The associated quantum operation is given by the scenario in which the error Ua occurs
with probability pa . By Eqs. (2), finding ideal correctable codes for E = {√pa Ua} is
equivalent to solving the (un-normalized) equations

PU†
aUbP = λabP ∀ a, b, (4)

for λab and P . Note that each operator U†
aUb is unitary.

The following observation illustrates the importance of randomized unitary chan-
nels in error correction.

PROPOSITION 2.1. Let E be a quantum operation. Then C is a correctable code
for E if and only if there is a randomized unitary channel F such that C is correctable
for F and

E(ρ) = F(ρ) ∀ρ ∈ PC L(H) PC. (5)

Proof. In fact, F = {√pa Ua} can be chosen so that the partial isometries UaPC
have mutually orthogonal ranges for distinct a . This follows directly from the usual
construction of a correction operation R for E on C [10]. The matrix (λab) from
Eqs.(2) is a density matrix, and the unitary which diagonalizes it can be used to find a
set of error operators {Fa} that implement E ◦ PC , where PC(·) = PC(·)PC , such that
PCF

†
aFbPC = δabdaaPC . The polar decomposition yields a partial isometry Ua , which

can be extended to a unitary on the entire space, such that FaPC = Ua

√
PCF

†
aFaPC =√

daa UaPC . The {√daa} form a probability distribution by the trace preservation of
E . �

Of course, the randomized unitary channel given by the restriction of E to the code
C can only be obtainedwhen the code itself is known. Thus, this result in itself is of little
practical use for the general problem of finding error correcting codes. Nevertheless,
it indicates that the general problem is equivalent to finding codes for the class of
randomized unitary channels.

Observe that a code is correctable for a binary unitary noise model E = {√p V,√
1 − pW} , where V and W are unitary, if and only if it is correctable for E =

{√p I,
√

1 − pV†W} .

DEFINITION 2.2. A binary unitary channel on a Hilbert space H is a channel
of the form

E = {√p I,
√

1 − p U} (6)
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for some unitary U ∈ L(H) and fixed probability 0 < p < 1 . Thus, the action of E is
given by

E(ρ) = p ρ + (1 − p) UρU† ∀ρ ∈ L(H). (7)

REMARK 2.3. Binary unitary channels form a rather restrictive class of physical
noise maps, but they provide a useful set of “toy” examples for testing the “compres-
sion” approach [5] to build quantum error correcting codes enabled by consideration
of higher-rank numerical ranges. Observe that from Eqs. (2), the problem of finding
ideal correctable codes for a given binary unitary channel is equivalent to solving four
equations, but that the entire problem reduces to solving the single (un-normalized)
equation for λ and P given by:

PUP = λ P. (8)

An immediate consequence of what follows is an algorithm to construct codes for a wide
class of binary unitary channels. This is encapsulated in the discussion of Section 5.

3. Higher-Rank Numerical Range Conjecture

Given a fixed positive integer k � 1 and T ∈ L(H) , the k th numerical range of
T is the set of complex numbers

Λk(T) =
{
λ ∈ C : PTP = λP for some rank−k projection P

}
.

The classical numerical range W(T) = Λ1(T) is obtained when k = 1 .

DEFINITION 3.1. Let T ∈ L(H) and let k � 1 be a fixed positive integer. Then
we define Ωk(T) to be the intersection of the convex hulls conv(Γ) , where Γ runs
through all (N − k +1) -point subsets (counting multiplicities) of the set of eigenvalues
spec(T) for T . That is,

Ωk(T) =
⋂

Γ⊆ spec(T); |Γ|=N−k+1

conv(Γ).

Thus, Ωk(T) is a convex subset of the complex plane that can be computed directly
from the spectrum of T . Below we will show how this set can typically be computed
as an intersection of much fewer than

( N
N−k+1

)
sets.

It is easy to see that Ωk(T) contains Λk(T) for normal T . We include a short
proof for completeness and notational purposes.

PROPOSITION 3.2. Let T ∈ L(H) be a normal operator and fix a positive integer
k � 1 . Then Λk(T) ⊆ Ωk(T) .

Proof. Let {|ψ1〉 , . . . , |ψN〉 } be a complete set of orthonormal eigenvectors for
T with eigenvalues T|ψj〉 = λj|ψj〉 . Let λ ∈ Λk(T) and let P =

∑k
i=1 |φi〉〈 φi| be a

rank- k projection such that PTP = λP . Then 〈Tφi|φj〉 = δijλ for all i, j . Let A be
a subset of {1, . . . , N} with cardinality |A| = k − 1 . Choose a unit vector |φ〉 in the
k -dimensional subspace PH = span{|φ1〉 , . . . , |φk〉 } that is perpendicular to all the
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|ψj〉 for which j ∈ A ; and so, |φ〉 =
∑

j /∈ A
zj|ψj〉 with

∑
j |zj|2 = 1 . Then we have

λ = 〈Tφ|φ〉 =
∑
j /∈ A

|zj|2λj ∈ conv{λj : j /∈ A}, (9)

and it follows that λ belongs to Ωk(T) . �
It is well-known and easy to verify that the numerical range of a normal operator

T coincides with the convex hull of its eigenvalues (that is, Λ1(T) = Ω1(T) ). In [6]
the following conjecture was asserted as a generalization of this fact.

