SEMI-FREDHOLM SINGULAR INTEGRAL OPERATORS WITH PIECEWISE CONTINUOUS COEFFICIENTS ON WEIGHTED VARIABLE LEBESGUE SPACES ARE FREDHOLM

Alexei Yu. Karlovich
(communicated by A. Böttcher)

Abstract

Suppose Γ is a Carleson Jordan curve with logarithmic whirl points, ϱ is a Khvedelidze weight, $p: \Gamma \rightarrow(1, \infty)$ is a continuous function satisfying $|p(\tau)-p(t)| \leqslant-$ const $/ \log |\tau-t|$ for $|\tau-t| \leqslant 1 / 2$, and $L^{p(\cdot)}(\Gamma, \varrho)$ is a weighted generalized Lebesgue space with variable exponent. We prove that all semi-Fredholm operators in the algebra of singular integral operators with $N \times N$ matrix piecewise continuous coefficients are Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$.

1. Introduction

Let X be a Banach space and $\mathcal{B}(X)$ be the Banach algebra of all bounded linear operators on X. An operator $A \in \mathcal{B}(X)$ is said to be n-normal (resp. d-normal) if its image $\operatorname{Im} A$ is closed in X and the defect number $n(A ; X):=\operatorname{dim} \operatorname{Ker} A$ (resp. $\left.d(A ; X):=\operatorname{dim} \operatorname{Ker} A^{*}\right)$ is finite. An operator A is said to be semi-Fredholm on X if it is n-normal or d-normal. Finally, A is said to be Fredholm if it is simultaneously n-normal and d-normal. Let N be a positive integer. We denote by X_{N} the direct sum of N copies of X with the norm

$$
\|f\|=\left\|\left(f_{1}, \ldots, f_{N}\right)\right\|:=\left(\left\|f_{1}\right\|^{2}+\cdots+\left\|f_{N}\right\|^{2}\right)^{1 / 2} .
$$

Let Γ be a Jordan curve, that is, a curve that is homeomorphic to a circle. We suppose that Γ is rectifiable. We equip Γ with Lebesgue length measure $|d \tau|$ and the counter-clockwise orientation. The Cauchy singular integral of $f \in L^{1}(\Gamma)$ is defined by

$$
(S f)(t):=\lim _{R \rightarrow 0} \frac{1}{\pi i} \int_{\Gamma \backslash \Gamma(t, R)} \frac{f(\tau)}{\tau-t} d \tau \quad(t \in \Gamma),
$$

where $\Gamma(t, R):=\{\tau \in \Gamma:|\tau-t|<R\}$ for $R>0$. David [7] (see also [3, Theorem 4.17]) proved that the Cauchy singular integral generates the bounded operator

[^0]S on the Lebesgue space $L^{p}(\Gamma), 1<p<\infty$, if and only if Γ is a Carleson (AhlforsDavid regular) curve, that is,
$$
\sup _{t \in \Gamma} \sup _{R>0} \frac{|\Gamma(t, R)|}{R}<\infty
$$
where $|\Omega|$ denotes the measure of a measurable set $\Omega \subset \Gamma$. We can write $\tau-t=$ $|\tau-t| e^{i \arg (\tau-t)}$ for $\tau \in \Gamma \backslash\{t\}$, and the argument can be chosen so that it is continuous on $\Gamma \backslash\{t\}$. It is known [3, Theorem 1.10] that for an arbitrary Carleson curve the estimate
$$
\arg (\tau-t)=O(-\log |\tau-t|) \quad(\tau \rightarrow t)
$$
holds for every $t \in \Gamma$. One says that a Carleson curve Γ satisfies the logarithmic whirl condition at $t \in \Gamma$ if
\[

$$
\begin{equation*}
\arg (\tau-t)=-\delta(t) \log |\tau-t|+O(1) \quad(\tau \rightarrow t) \tag{1}
\end{equation*}
$$

\]

with some $\delta(t) \in \mathbb{R}$. Notice that all piecewise smooth curves satisfy this condition at each point and, moreover, $\delta(t) \equiv 0$. For more information along these lines, see [2], [3, Chap. 1], [4].

Let $t_{1}, \ldots, t_{m} \in \Gamma$ be pairwise distinct points. Consider the Khvedelidze weight

$$
\varrho(t):=\prod_{k=1}^{m}\left|t-t_{k}\right|^{\lambda_{k}} \quad\left(\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}\right)
$$

Suppose $p: \Gamma \rightarrow(1, \infty)$ is a continuous function. Denote by $L^{p(\cdot)}(\Gamma, \varrho)$ the set of all measurable complex-valued functions f on Γ such that

$$
\int_{\Gamma}|f(\tau) \varrho(\tau) / \lambda|^{p(\tau)}|d \tau|<\infty
$$

for some $\lambda=\lambda(f)>0$. This set becomes a Banach space when equipped with the Luxemburg-Nakano norm

$$
\|f\|_{p(\cdot), \varrho}:=\inf \left\{\lambda>0: \int_{\Gamma}|f(\tau) \varrho(\tau) / \lambda|^{p(\tau)}|d \tau| \leqslant 1\right\}
$$

If p is constant, then $L^{p(\cdot)}(\Gamma, \varrho)$ is nothing else than the weighted Lebesgue space. Therefore, it is natural to refer to $L^{p(\cdot)}(\Gamma, \varrho)$ as a weighted generalized Lebesgue space with variable exponent or simply as weighted variable Lebesgue spaces. This is a special case of Musielak-Orlicz spaces [24]. Nakano [25] considered these spaces (without weights) as examples of so-called modular spaces, and sometimes the spaces $L^{p(\cdot)}(\Gamma, \varrho)$ are referred to as weighted Nakano spaces.