CONJECTURE A. Let H be an N -dimensional Hilbert space and let k � 1 be a
positive integer. Then for every normal operator T ∈ L(H) ,

Λk(T) = Ωk(T). (10)

The Hermitian case [6] and the normal N � 4 case [5] of the conjecture have
been verified previously. We show that the general normal case of Conjecture A can be
reduced to the unitary case.

PROPOSITION 3.3. Conjecture A holds if and only if the conjecture holds for all
unitary matrices.

Proof. First note that for a fixed k , a standard translation argument shows the
statement Λk(T) = Ωk(T) for all normal T ∈ L(CN) is equivalent to the statement
0 ∈ Λk(T) if and only if 0 ∈ Ωk(T) for all normal T ∈ L(CN) . We focus on the latter
formulation.

Every normal operator T decomposes as T = T1 ⊕ 0m , where T1 is normal and
invertible. The case m � k is easily handled, so assume m < k . One can check
that 0 ∈ Λk(T) if and only if 0 ∈ Λk−m(T1) , and 0 ∈ Ωk(T) if and only if 0 ∈
Ωk−m(T1). Let {λ1, . . . , λN−m} be the (non-zero) eigenvalues for T1 , and let U be
the unitary on C

N−m obtained from the polar decomposition of T1 with eigenvalues
{ λ1
|λ1| , . . . ,

λN−m
|λN−m|} . By assumption we have Λk−m(U) = Ωk−m(U) , and hence zero

belongs to both sets or neither set. Thus, we complete the proof by showing that: (i) 0 ∈
Λk−m(T1) if and only if 0 ∈ Λk−m(U) , and (ii) 0 ∈ Ωk−m(U) if and only if 0 ∈
Ωk−m(T1).

Note that by invertibility we have T1 = UR = RU =
√

RU
√

R where R =√
T†T � 0 is invertible with eigenvalues {|λ1|, . . . , |λk−m|} . Thus, (i) follows from

the more general principle that if T = X†SX where X is invertible, then 0 ∈ Λk(T) if
and only if 0 ∈ Λk(S) . Indeed, if P is a rank- k projection such that PTP = 0 , then
the rank- k range projection Q of XP satisfies QSQ = 0 .

For (ii), note that by definition 0 /∈ Ωk−m(T1) precisely when 0 does not belong to
the convex hull of N−k+m+1 of the eigenvalues {λ1, . . . , λN−m} . This is equivalent
to the existence of a line passing through the origin that does not meet this convex hull.
By the same argument, this geometric condition is equivalent to 0 /∈ Ωk−m(U) . �

This result, combined with the motivation from quantum computing discussed
above, naturally leads to a focus on the unitary case of the conjecture. We introduce the
following nomenclature to delineate the generic unitary subcases.
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DEFINITION 3.4. We will use the notation Conj (N, k) to denote the sub-conjecture
of Conjecture A given by the statement Eq. (10) for a given pair [N, k] and all unitary
operators on N -dimensional Hilbert space with non-degenerate spectrum. Further, we
will say Conj (N, k) is constructively verified for a given pair [N, k] if it is shown that
Eq. (10) holds for every unitary operator U on H = CN , and if, whenever Λk(U) is
nonempty, for every λ ∈ Λk(U) a rank- k projection P can be explicitly constructed
such that PUP = λP .

k
1 2 3 4 5 6 7 8

N

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

means C(N,k) true constructively
means C(N,k) true vacuously (Ω

k
 empty)

means C(N,k) true nonconstructively
? means C(N,k) is unsettled

?

?

?

?

?

means C(N,k) true constructively but Ω
k
 may be empty

etc

?

?
?

?

?
?
?
?

?
?
?

?

?

Figure 1. Conj( N, k ) for nondegenerate unitary U .

4. The Structure of Ωk

In this section we analyse the geometric structure of the set Ωk(U) for a generic
unitary U on N -dimensional Hilbert space with non-degenerate spectrum. Let us first
establish notation we will use for the rest of the paper.

We shall consider the case of a unitary U with eigenvalues λj = exp(iθj) , j =
1, . . . , N , such that 0 � θ1 < θ2 < . . . < θN < 2π . Thus, the eigenvalues λj are
ordered counterclockwise around the unit circle ∂D in C (we use D to denote the
closed unit disc). For multiple eigenvalues the numbering is arbitrary, but we choose
an orthonormal system of eigenvectors |ψj〉 ∈ H such that

U|ψj〉 = λj|ψj〉 . (11)
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When appropriate we extend the numbering of the λj and |ψj〉 cyclically: for example,
λN+1 means λ1 . Given integers i, j with i < j � i + N , let D(i, j, U) denote the
compact convex subset of C bounded by the line segment from λi to λj and the
counterclockwise circular arc from λj to λi ; recall our conventions about cyclical
numbering of the λj . We interpret D(i, i + N, U) as {λi} .

We first show that the form of Ωk(U) is simpler than what Definition 3.1 suggests.
In particular, Ωk(U) is a filled convex polygon with at most N sides.

LEMMA 4.1. For all k � 1 and every unitary U ∈ L(CN) , the set Ωk(U) is the
convex polygon given by

Ωk(U) =
N⋂

i=1

D(i, i + k, U). (12)

Proof. Let Ω denote the intersection of Eq. (12). The cardinality of the set

S = {1, 2, . . . , N} \ {i + 1, i + 2, . . . , i + k − 1}
(where integers are interpreted modulo N ) is |S| = N − k + 1 . Thus

Ωk(U) ⊆ conv({λj : j ∈ S}) ⊆ D(i, i + k, U).