If S is bounded on $L^{p(\cdot)}(\Gamma, \varrho)$, then from [13, Theorem 6.1] it follows that Γ is a Carleson curve. The following result is announced in [16, Theorem 7.1] and in [18, Theorem D]. Its full proof is published in [20].

THEOREM 1.1. Let Γ be a Carleson Jordan curve and $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying

$$
\begin{equation*}
|p(\tau)-p(t)| \leqslant-A_{\Gamma} / \log |\tau-t| \quad \text { whenever } \quad|\tau-t| \leqslant 1 / 2 \tag{2}
\end{equation*}
$$

where A_{Γ} is a positive constant depending only on Γ. The Cauchy singular integral operator S is bounded on $L^{p(\cdot)}(\Gamma, \varrho)$ if and only if

$$
\begin{equation*}
0<1 / p\left(t_{k}\right)+\lambda_{k}<1 \quad \text { for all } \quad k \in\{1, \ldots, m\} \tag{3}
\end{equation*}
$$

We define by $P C(\Gamma)$ as the set of all $a \in L^{\infty}(\Gamma)$ for which the one-sided limits

$$
a(t \pm 0):=\lim _{\tau \rightarrow t \pm 0} a(\tau)
$$

exist and finite at each point $t \in \Gamma$; here $\tau \rightarrow t-0$ means that τ approaches t following the orientation of Γ, while $\tau \rightarrow t+0$ means that τ goes to t in the opposite direction. Functions in $P C(\Gamma)$ are called piecewise continuous functions.

The operator S is defined on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ elementwise. We let stand $P C_{N \times N}(\Gamma)$ for the algebra of all $N \times N$ matrix functions with entries in $P C(\Gamma)$. Writing the elements of $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ as columns, we can define the multiplication operator aI for $a \in P C_{N \times N}(\Gamma)$ as multiplication by the matrix function a. Let $\operatorname{alg}\left(S, P C ; L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$ denote the smallest closed subalgebra of $\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$ containing the operator S and the set $\left\{a I: a \in P C_{N \times N}(\Gamma)\right\}$.

For the case of piecewise Lyapunov curves Γ and constant exponent p, a Fredholm criterion for an arbitrary operator $A \in \operatorname{alg}\left(S, P C ; L_{N}^{p}(\Gamma, \varrho)\right)$ was obtained by Gohberg and Krupnik [10] (see also [11] and [22]). Spitkovsky [29] established a Fredholm criterion for the operator $a P+Q$, where $a \in P C_{N \times N}(\Gamma)$ and

$$
P:=(I+S) / 2, \quad Q:=(I-S) / 2
$$

on the space $L_{N}^{p}(\Gamma, w)$, where Γ is a smooth curve and w is an arbitrary Muckenhoupt weight. He also proved that if $a P+Q$ is semi-Fredholm on $L_{N}^{p}(\Gamma, w)$, then it is automatically Fredholm on $L_{N}^{p}(\Gamma, w)$. These results were extended to the case of an arbitrary operator $A \in \operatorname{alg}\left(S, P C ; L_{N}^{p}(\Gamma, w)\right)$ in [12]. The Fredholm theory for singular integral operators with piecewise continuous coefficients on Lebesgue spaces with arbitrary Muckenhoupt weights on arbitrary Carleson curves curves was accomplished in a series of papers by Böttcher and Yu. Karlovich. It is presented in their monograph [3] (see also the nice survey [4]).

The study of singular integral operators with discontinuous coefficients on generalized Lebesgue spaces with variable exponent was started in [17, 19]. The results of [3] are partially extended to the case of weighted generalized Lebesgue spaces with variable exponent in $[13,14,15]$. Suppose Γ is a Carleson curve satisfying the logarithmic whirl condition (1) at each point $t \in \Gamma, \varrho$ is a Khvedelidze weight, and p is a variable exponent as in Theorem 1.1. Under these assumptions, a Fredholm criterion for an arbitrary operator A in the algebra $\operatorname{alg}\left(S, P C ; L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$ is obtained in $[14$, Theorem 5.1] by using the Allan-Douglas local principle [5, Section 1.35] and the two projections theorem [9]. However, this approach does not allow us to get additional information about semi-Fredholm and Fredholm operators in this algebra. For instance, to obtain an index formula for Fredholm operators in this algebra, we need other means (see, e.g., $[15$, Section 6$]$). Following the ideas of $[10,29,12]$, in this paper we present a self-contained proof of the following result.

THEOREM 1.2. Let Γ be a Carleson Jordan curve satisfying the logarithmic whirl condition (1) at each point $t \in \Gamma$, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let @ be a Khvedelidze weight satisfying (3). If an operator in the algebra $\operatorname{alg}\left(S, P C ; L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$ is semi-Fredholm, then it is Fredholm.

The paper is organized as follows. Section 2 contains general results on semiFredholm operators. Some auxiliary results on singular integral operators acting on $L^{p(\cdot)}(\Gamma, \varrho)$ are collected in Section 3. In Section 4, we prove a criterion guaranteeing that $a P+Q$, where $a \in P C(\Gamma)$, has closed image in $L^{p(\cdot)}(\Gamma, \varrho)$. This criterion is intimately related with a Fredholm criterion for $a P+Q$ proved in [14]. Notice that we are able to prove both results for Carleson Jordan curves which satisfy the additional condition (1). Section 5 contains the proof of the fact that if the operator $a P+b Q$ is semi-Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, then the coefficients a and b are invertible in the algebra $L_{N \times N}^{\infty}(\Gamma)$. In Section 6, we prove that the semi-Fredholmness and Fredholmness of $a P+b Q$ on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, where a and b are piecewise continuous matrix functions, are equivalent. In Section 7, we extend this result to the sums of products of operators of the form $a P+b Q$ by using the procedure of linear dilation. Since these sums are dense in $\operatorname{alg}\left(S, P C ; L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$, Theorem 1.2 follows from stability properties of semi-Fredholm operators.

2. General results on semi-Fredholm and Fredholm operators

2.1. The Atkinson and Yood theorems

For a Banach space X, let $\Phi(X)$ be the set of all Fredholm operators on X and let $\Phi_{+}(X)$ (resp. $\left.\Phi_{-}(X)\right)$ denote the set of all n-normal (resp. d-normal) operators $A \in \mathcal{B}(X)$ such that $d(A ; X)=+\infty($ resp. $n(A ; X)=+\infty)$.

Theorem 2.1. Let X be a Banach space and K be a compact operator on X.
(a) If $A, B \in \Phi(X)$, then $A B \in \Phi(X)$ and $A+K \in \Phi(X)$.
(b) If $A, B \in \Phi_{ \pm}(X)$, then $A B \in \Phi_{ \pm}(X)$ and $A+K \in \Phi_{ \pm}(X)$.
(c) If $A \in \Phi(X)$ and $B \in \Phi_{ \pm}(X)$, then $A B \in \Phi_{ \pm}(X)$ and $B A \in \Phi_{ \pm}(X)$.

Part (a) is due to Atkinson, parts (b) and (c) were obtained by Yood. For a proof, see e.g. [11, Chap. 4, Sections 6 and 15].

Theorem 2.2. (see e.g. [11], Chap. 4, Theorem 7.1) Let X be a Banach space. An operator $A \in \mathcal{B}(X)$ is Fredholm if and only if there exists an operator $R \in \mathcal{B}(X)$ such that $A R-I$ and $R A-I$ are compact.

2.2. Stability of semi-Fredholm operators

THEOREM 2.3. (see e.g. [11], Chap. 4, Theorems 6.4, 15.4) Let X be a Banach space.
(a) If $A \in \Phi(X)$, then there exists an $\varepsilon=\varepsilon(A)>0$ such that $A+D \in \Phi(X)$ whenever $\|D\|_{\mathcal{B}(X)}<\varepsilon$.
(b) If $A \in \Phi_{ \pm}(X)$, then there exists an $\varepsilon=\varepsilon(A)>0$ such that $A+D \in \Phi_{ \pm}(X)$ whenever $\|D\|_{\mathcal{B}(X)}<\varepsilon$.

LEMMA 2.4. Let X be a Banach space. Suppose A is a semi-Fredholm operator on X and $\left\|A_{n}-A\right\|_{\mathcal{B}(X)} \rightarrow 0$ as $n \rightarrow \infty$. If the operators A_{n} are Fredholm on X for all sufficiently large n, then A is Fredholm, too.

Proof. Assume A is semi-Fredholm, but not Fredholm. Then either $A \in \Phi_{-}(X)$ or $A \in \Phi_{+}(X)$. By Theorem 2.3(b), either $A_{n} \in \Phi_{-}(X)$ or $A_{n} \in \Phi_{+}(X)$ for all sufficiently large n. That is, A_{n} are not Fredholm. This contradicts the hypothesis.

We refer to the monograph by Gohberg and Krupnik [11] for a detailed presentation of the theory of semi-Fredholm operators on Banach spaces.

2.3. Semi-Fredholmness of block operators

Let a Banach space X be represented as the direct sum of its subspaces $X=$ $X_{1} \dot{+} X_{2}$. Then every operator $A \in \mathcal{B}(X)$ can be written in the form of an operator matrix

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where $A_{i j} \in \mathcal{B}\left(X_{j}, X_{i}\right)$ and $i, j=1,2$. The following result is stated without proof in [27]. Its proof is given in [28] (see also [23, Theorem 1.12]).

Theorem 2.5.
(a) Suppose A_{21} is compact. If A is n-normal (d-normal), then A_{11} (resp. A_{22}) is n-normal (resp. d-normal).
(b) Suppose A_{12} or A_{21} is compact. If A_{11} (resp. A_{22}) is Fredholm, then A_{22} (resp. A_{11}) is n-normal, d-normal, Fredholm if and only if A has the corresponding property.

3. Singular integrals on weighted variable Lebesgue spaces

3.1. Duality of weighted variable Lebesgue spaces

Suppose Γ is a rectifiable Jordan curve and $p: \Gamma \rightarrow(1, \infty)$ is a continuous function. Since Γ is compact, we have

$$
1<\underline{p}:=\min _{t \in \Gamma} p(t), \quad \bar{p}:=\max _{t \in \Gamma} p(t)<\infty .
$$

Define the conjugate exponent p^{*} for the exponent p by

$$
p^{*}(t):=\frac{p(t)}{p(t)-1} \quad(t \in \Gamma) .
$$

Suppose ϱ is a Khvedelidze weight. If $\varrho \equiv 1$, then we will write $L^{p(\cdot)}(\Gamma)$ and $\|\cdot\|_{p(\cdot)}$ instead of $L^{p(\cdot)}(\Gamma, 1)$ and $\|\cdot\|_{p(\cdot), 1}$, respectively.

THEOREM 3.1. (see [21], Theorem 2.1) If $f \in L^{p(\cdot)}(\Gamma)$ and $g \in L^{p^{*}(\cdot)}(\Gamma)$, then $f g \in L^{1}(\Gamma)$ and

$$
\|f g\|_{1} \leqslant(1+1 / \underline{p}-1 / \bar{p})\|f\|_{p(\cdot)}\|g\|_{p^{*}(\cdot)}
$$

The above Hölder type inequality in the more general setting of Musielak-Orlicz spaces is contained in [24, Theorem 3.13].