Since this holds for all i , we have Ωk(U) ⊆ Ω .
On the other hand, if |S| = N − k + 1 = s we may write S = {i1, i2, . . . , is} with

1 � i1 < i2 < · · · < is � N and

conv({λj : j ∈ S}) =
s⋂

j=1

D(ij, ij+1, U)

(it is understood here that is+1 = i1 ). Since between ij and ij+1 there are ij+1 − ij − 1
integers that are omitted from S , we must have ij+1 − ij � k , so that D(ij, ij+1, U) ⊇
D(ij, ij + k, U) . It follows that Ω is contained in conv({λj : j ∈ S}) for each such S .
Hence Ωk(U) ⊇ Ω , and equality is verified. �

The following containments are direct consequences of this result.

COROLLARY 4.2. For all U and all k , we have Ωk+1(U) ⊆ Ωk(U) .

Proof. In view of Lemma 4.1, we need only observe that, for any i , D(i, i + k +
1, U) ⊆ D(i, i + k, U) . �

COROLLARY 4.3. If V is unitary and spec(U) ⊆ spec(V) , then Ωk(U) ⊆ Ωk(V)
for all k .

Proof. It is enough to treat the case where spec(V) = spec(U) ∪ {λN+1} and to
arrange the geometric ordering so that spec(U) = {λ1, λ2, . . . , λN} and spec(V) =
{λ1, λ2, . . . , λN+1} . For 1 � i � N − k we have D(i, i + k, V) = D(i, i + k, U) ; for
N−k < i � N , we have D(i, i+k, V) ⊇ D(i, i+k, U) (note that the extended numbering
within spec(V) is donemodulo N+1 ); finally, D(N+1, N+1+k, V) ⊇ D(N, N+k, U) .
Using Lemma 4.1, we see that Ωk(V) ⊇ Ωk(U) . �

The following corollary points out that Conj(N, k ) is easy to verifywhen k divides
N .
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COROLLARY 4.4. Suppose that k divides N , with m = N/k . Then Ωk(U) is the
intersection of k m–gons, and Conj(N, k ) follows.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) 

(b) 

Figure 2. Corollary 4.4 in action: (a) Ω3(U) as intersection of 3 quadrilaterals
when N = 12 ; (b) Ω4(U) as intersection of 4 triangles when N = 12 .

Proof. Let Si = {i, i + k, i + 2k, . . . , i + (m− 1)k} ( i = 1, 2, . . . , k ); these index
sets partition {1, 2, . . . , N} . In view of Lemma 4.1, the m–gons

Gi =
⋂
j∈Si

D(i, i + k, U)

intersect to form Ωk(U) . Now consider λ ∈ Ωk(U) . Since λ ∈ Gi for each i we may
write

λ =
∑
j∈Si

tijλj

as a convex combination ( tij � 0 ,
∑

j∈Si
tij = 1 ). For i = 1, 2, . . . , k , let

|φi〉 =
∑
j∈Si

√
tij|ψj〉 ;

clearly the |φi〉 are unit vectors, and they are orthogonal because the Si are disjoint.
We see that (U − λ I)|φi〉 ⊥ |φi′〉 for all i, i′ , so that V = span{|φi〉 : i = 1, 2, . . . , k}
satisfies (U − λ I)V ⊥ V . We can thus define the rank- k projection P =

∑k
i=1 |φi〉〈 φi|
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onto V . Then P(U − λ I)P = 0 and it follows that λ ∈ Λk(U) . Together with
Proposition 3.2, we have verified Conj(N, k ) in these cases. �

REMARK 4.5. The corollary above is usually of interest when m � 3 . If N = k
(m = 1 ), then Ωk(U) will be empty unless U is a scalar. If N = 2k (m = 2 ), then
D(i, i+ k, U)∩D(i+ k, i+N, U) is the line segment [λi, λi+k] . Thus Ωk(U) is usually
empty in this case for k > 2 ; in cases where spec(U) has a special symmetry, Ωk(U)
may be a single point.

Under certain conditions Corollary 4.3 may be made more precise.

PROPOSITION 4.6. Suppose V is unitary on N + 1 -dimensional Hilbert space
and spec(V) = {λ1, λ2, . . . , λN+1} with distinct λj . If Ωk+1(V) �= ∅ , then

Ωk(V) =
N+1⋃
j=1

Ωk(Vj), (13)

where Vj is the unitary with spectrum spec(V) \ {λj} .

Proof. Arguing as in the proof of Corollary 4.3 we see that Ωk(VN+1) = Ωk(V) ∩
C(N + 1) , where

C(N + 1) =
N⋂

j=N+1−k

D(j, j + k + 1, V).

Let λ be a point in Ωk+1(V) (which is nonempty by hypothesis). Then λ ∈ C(N + 1)
by Lemma 4.1. Note also that C(N + 1) includes the counterclockwise arc A(N + 1)
of ∂D from λN+k+1 = λk to λN+1−k ; since N + 1− k > k (otherwise we would have
N + 1 � 2k < 2(k + 1) so that Ωk+1(V) would be empty), the arc A(N + 1) has
nonempty interior (relative to ∂D ). Likewise, for each j = 1, 2, . . . , N + 1 we have
Ωk(Vj) = Ωk(V) ∩ C(j) where C(j) is a convex set containing λ and an arc A(j) . It
remains to show that

⋃
j C(j) = D . The arcs A(j) (overlapping in general) cover all

of ∂D and each C(j) includes the “sector” conv({λ} ∪ A(j)) ; these sectors certainly
cover D . �

The previous result raises the general question of which Ωk(U) are nonempty.
This question is of course important for the identification and construction of error-
correcting codes. In particular, Conj(N, k ) may include cases where both Λk(U) and
Ωk(U) are empty, but this is not helpful for the applications. The question is somewhat
clarified by the following.