THEOREM 3.2. The general form of a linear functional on $L^{p(\cdot)}(\Gamma, \varrho)$ is given by

$$
G(f)=\int_{\Gamma} f(\tau) \overline{g(\tau)}|d \tau| \quad\left(f \in L^{p(\cdot)}(\Gamma, \varrho)\right)
$$

where $g \in L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. The norms in the dual space $\left[L^{p(\cdot)}(\Gamma, \varrho)\right]^{*}$ and in the space $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ are equivalent.

The above result can be extracted from [24, Corollary 13.14]. For the case $\varrho=1$, see also [21, Corollary 2.7].

3.2. Smirnov classes and Hardy type subspaces

Let Γ be a rectifiable Jordan curve in the complex plane \mathbb{C}. We denote by D_{+} and D_{-}the bounded and unbounded components of $\mathbb{C} \backslash \Gamma$, respectively. We orient Γ counter-clockwise. Without loss of generality we assume that $0 \in D_{+}$. A function f analytic in D_{+}is said to be in the Smirnov class $E^{q}\left(D_{+}\right)(0<q<\infty)$ if there exists a sequence of rectifiable Jordan curves Γ_{n} in D_{+}tending to the boundary Γ in the sense that Γ_{n} eventually surrounds each compact subset of D_{+}such that

$$
\begin{equation*}
\sup _{n \geqslant 1} \int_{\Gamma_{n}}|f(z)|^{q}|d z|<\infty \tag{4}
\end{equation*}
$$

The Smirnov class $E^{q}\left(D_{-}\right)$is the set of all analytic functions in $D_{-} \cup\{\infty\}$ for which (4) holds with some sequence of curves Γ_{n} tending to the boundary in the sense that every compact subset of $D_{-} \cup\{\infty\}$ eventually lies outside Γ_{n}. We denote by $E_{0}^{q}\left(D_{-}\right)$ the set of functions in $E^{q}\left(D_{-}\right)$which vanish at infinity. The functions in $E^{q}\left(D_{ \pm}\right)$have nontangential boundary values almost everywhere on Γ (see, e.g. [8, Theorem 10.3]). We will identify functions in $E^{q}\left(D_{ \pm}\right)$with their nontangential boundary values. The next result is a consequence of the Hölder inequality.

Lemma 3.3. Let Γ be a rectifiable Jordan curve. Suppose $0<q_{1}, \ldots, q_{r}<\infty$ and $f_{j} \in E^{q_{j}}\left(D_{ \pm}\right)$for all $j \in\{1,2, \ldots, r\}$. Then $f_{1} f_{2} \ldots f_{r} \in E^{q}\left(D_{ \pm}\right)$, where

$$
\frac{1}{q}=\frac{1}{q_{1}}+\frac{1}{q_{2}}+\cdots+\frac{1}{q_{r}}
$$

Let \mathcal{R} denote the set of all rational functions without poles on Γ.
THEOREM 3.4. Let Γ be a rectifiable Jordan curve and $0<q<\infty$. If f belongs to $E^{q}\left(D_{ \pm}\right)+\mathcal{R}$ and its nontangential boundary values vanish on a subset $\gamma \subset \Gamma$ of positive measure, then f vanishes identically in $D_{ \pm}$.

This result follows from the Lusin-Privalov theorem for meromorphic functions (see, e.g. [26, p. 292]).

We refer to the monographs by Duren [8] and Privalov [26] for a detailed exposition of the theory of Smirnov classes over domains with rectifiable boundary.

Lemma 3.5. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). Then $P^{2}=P$ and $Q^{2}=Q$ on $L^{p(\cdot)}(\Gamma, \varrho)$.

This result follows from Theorem 1.1 and [13, Lemma 6.4].
In view of Lemma 3.5, the Hardy type subspaces $P L^{p(\cdot)}(\Gamma, \varrho), Q L^{p(\cdot)}(\Gamma, \varrho)$, and $Q L^{p(\cdot)}(\Gamma, \varrho)+\mathbb{C}$ of $L^{p(\cdot)}(\Gamma, \varrho)$ are well defined. Combining Theorem 1.1 and $[13$, Lemma 6.9] we obtain the following.

Lemma 3.6. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). Then

$$
\begin{aligned}
& E^{1}\left(D_{+}\right) \cap L^{p(\cdot)}(\Gamma, \varrho)=P L^{p(\cdot)}(\Gamma, \varrho) \\
& E_{0}^{1}\left(D_{-}\right) \cap L^{p(\cdot)}(\Gamma, \varrho)=Q L^{p(\cdot)}(\Gamma, \varrho), \\
& E^{1}\left(D_{-}\right) \cap L^{p(\cdot)}(\Gamma, \varrho)=Q L^{p(\cdot)}(\Gamma, \varrho)+\mathbb{C} .
\end{aligned}
$$

3.3. Singular integral operators on the dual space

For a rectifiable Jordan curve Γ we have $d \tau=e^{i \Theta_{\Gamma}(\tau)}|d \tau|$ where $\Theta_{\Gamma}(\tau)$ is the angle between the positively oriented real axis and the naturally oriented tangent of Γ at τ (which exists almost everywhere). Let the operator H_{Γ} be defined by $\left(H_{\Gamma} \varphi\right)(t)=e^{-i \Theta_{\Gamma}(t)} \overline{\varphi(t)}$ for $t \in \Gamma$. Note that H_{Γ} is additive but $H_{\Gamma}(\alpha \varphi)=\bar{\alpha} H_{\Gamma} \varphi$ for $\alpha \in \mathbb{C}$. Evidently, $H_{\Gamma}^{2}=I$.