THEOREM 4.7. Let U ∈ L(CN) be a unitary with N distinct eigenvalues and let
k � 1 . Then we have the following conditions on Ωk(U) .

(1) If N < 2k , then Ωk(U) = ∅ .
(2) If N = 2k , then Ωk(U) is empty if the line segments [λj, λj+k] do not intersect,

and, otherwise, it is the singleton set given by the intersection point of these line
segments.

(3) If 2k < N < 3k − 2 , then Ωk(U) can be either empty or non-empty.
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For any unitary U ∈ L(CN) , whether or not the eigenvalues are distinct, we have:
(4) If N � 3k − 2 , then Ωk(U) is always nonempty.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) 

(b) 

Figure 3. Illustrating Theorem 4.7: (a) Here N = 9 and k = 4 ; since N < 3k − 2
it may happen, as here, that Ω4(U) = ∅ ; note that D(3, 7, U) , D(6, 1, U) ,

and D(9, 4, U) overlap pairwise but have no common point.
(b) Here N = 7 and k = 3 ; since N � 3k − 2 , the core Ω3(U)

of this 7–pointed star must be nonempty.

Proof. To see (1) note that D(j, j + k, U) ∩ D(j + k, j + 2k, U) is the singleton
{λj+k} and that the {λj+k} are distinct. See also Proposition 1 from [5]. The case (2)
is a special case of Corollary 4.4. Here, Ωk(U) is non-empty (and a singleton set)
precisely when the line segments [λj, λj+k] intersect in a common point.

In view of Corollary 4.3, it is sufficient for the statement (3) to provide an example
of U with N = 3(k − 1) and Ωk(U) = ∅ . Such an example is provided by grouping
k − 1 of the λj close to and on the counterclockwise side of each of the cube roots of
unity. It is then clear that

D(k − 1, 2k − 1, U) ∩ D(2k − 2, 3k − 2, U) ∩ D(3k − 3, 4k − 3, U) = ∅;
note that here N = 3k − 3 so that 3k − 2 ≡ 1 and 4k − 3 ≡ k . Again recalling
Lemma 4.1, we see that a fortiori Ωk(U) = ∅ .

Concerning the statement (4), we recall Helly’s Theorem from convex analysis
(see, for example, Chapter 3 of [13]): a family of compact, convex subsets of Rd has



HIGHER-RANK NUMERICAL RANGES 419

nonempty intersection provided any subfamily of size d+1 has nonempty intersection.
Since each D(i, i + k, U) is compact and convex in R2 ≡ C we need only prove that
N � 3k − 2 implies

D(a, a + k, U) ∩ D(b, b + k, U) ∩ D(c, c + k, U) �= ∅,
then invokeHelly’s Theorem for d = 2 and Lemma 4.1. Such a triple intersection could
only be empty if the complements in D covered all of D . In particular, the omitted
arcs (strictly between λa and λa+k , etc) would cover ∂D . Each of these arcs contains
k − 1 points from spec(U) , so we would have the contradiction N � 3(k − 1) . �

5. Verification of the Conjecture for N � 3k and Construction of Codes for
Binary Unitary Channels

In this section we give a constructive verification of Conj(N, k ) in the cases
N � 3k . In such cases we explicitly construct error-correcting codes. We require more
notation.

Let Δk(U) denote the set of those λ ∈ C such that for some k disjoint subsets
S1, S2, . . . , Sk of {1, 2, . . . , N} we have λ ∈ conv({λj : j ∈ Si}) for each i . The Δ
in the notation Δk(U) is to recall the “disjoint” condition. Evidently Δk(U) ⊆ Δk(V)
whenever spec(U) ⊆ spec(V) .

A straightforward generalization of the construction used in Corollary 4.4 yields
the following result.

LEMMA 5.1. For every unitary U ∈ L(CN) and k � 1 we have Δk(U) ⊆ Λk(U) .

Proof. Let λ ∈ Δk(U) be expressed as a convex combination of the eigenvalues
for U for each i :

λ =
∑
j∈Si

tijλj, tij � 0,
∑
j∈Si

tij = 1.

Let |φi〉 =
∑

j∈Si

√
tij|ψj〉 . Then |φ1〉 , . . . , |φk〉 are orthonormal (orthogonal be-

cause the Si are disjoint). Let P be the orthogonal rank- k projection onto V =
span{|φ1〉 , . . . , |φk〉 } . Then for each |ψ〉 ∈ V , the vector (U − λ I)|ψ〉 is orthogonal
to V . Indeed, if i �= i′ then (U − λ I)|φi〉 ∈ span{|ψj〉 : j ∈ Si} , which in turn is
orthogonal to |φi′〉 because |φi′〉 ∈ span{|ψj〉 : j ∈ Si′} and Si ∩ Si′ = ∅ . On the
other hand, 〈 (U − λ I)φi|φi〉 = 〈Uφi|φi〉 − λ and

〈Uφi|φi〉 = 〈
∑
j∈Si

λj
√

tijψj|
∑
j∈Si

√
tijψj〉 =

∑
j∈Si

tijλj = λ .

Hence PUP = λP ; that is, λ belongs to Λk(U) . �

The converse inclusion holds in a wide variety of cases.

THEOREM 5.2. If N � 3k , then Ωk(U) = Δk(U) . Hence, Conj(N, k ) holds
whenever N � 3k .
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Proof. Let T(a, b, c) denote the “eigentriangle” conv({λa, λb, λc}) . We shall say
T(a, b, c) and T(a′, b′, c′) are “disjoint” if the index sets {a, b, c} and {a′, b′, c′} are
disjoint; of course, the eigentriangles themselves may very well overlap. We show that
N � 3k implies that every λ ∈ Ωk(U) lies in k (pairwise) disjoint eigentriangles, and
so λ ∈ Δk(U) ⊆ Λk(U) by Lemma 5.1. This is clear for k = 1 since any convex
polygon (here Ω1(U) , that is conv({λj : j = 1, 2, . . . , N} ) is (in many ways) a union
of triangles formed from the vertices.

For k > 1 we proceed by induction. The wedge W = D(1, k + 1, U) ∩ D(N −
k + 1, 1, U)) contains Ωk(U) . Consider the eigentriangles

T(1, k + 1, 2k + 1), . . . , T(1, k + (N − 3k + 1), 2k + (N − 3k + 1));

note that (because N � 3k ) 2k + 1 � N − k + 1 and that the last eigentriangle in this
list is T(1, N − 2k + 1, N − k + 1) . Thus the union of these overlapping eigentriangles
covers the part of W that contains Ωk(U) , and hence covers Ωk(U) itself. Given any
λ ∈ Ωk(U) , choose one of the eigentriangles from this list that contains λ . Let the
chosen eigentriangle be T(1, b, c) ; note that b � k+1 , c = b+ k , and c � N− k+1 .
We claim that λ is also in Ωk−1(W) , where spec(W) = {λj : j �= 1, b, c} . Assuming
this claim is correct for the moment, we see that the inductive step is achieved, since
| spec(W)| = N − 3 � 3(k − 1) so that λ lies in k − 1 disjoint eigentriangles drawn
from spec(W) as well as in T(1, b, c) , and hence that λ ∈ Δk(U) .

To verify the claim keep Lemma 4.1 in mind and note that the sets D(j, j+k−1, W)
that intersect to form Ωk−1(W) strictly contain one of the D(i, i + k, U) unless the arc
omitted from D(j, j+k−1, W) includes one of λ1, λb, λc , inwhich case D(j, j+k−1, W)
coincides with one of the D(i, i + k, U) . The key point is that the arc cannot contain
more than one of λ1, λb, λc since these are separated by at least k−1 points in spec(W) .
Thus, in fact, Ωk−1(W) ⊇ Ωk(U) , and this completes the proof. �

Let us discuss the construction of codes. The cases in which k divides N are
perhaps the simplest cases in which codes can be explicitly constructed, as described in
the proof of Corollary 4.4. The proof of Conj(N, k ) for N � 3k given in Theorem 5.2
is also constructive in the sense that the λ ∈ Λk(U) and the corresponding projections
P may be found explicitly by an algorithm based on the proof. We state this in terms of
the general binary unitary channel error correction problem.

Let U be a unitary on CN and let k be a positive integer such that N � 3k . Then
by Theorem 4.7 (4) and Theorem 5.2, we have Δk(U) = Λk(U) = Ωk(U) and this set
is nonempty. Following the proof of Theorem 5.2 (and recalling our earlier notation),
a k -dimensional correctable code for any channel of the form E = {√p I,

√
1 − pU}

can be constructed by:
(i) Compute Ωk(U) from the eigenvalues {λ1, . . . , λN} of U . This can be done

by using Lemma 4.1 in general, or by simpler means in special cases, such as that of
Corollary 4.4.

(ii) Choose λ ∈ Ωk(U) . By Theorem 5.2, we can find k -eigentriangles
T(aj, bj, cj) , j = 1, . . . , k , such that each contains λ and there are no repeats in
the set {aj, bj, cj}k

j=1 ⊆ {1, . . . , N} .
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(iii) As λ belongs to each of the convex hulls conv{λaj , λbj , λcj} , for j = 1, . . . , k ,

we can compute t1j, t2j, t3j � 0 ,
∑3

i=1 tij = 1 such that λ = t1jλaj + t2jλbj + t3jλcj .
(iv) For j = 1, . . . , k , put sij =

√
tij and define (orthonormal) states |φj〉 =

s1j|ψaj〉+s2j|ψbj〉+s3j|ψcj〉 . Let P =
∑k

j=1 |φj〉〈 φj| . Then PCN = span{|φ1〉 , . . . , |φN〉 }
is a k -dimensional correctable code for E .

REMARK 5.3. It is instructive to rephrase this construction in terms of the number of
qubits, assuming that the entire system has dimension N = 2n . The codes constructed
abovework for k = [N/3] , which for n � 2 is not smaller than N/4 = 2n−2 . Therefore
these error-correcting codes support n − 2 logical qubits. Our construction shows that
such codes are parametrized by the complex numbers λ ∈ Λk(U) , which is a nonempty
set explicitly determined by the eigenvalues for U as we have shown. This result is
optimal for n � 3 in the sense that for a generic unitary one cannot obtain a code
preserving n − 1 qubits. This observation follows from the fact that ΛN/2(U) is not
empty only in a very specific situation; if the N/2 lines joining opposite (with respect
to the ordering number of the phase) eigenvalues of U cross in a single point.