From Theorem 1.1 and [13, Lemma 6.6] we get the following.
Lemma 3.7. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let @ be a Khvedelidze weight satisfying (3). The adjoint operator of $S \in \mathcal{B}\left(L^{p(\cdot)}(\Gamma, \varrho)\right)$ is the operator $-H_{\Gamma} S H_{\Gamma} \in \mathcal{B}\left(L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right)$.

Lemma 3.8. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). Suppose $a \in L^{\infty}(\Gamma)$ and $a^{-1} \in L^{\infty}(\Gamma)$.
(a) The operator aP $+Q$ is n-normal on $L^{p(\cdot)}(\Gamma, \varrho)$ if and only if the operator $a^{-1} P+Q$ is d-normal on $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. In this case

$$
\begin{equation*}
n\left(a P+Q ; L^{p(\cdot)}(\Gamma, \varrho)\right)=d\left(a^{-1} P+Q ; L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right) . \tag{5}
\end{equation*}
$$

(b) The operator $a P+Q$ is d-normal on $L^{p(\cdot)}(\Gamma, \varrho)$ if and only if the operator $a^{-1} P+Q$ is n-normal on $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. In this case

$$
d\left(a P+Q ; L^{p(\cdot)}(\Gamma, \varrho)\right)=n\left(a^{-1} P+Q ; L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right)
$$

Proof. By Theorem 3.2, the space $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ may be identified with the dual space $\left[L^{p(\cdot)}(\Gamma, \varrho)\right]^{*}$. Let us prove part (a). The operator $a P+Q$ is n-normal on $L^{p(\cdot)}(\Gamma, \varrho)$ if and only if its adjoint $(a P+Q)^{*}$ is d-normal on the dual space $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ and

$$
\begin{equation*}
n\left(a P+Q ; L^{p(\cdot)}(\Gamma, \varrho)\right)=d\left((a P+Q)^{*} ; L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right) \tag{6}
\end{equation*}
$$

From Theorem 3.2 it follows that

$$
\begin{equation*}
(a I)^{*}=H_{\Gamma} a H_{\Gamma} \tag{7}
\end{equation*}
$$

Combining Lemma 3.7 and (7), we get

$$
\begin{equation*}
(a P+Q)^{*}=H_{\Gamma}(P+Q a I) H_{\Gamma} . \tag{8}
\end{equation*}
$$

On the other hand, taking into account Lemma 3.5, it is easy to check that

$$
\begin{equation*}
P+Q a I=\left(I+P a^{-1} Q\right)\left(a^{-1} P+Q\right)\left(I-Q a^{-1} P\right) a I \tag{9}
\end{equation*}
$$

where $I+P a^{-1} Q, I-Q a^{-1} P$, and $a I$ are invertible operators on $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. From (8) and (9) it follows that $(a P+Q)^{*}$ and $a^{-1} P+Q$ are d-normal on the space $L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ only simultaneously and

$$
\begin{equation*}
d\left((a P+Q)^{*} ; L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right)=d\left(a^{-1} P+Q ; L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right) \tag{10}
\end{equation*}
$$

Combining (6) and (10), we arrive at (5). Part (a) is proved. The proof of part (b) is analogous.

Denote by $L_{N \times N}^{\infty}(\Gamma)$ the algebra of all $N \times N$ matrix functions with entries in the space $L^{\infty}(\Gamma)$.

Lemma 3.9. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). Suppose $a \in L_{N \times N}^{\infty}(\Gamma)$ and a^{T} is the transposed matrix of a. Then the operator $P+a Q$ is n-normal (resp. d-normal) on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ if and only if the operator $a^{T} P+Q$ is d-normal (resp. n-normal) on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$.

Proof. In view of Theorem 3.2, the space $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ may be identified with the dual space $\left[L_{N}^{p(\cdot)}(\Gamma, \varrho)\right]^{*}$, and the general form of a linear functional on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ is given by

$$
G(f)=\sum_{j=1}^{N} \int_{\Gamma} f_{j}(\tau) \overline{g_{j}(\tau)}|d \tau|
$$

where $f=\left(f_{1}, \ldots, f_{N}\right) \in L_{N}^{p(\cdot)}(\Gamma, \varrho)$ and $g=\left(g_{1}, \ldots, g_{N}\right) \in L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$, and the norms in $\left[L_{N}^{p(\cdot)}(\Gamma, \varrho)\right]^{*}$ and in $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ are equivalent. It is easy to see that $(a I)^{*}=H_{\Gamma} a^{T} H_{\Gamma}$, where H_{Γ} is defined on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ elementwise.

FromLemma 3.7 it follows that $P^{*}=H_{\Gamma} Q H_{\Gamma}$ and $Q^{*}=H_{\Gamma} P H_{\Gamma}$ on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. Then

$$
\begin{equation*}
(P+a Q)^{*}=H_{\Gamma}\left(P a^{T} I+Q\right) H_{\Gamma} \tag{11}
\end{equation*}
$$

On the other hand, it is easy to see that

$$
\begin{equation*}
P a^{T} I+Q=\left(I+P a^{T} Q\right)\left(a^{T} P+Q\right)\left(I-Q a^{T} P\right) \tag{12}
\end{equation*}
$$

where the operators $I+P a^{T} Q$ and $I-Q a^{T} P$ are invertible on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. From (11) and (12) it follows that $(P+a Q)^{*}$ and $a^{T} P+Q$ are n-normal (resp. d-normal) on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$ only simultaneously. This implies the desired statement.

4. Closedness of the image of $a P+Q$ in the scalar case

4.1. Functions in $L^{p(\cdot)}(\Gamma, \varrho)$ are better than integrable if S is bounded

Lemma 4.1. Suppose Γ is a Carleson Jordan curve and $p: \Gamma \rightarrow(1, \infty)$ is a continuous function satisfying (2). If ϱ is a Khvedelidze weight satisfying (3), then there exists an $\varepsilon>0$ such that $L^{p(\cdot)}(\Gamma, \varrho)$ is continuously embedded in $L^{1+\varepsilon}(\Gamma)$.

Proof. If (3) holds, then there exists a number $\varepsilon>0$ such that

$$
0<\left(1 / p\left(t_{k}\right)+\lambda_{k}\right)(1+\varepsilon)<1 \quad \text { for all } \quad k \in\{1, \ldots, m\}
$$

Hence, by Theorem 1.1, the operator S is bounded on $L^{p(\cdot) /(1+\varepsilon)}\left(\Gamma, \varrho^{1+\varepsilon}\right)$. In that case the operator $\varrho^{1+\varepsilon} S \varrho^{-1-\varepsilon} I$ is bounded on $L^{p(\cdot) /(1+\varepsilon)}(\Gamma)$. Obviously, the operator V defined by $(V g)(t)=\operatorname{tg}(t)$ is bounded on $L^{p(\cdot) /(1+\varepsilon)}(\Gamma)$, and

$$
((A V-V A) g)(t)=\frac{\varrho^{1+\varepsilon}(t)}{\pi i} \int_{\Gamma} \frac{g(\tau)}{\varrho^{1+\varepsilon}(\tau)} d \tau
$$

Since $A V-V A$ is bounded on $L^{p(\cdot) /(1+\varepsilon)}(\Gamma)$, there exists a constant $C>0$ such that

$$
\left|\int_{\Gamma} \frac{g(\tau)}{\varrho^{1+\varepsilon}(\tau)} d \tau\right|\left\|\varrho^{1+\varepsilon}\right\|_{p(\cdot) /(1+\varepsilon)}=\left\|\varrho^{1+\varepsilon} \int_{\Gamma} \frac{g(\tau)}{\varrho^{1+\varepsilon}(\tau)} d \tau\right\|_{p(\cdot) /(1+\varepsilon)} \leqslant C\|g\|_{p(\cdot) /(1+\varepsilon)}
$$

for all $g \in L^{p(\cdot) /(1+\varepsilon)}(\Gamma)$. Since $\varrho(\tau)>0$ a.e. on Γ, we have $\left\|\varrho^{1+\varepsilon}\right\|_{p(\cdot) /(1+\varepsilon)}>0$. Hence

$$
\Lambda(g)=\int_{\Gamma} \frac{g(\tau)}{\varrho^{1+\varepsilon}(\tau)} e^{i \Theta_{\Gamma}(\tau)}|d \tau|
$$

is a bounded linear functional on $L^{p(\cdot) /(1+\varepsilon)}(\Gamma)$. From Theorem 3.2 it follows that $\varrho^{-1-\varepsilon} \in L^{[p(\cdot) /(1+\varepsilon)]^{*}}(\Gamma)$, where

$$
\left(\frac{p(t)}{1+\varepsilon}\right)^{*}=\frac{p(t)}{p(t)-(1+\varepsilon)}
$$

is the conjugate exponent for $p(\cdot) /(1+\varepsilon)$. By Theorem 3.1,

$$
\begin{equation*}
\int_{\Gamma}|f(\tau)|^{1+\varepsilon}|d \tau| \leqslant C_{p(\cdot), \varepsilon}\left\||f|^{1+\varepsilon} \varrho^{1+\varepsilon}\right\|_{p(\cdot) /(1+\varepsilon)}\left\|\varrho^{-1-\varepsilon}\right\|_{[p(\cdot) /(1+\varepsilon)]^{*}} \tag{13}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\left\||f|^{1+\varepsilon} \varrho^{1+\varepsilon}\right\|_{p(\cdot) /(1+\varepsilon)}=\|f \varrho\|_{p(\cdot)}^{1+\varepsilon}=\|f\|_{p(\cdot), \varrho}^{1+\varepsilon} . \tag{14}
\end{equation*}
$$

From (13) and (14) it follows that $\|f\|_{1+\varepsilon} \leqslant C_{p(\cdot), \varepsilon, \varrho}\|f\|_{p(\cdot), \varrho}$ for all $f \in L^{p(\cdot)}(\Gamma, \varrho)$,

4.2. Criterion for Fredholmness of $a P+Q$ in the scalar case

THEOREM 4.2. (see [14], Theorem 3.3) Let Γ be a Carleson Jordan curve satisfying the logarithmic whirl condition (1) at each point $t \in \Gamma$, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). Suppose $a \in P C(\Gamma)$. The operator $a P+Q$ is Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$ if and only if $a(t \pm 0) \neq 0$ and

$$
\begin{equation*}
-\frac{1}{2 \pi} \arg \frac{a(t-0)}{a(t+0)}+\frac{\delta(t)}{2 \pi} \log \left|\frac{a(t-0)}{a(t+0)}\right|+\frac{1}{p(t)}+\lambda(t) \notin \mathbb{Z} \tag{15}
\end{equation*}
$$

for all $t \in \Gamma$, where

$$
\lambda(t):= \begin{cases}\lambda_{k}, & \text { if } t=t_{k}, \quad k \in\{1, \ldots, m\} \\ 0, & \text { if } t \notin \Gamma \backslash\left\{t_{1}, \ldots, t_{m}\right\}\end{cases}
$$