This result considered in the context of qudits (which denote d -level systems)
has the following implication: If N = dn and d � 3 then k = [N/3] � N/d , so the
constructed code supports d − 1 qudits.

6. Non-Constructive Verifications of the Conjecture

In this section we derive a non-constructive verification of Conj(N, k ) in the case
N = 5 , k = 2 , and then we extend the proof to a variety of cases. For convenience we
consider only U with distinct eigenvalues.

To move beyond the limitations of Δk(U) we introduce Σk(U) as the set of all
λ ∈ conv(spec(U)) such that for some single convex combination

λ =
∑

j

tjλj, tj � 0,
∑

j

tj = 1

we have αij ∈ C ( i = 1, 2, . . . , k ; j = 1, 2, . . . , N ) with the following properties:
|αij| =

√
tj for all i and j , and whenever i �= i′ we have both

∑
j αijαi′j = 0 and∑

j λjαijαi′j = 0 . The symbol Σ in Σk(U) is chosen to recall that we use a single
convex combination to represent each λ .

It is easy to see that Σk(U) ⊆ Λk(U) : consider any λ ∈ Σk(U) and (using again
the above notation) let |φi〉 =

∑
j αij|ψj〉 . The conditions on the αij directly imply

that the |φi〉 are orthonormal, that 〈Uφi|φi〉 = λ for each i , and that 〈Uφi|φi′〉 = 0
whenever i �= i′ . Let P be the rank- k orthogonal projection onto the subspace
V = span{|φ1〉 , . . . , |φk〉 } . Clearly (U − λ I)V is orthogonal to V , so that PUP = λP
and λ ∈ Λk(U) .

Let σ denote spec(U) considered as a vector (λ1, λ2, . . . , λN) ∈ CN . In terms of
σ the following lemma provides a recipe for making elements of Σ2(U) .
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LEMMA 6.1. Given p ∈ CN such that �0 �= p ⊥ {�1,σ,σ} , set s(p) =
∑

j |pj|
and

f (p) =
∑

j

|pj|
s(p)

λj.

Then f (p) ∈ Σ2(U) .

Proof. Let α1j =
√|pj|/s(p) and α2j = α1jpj/|pj| (if pj = 0 , let α2j = α1j

(= 0 )). With λ = f (p) and tj = |pj|/s(p) we easily verify the requirements for the
αij . For example,

∑
j λjα1jα2j = (

∑
j λjpj)/s(p) = (p,σ)/s(p) = 0 . �

COROLLARY 6.2. For any k � 2 we have Δk(U) ⊆ Σ2(U) .

Proof. Consider λ ∈ Δk(U) . Using again the notation from the proof of Lemma
5.1, let t1∗ = (t11, t12, . . . , t1N) with the understanding that t1j = 0 if j �∈ S1 ; similarly
define t2∗ . Let p = t1∗−t2∗ . Then p �= �0 since the supports of t1∗ and t2∗ are disjoint;
(p,�1) =

∑
j t1j −

∑
j t2j = 1 − 1 = 0 ; (p,σ) =

∑
j t1jλj −

∑
j t2jλj = λ − λ = 0 ;

similarly p is perpendicular to σ . Thus f (p) ∈ Σ2(U) . Finally, since the supports of
t1∗ and t2∗ are disjoint, f (p) = (

∑
j t1jλj +

∑
j t2jλj)/2 = (λ + λ )/2 = λ . �

REMARK 6.3. Although Corollary 6.2 is sufficient for our present needs, it should
be noted that in fact Δk(U) ⊆ Σk(U) for any k . Indeed, for λ ∈ Δk(U) there are
tij � 0 ( i = 1, 2, . . . , k; j = 1, 2, . . . , N ) such that

∑
j tij = 1 ,

∑
j tijλj = λ , and for

each j at most one of the tij is nonzero. Thus, setting sij =
√

tij we have a k×N matrix
S such that S diag(λj)S∗ = λ Ik and SS∗ = Ik . Let F be any k × k unitary matrix
with |f ij| = 1/

√
k (for all i, j ); for example, F could be the “finite Fourier transform”,

where f ij = ω ij/
√

k with ω a primitive k –th root of unity. Setting R = FS we have
R diag(λj)R∗ = Fλ IkF∗ = λ Ik , and RR∗ = Ik . Thus we may verify that λ ∈ Σk(U)
by considering αij = rij , since (for each j ) |αij| is then independent of i ; in fact, for
the given j just one smj �= 0 so that |αij| = |f imsmj| = |smj|/

√
k .

It is clear that when N = 5 only the boundary ∂Ω2(U) is captured by Δ2(U) ; each
point on an edge of the pentagon Ω2(U) belongs both to a line segment conv({λi, λi+2})
and to the complementary eigentriangle T(i− 1, i+ 1, i+ 3) . To capture the interior of
Ω2(U) we turn to Σ2(U) . The topological techniques used in the proof of the following
result are interesting mathematically but make the construction of specific projections
P corresponding to λ ∈ Λ2(U) more difficult than we saw with techniques based on
Δk(U) .

THEOREM 6.4. If N = 5 , then Ω2(U) = Σ2(U) . Thus, Conj(5,2) is correct.