The necessity portion of this result was obtained in [13, Theorem 8.1] for spaces with variable exponents satisfying (2) under the assumption that S is bounded on $L^{p(\cdot)}(\Gamma, w)$, where Γ is an arbitrary rectifiable Jordan curve and w is an arbitrary weight (not necessarily power). The sufficiency portion follows from [13, Lemma 7.1] and Theorem 1.1 (see [14] for details). The restriction (1) comes up in the proof of the sufficiency portion because under this condition one can guarantee the boundedness of the weighted operator $w S w^{-1} I$, where $w(\tau)=\left|(t-\tau)^{\gamma}\right|$ and $\gamma \in \mathbb{C}$. If Γ does not satisfy (1), then the weight w is not equivalent to a Khvedelidze weight and Theorem 1.1 is not applicable to the operator $w S w^{-1} I$, that is, a more general result than Theorem 1.1 is needed to treat the case of arbitrary Carleson curves. As far as we know, such a result is not known in the case of variable exponents. For a constant exponent p, the result of Theorem 4.2 (for arbitrary Muckenhoupt weights) is proved in [2] (see also [3, Proposition 7.3] for the case of arbitrary Muckenhoupt weights and arbitrary Carleson curves).

4.3. Criterion for the closedness of the image of $a P+Q$

THEOREM 4.3. Let Γ be a Carleson Jordan curve satisfying the logarithmic whirl condition (1) at each point $t \in \Gamma$, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). Suppose a $\in P C(\Gamma)$ has finitely many jumps and $a(t \pm 0) \neq 0$ for all $t \in \Gamma$. Then the image of aP $+Q$ is closed in $L^{p(\cdot)}(\Gamma, \varrho)$ if and only if (15) holds for all $t \in \Gamma$.

Proof. The idea of the proof is borrowed from [3, Proposition 7.16]. The sufficiency part follows from Theorem 4.2. Let us prove the necessity part. Assume that $a(t \pm 0) \neq 0$ for all $t \in \Gamma$. Since the number of jumps, that is, the points $t \in \Gamma$ at which $a(t-0) \neq a(t+0)$, is finite, it is clear that

$$
\begin{aligned}
& -\frac{1}{2 \pi} \arg \frac{a(t-0)}{a(t+0)}+\frac{\delta(t)}{2 \pi} \log \left|\frac{a(t-0)}{a(t+0)}\right|+\frac{1}{1+\varepsilon} \notin \mathbb{Z} \\
& -\frac{1}{2 \pi} \arg \frac{a(t+0)}{a(t-0)}+\frac{\delta(t)}{2 \pi} \log \left|\frac{a(t+0)}{a(t-0)}\right|+\frac{1}{1+\varepsilon} \notin \mathbb{Z}
\end{aligned}
$$

for all $t \in \Gamma$ and all sufficiently small $\varepsilon>0$. By Theorem 4.2, the operators $a P+Q$ and $a^{-1} P+Q$ are Fredholm on the Lebesgue space $L^{1+\varepsilon}(\Gamma)$ whenever $\varepsilon>0$ is sufficiently small. From Lemma 4.1 it follows that we can pick $\varepsilon_{0}>0$ such that

$$
L^{p(\cdot)}(\Gamma, \varrho) \subset L^{1+\varepsilon_{0}}(\Gamma), \quad L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right) \subset L^{1+\varepsilon_{0}}(\Gamma)
$$

and $a P+Q, a^{-1} P+Q$ are Fredholm on $L^{1+\varepsilon_{0}}(\Gamma)$. Then

$$
\begin{equation*}
n\left(a P+Q ; L^{p(\cdot)}(\Gamma, \varrho)\right) \leqslant n\left(a P+Q ; L^{1+\varepsilon_{0}}(\Gamma)\right)<\infty \tag{16}
\end{equation*}
$$

and taking into account Lemma 3.8(b),

$$
\begin{align*}
d\left(a P+Q ; L^{p(\cdot)}(\Gamma, \varrho)\right) & =n\left(a^{-1} P+Q ; L^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)\right) \\
& \leqslant n\left(a^{-1} P+Q ; L^{1+\varepsilon_{0}}(\Gamma)\right)<\infty . \tag{17}
\end{align*}
$$

If (15) does not hold, then $a P+Q$ is not Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$ in view of Theorem 4.2.
From this fact and (16)-(17) we conclude that the image of $a P+Q$ is not closed in $L^{p(\cdot)}(\Gamma, \varrho)$, which contradicts the hypothesis.

5. Necessary condition for semi-Fredholmness of $a P+b Q$. The matrix case

5.1. Two lemmas on approximation of measurable matrix functions

Let the algebra $L_{N \times N}^{\infty}(\Gamma)$ be equipped with the norm

$$
\|a\|_{L_{N \times N}^{\infty}(\Gamma)}:=N \max _{1 \leqslant i, j \leqslant N}\left\|a_{i j}\right\|_{L^{\infty}(\Gamma)}
$$

Lemma 5.1. (see [23], Lemma 3.4) Let Γ be a rectifiable Jordan curve. Suppose a is a measurable $N \times N$ matrix function on Γ such that $a^{-1} \notin L_{N \times N}^{\infty}(\Gamma)$. Then for every $\varepsilon>0$ there exists a matrix function $a_{\varepsilon} \in L_{N \times N}^{\infty}(\Gamma)$ such that $\left\|a_{\varepsilon}\right\|_{L_{N \times N}(\Gamma)}<\varepsilon$ and the matrix function $a-a_{\varepsilon}$ degenerates on a subset $\gamma \subset \Gamma$ of positive measure.

Lemma 5.2. (see [23], Lemma 3.6) Let Γ be a rectifiable Jordan curve. If a belongs to $L_{N \times N}^{\infty}(\Gamma)$, then for every $\varepsilon>0$ there exists an $a_{\varepsilon} \in L_{N \times N}^{\infty}(\Gamma)$ such that $\left\|a-a_{\varepsilon}\right\|_{L_{N \times N}(\Gamma)}<\varepsilon$ and $a_{\varepsilon}^{-1} \in L_{N \times N}^{\infty}(\Gamma)$.