Proof. By Corollary 6.2 we know that ∂Ω2(U) = Δ2(U) ⊆ Σ2(U) ; to capture
the interior we first elaborate the ideas in the proof of that corollary. Let ai be the
vertex of Ω2(U) at the point of intersection between the line segment [λi, λi+2] (in
other words, conv({λi, λi+2}) ) and the line segment [λi+1, λi+3] . Each a ∈ [ai, ai+1]
also lies in [λi+1, λi+3] and so has a unique representation as a convex combination∑

j tij(a)λj with tij(a) = 0 when j �∈ {i + 1, i + 3} . Likewise a ∈ [ai, ai+1] also lies
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in the eigentriangle T(i, i + 2, i + 4) and so has a unique representation as a convex
combination

∑
j sij(a)λj with sij(a) = 0 when j ∈ {i + 1, i + 3} .

For each a ∈ [ai, ai+1] , let pi(a) = ti∗(a) − si∗(a) ; as in the proof of the last
corollary, we see that pi(a) ∈ X where X = {�1,σ,σ}⊥ \ {�0} and that a = f (pi(a)) .
Note that X ≡ C2 \ {�0} ≡ R4 \ {�0} , so that X is simply connected. Moreover,
each pi is continuous on [ai, ai+1] . Because of the uniqueness of the representations
as convex combinations, ti∗(ai+1) = s(i+1)∗(ai+1) and si∗(ai+1) = t(i+1)∗(ai+1) . Thus
pi(ai+1) = −pi+1(ai+1) . Let γ0 : [0, 10] → ∂Ω2(U) be a (continuous) path traversing
∂Ω2(U) twice in the counterclockwise direction, beginning and ending at a1 and such
that γ0([j, j + 1]) = [aj+1, aj+2] ( j = 0, 1, . . . , 9 ) with the understanding that the ai

are numbered modulo 5 (= N ). For t ∈ [j, j + 1] let Γ0(t) = (−1)jpj+1(γ0(t)) . The
alternating signs ensure that Γ0 is continuous (even at the integers), and the double
circuit ensures that Γ0(0) = Γ0(10) ; in otherwords, that Γ0 is a loop in X . Furthermore
f (Γ0(t)) = f (±pj+1(γ0(t))) = γ0(t) .

Thus, given any λ in the interior of Ω2(U) , the winding number of f ◦Γ0 relative
to λ is 2; that is, wλ (f ◦ Γ0) = 2 . Since X is simply connected, the loop Γ0 is part
of a continuous family of loops Γs (0 � s � 1 ) in X such that Γ1 is the constant
loop at some p∗ ∈ X . Suppose λ does not lie on any of the loops f ◦ Γs ; then
wλ (f ◦Γs) = 2 for all s , a contradiction, since wλ (f ◦Γ1) = 0 ( f ◦Γ1 is the constant
loop at f (p∗) ). Thus, for some s, t , f (Γs(t)) = λ . Since Γs(t) ∈ X , Lemma 6.1
implies that λ ∈ Σ2(U) . �

This result has a number of consequences, as follows.

COROLLARY 6.5. For every natural number m , Conj(5m, 2m) is valid.

Proof. Let Sj = {j, j + m, j + 2m, j + 3m, j + 4m} ( j = 1, 2, . . . , m ). The Sj

partition {1, 2, . . . , 5m} into m disjoint subsets. In view of Lemma 4.1, we have

Ω2m(U) =
5m⋂
i=1

D(i, i + 2m, U) =

m⋂
j=1

(
⋂
i∈Sj

D(i, i + 2m, U)) =
m⋂

j=1

(
5⋂

i=1

D(i, i + 2, Uj)),

where Uj is the unitary with spectrum spec(Uj) = {λi : i ∈ Sj} . Thus Ω2m(U) =⋂m
j=1 Ω2(Uj) and this is

⋂m
j=1 Λ2(Uj) by Theorem 6.4 (since | spec(Uj)| = 5 ).

Consider any λ ∈ Ω2m(U) ; for each j = 1, 2, . . . , m this λ ∈ Λ2(Uj) and we
have a 2–dimensional subspace Vj of span({|ψi〉 : i ∈ Sj}) such that (U−λ I)Vj ⊥ Vj .
Now Vj and (U − λ I)Vj are subspaces of the mutually orthogonal

span{|ψi〉 : i ∈ Sj} (j = 1, 2, . . . , m).

Thus V = V1 +V2 + · · ·+Vm is a 2m–dimensional subspace such that (U−λ I)V ⊥ V ,
so that λ ∈ Λ2m(U) . �
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REMARK 6.6. Although Corollary 6.4 ensures that Conj(15,6) is correct, for in-
stance, it may not be useful in applications because it can happen that Ω6(U) = ∅ when
N = 15 (15 = 3 · 6 − 3 ; recall Theorem 4.6). Moreover, Ω7(V) may be empty in
dimension 16 (16 � 3 · 7 − 3 ) so that we cannot use Proposition 4.5 to support the
“induction” Conj(15,6) =⇒ Conj(16,6). Thus Conj(16,6) remains undecided at the
moment.

COROLLARY 6.7. Conj(3k − 1, k ) holds for all k � 1 .

Proof. The case k = 1 is trivial (for all N ). The case k = 2, N = 5 was proved
in Theorem 6.4. Based on this we can make an induction on k somewhat similar to that
used in Theorem 5.2. For k + 1 > 2 consider U with | spec(U)| = N = 3(k + 1)− 1 .
Let W1 denote the wedge

W1 = D(1, 1 + (k + 1), U) ∩ D(1 + (2k + 1), 1 + (2k + 1) + (k + 1), U).

Note that Ωk+1(U) ⊆ W1 and in fact Ωk+1(U) is contained in the eigentriangle
T1 = T(1, 1+(k + 1), 1+(2k+ 1)) , since (1+(2k + 1))− (1+(k+ 1)) = k < k + 1
and 1 + (2k + 1) + (k + 1) = N + 1 ≡ 1 . Let U1 be the unitary with spectrum

spec(U1) = spec(U) \ {λ1, λ1+(k+1), λ1+(2k+1)}.
Then Ωk(U1) ⊇ Ωk+1(U))∩D(1) , where D(1) = D(1+k, 1+(2k+2), U) . Thus any
λ ∈ Ωk+1(U) ∩ D(1) is in Ωk(U1) as well as in T1 . Since | spec(U1)| = 3k − 1 the
inductive hypothesis ensures that λ ∈ Λk(U1) and there is a k –dimensional subspace
V1 of span({|ψi〉 : λi ∈ spec(U1)}) such that (U − λ I)V1 ⊥ V1 . Since λ ∈ T1 we
also have a 1–dimensional subspace V′

1 of span{|ψ1〉 , |ψ1+(k+1)〉 , |ψ1+(2k+1)〉 } such
that (U − λ I)V′

1 ⊥ V′
1 . The (orthogonal) sum V1 + V′

1 shows that λ ∈ Λk+1(U) .
Similarly we have D(k + 3) = D(k + 3 + k, k + 3 + (2k + 2), U) such that

λ ∈ Ωk+1(U) ∩ D(k + 3) implies λ ∈ Λk+1(U) . Finally, D(1) ∪ D(k + 3) = D ,
since 1 + (2k + 2) = k + 3 + k and k + 3 + (2k + 2) < N + 1 + k (if and only if
k + 1 > 2 ). �

COROLLARY 6.8. For N = 7 , we at least have ∂Ω3(U) ⊆ Λ3(U) .

Proof. Along the lines of the proofs above, we need only show that λ ∈ ∂Ω3(U)
implies λ ∈ Ω1(U′) ∩ Ω2(U′′) , where the spectra σ ′,σ ′′ of U′, U′′ partition the
spectrum σ of U , |σ ′| = 2 , and |σ ′′| = 5 . Then λ ∈ Λ1(U′) and, using Theorem
6.3 we also have λ ∈ Λ2(U′′) . To complete the argument note that, if λ belongs to
one of the line segments forming a side of ∂Ω3(U) , then λ ∈ [λi, λi+3] for some i and
we set σ ′ = {λi, λi+3} . Since λi+1 and λi+2 are the only points of σ ′′ = σ \ σ ′ in
the counterclockwise arc from λi to λi+3 , we must also have λ ∈ Ω2(U′′) . �

REMARK 6.9. If there were some sort of a priori convexity result for the sets Λk(T)
– along the lines of the Hausdorff–Toeplitz Theorem for the classical numerical range
(= Λ1(T) ) – many of our arguments could be simplified and extended. For example,
from Corollary 6.6 we could derive Conj(7,3). If Conj(N, k ) is true in general then
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we also have convexity of all Λk(T) for all normal T , but we do not know of any
independent argument for such convexity. In fact, Conj(7,3) seems to be the “smallest”
case that presently remains unsettled.

7. Outlook

As discussed above, the full Conjecture A remains open. Here we have con-
structively verified the conjecture in a wide variety of cases, and, curiously, non-
constructively in other cases. An overarching conceptual proof covering all cases
would be of great interest. A possible avenue to such a result could come through a
general convexity theorem for higher-rank numerical ranges, independent of normality
or unitarity, though the present work suggests that establishing such a result would be a
delicate matter. Progress in this direction is contained in the recent work [4].

To apply the compression approach [5] to broader classes of noise maps (in partic-
ular to randomized unitary channels with more than two unitary errors) as a means to
construct ideal correctable codes, a better understanding is required of joint solutions to
the family of equations given by Eqs. (2). Furthermore,we have focussed on the generic
case of non-degenerate spectrum to streamline the presentation. But many naturally
arising physical examples include degenerate spectra. There are extra technical issues
to overcome in such cases, but we expect our results can be extended to the case of
degenerate spectra.

It would be interesting to consider possible infinite-dimensional extensions of these
results. We have also not studied here possible implications of the compression approach
to more subtle subsystem codes [11, 12]. Nor have we considered possible applications
to approximate error-correction [2, 7, 14, 18], and specifically to noise maps that have
two unitary errors which occur with high probability.
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[3] I. BENGTSSON AND K. ŻYCZKOWSKI, Geometry of quantum states, Cambridge University Press (2006).
[4] M. D. CHOI, M. GIESINGER, J. A. HOLBROOK AND D. W. KRIBS, Geometry of higher-rank numerical

ranges, preprint, 2007.
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Karol Życzkowski
Institute of Physics

Jagiellonian University
ul. Reymonta 4
30-059 Cracow

Poland

Center for Theoretical Physics
Polish Academy of Sciences

Al. Lotników 32/44
02-668 Warsaw

Poland
e-mail: karol@tatry.if.uj.edu.pl

Operators and Matrices
www.ele-math.com
oam@ele-math.com