5.2. Necessary condition for d-normality of $a P+Q$ and $P+a Q$

Lemma 5.3. Suppose Γ is a Carleson Jordan curve, $p: \Gamma \rightarrow(1, \infty)$ is a continuous function satisfying (2), and ϱ is a Khvedelidze weight satisfying (3). If $a \in L_{N \times N}^{\infty}(\Gamma)$ and at least one of the operators $a P+Q$ or $P+a Q$ is d-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, then $a^{-1} \in L_{N \times N}^{\infty}(\Gamma)$.

Proof. This lemma is proved by analogy with [23, Theorem 3.13]. For definiteness, let us consider the operator $P+a Q$. Assume that $a^{-1} \notin L_{N \times N}^{\infty}(\Gamma)$. By Lemma 5.1, for every $\varepsilon>0$ there exists an $a_{\varepsilon} \in L_{N \times N}^{\infty}(\Gamma)$ such that $\left\|a-a_{\varepsilon}\right\|_{L_{N \times N}(\Gamma)}<\varepsilon$ and a_{ε} degenerates on a subset $\gamma \subset \Gamma$ of positive measure. We have

$$
\left\|(P+a Q)-\left(P+a_{\varepsilon} Q\right)\right\|_{\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)} \leqslant\left\|a-a_{\varepsilon}\right\|_{L_{N \times N}^{\infty}(\Gamma)}\|Q\|_{\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)}=O(\varepsilon)
$$

as $\varepsilon \rightarrow 0$. Hence there is an $\varepsilon>0$ such that $P+a_{\varepsilon} Q$ is d-normal together with $P+a Q$ due to Theorem 2.3. Since the image of the operator $P+a_{\varepsilon} Q$ is a subspace of finite codimension in $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, it has a nontrivial intersection with any infinite-dimensional linear manifold contained in $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. In particular, the image of $P+a_{\varepsilon} Q$ has a nontrivial intersection with linear manifolds $M_{j}, j \in\{1, \ldots, N\}$, of those vector-functions, the j-th component of which is a polynomial of $1 / z$ vanishing at infinity and all the remaining components are identically zero. That is, there exist

$$
\psi_{j}^{+} \in P L_{N}^{p(\cdot)}(\Gamma, \varrho), \quad \psi_{j}^{-} \in Q L_{N}^{p(\cdot)}(\Gamma, \varrho), \quad h_{j} \in M_{j}, \quad h_{j} \not \equiv 0
$$

such that $\psi_{j}^{+}+a_{\varepsilon} \psi_{j}^{-}=h_{j}$ for all $j \in\{1, \ldots, N\}$. Consider the $N \times N$ matrix functions

$$
\Psi_{+}:=\left[\psi_{1}^{+}, \psi_{2}^{+}, \ldots, \psi_{N}^{+}\right], \quad \Psi_{-}:=\left[\psi_{1}^{-}, \psi_{2}^{-}, \ldots, \psi_{N}^{-}\right], \quad H:=\left[h_{1}, h_{2}, \ldots, h_{N}\right]
$$

where $\psi_{j}^{+}, \psi_{j}^{-}$, and h_{j} are taken as columns. Then $H-\Psi_{+}=a_{\varepsilon} \Psi_{-}$. Therefore,

$$
\operatorname{det}\left(H-\Psi_{+}\right)=\operatorname{det} a_{\varepsilon} \operatorname{det} \Psi_{-} \quad \text { a.e. on } \quad \Gamma .
$$

The left-hand side of this equality is a meromorphic function having a pole at zero of at least N-th order. Thus, it is not identically zero in D_{+}.

On the other hand, each entry of $H-\Psi_{+}$belongs to

$$
P L^{p(\cdot)}(\Gamma, \varrho)+\mathcal{R} \subset E^{1}\left(D_{+}\right)+\mathcal{R}
$$

(see Lemma 3.6). Hence, by Lemma 3.3, the function $\operatorname{det}\left(H-\Psi_{+}\right) \in E^{1 / N}\left(D_{+}\right)+\mathcal{R}$ and $\operatorname{det}\left(H-\Psi_{+}\right)$degenerates on γ because a_{ε} degenerates on γ. In view of Theorem 3.4, $\operatorname{det}\left(H-\Psi_{+}\right)$vanishes identically in D_{+}. This is a contradiction. Thus, a^{-1} belongs to $L_{N \times N}^{\infty}(\Gamma)$.

5.3. Necessary condition for semi-Fredholmness of $a P+b Q$

THEOREM 5.4. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let @ be a Khvedelidze weight satisfying (3). If the coefficients a and b belong to $L_{N \times N}^{\infty}(\Gamma)$ and the operator $a P+b Q$ is semi-Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, then $a^{-1}, b^{-1} \in L_{N \times N}^{\infty}(\Gamma)$.

Proof. The proof is analogous to the proof of [23, Theorem 3.18]. Suppose $a P+b Q$ is d-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. By Lemma 5.2, for every $\varepsilon>0$ there exist $a_{\varepsilon} \in L_{N \times N}^{\infty}(\Gamma)$ such that $a_{\varepsilon}^{-1} \in L_{N \times N}^{\infty}(\Gamma)$ and $\left\|a-a_{\varepsilon}\right\|_{L_{N \times N}(\Gamma)}^{\infty}<\varepsilon$. Since

$$
\left\|(a P+b Q)-\left(a_{\varepsilon} P+b Q\right)\right\|_{\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)} \leqslant\left\|a-a_{\varepsilon}\right\|_{L_{N \times N}^{\infty}(\Gamma)}\|P\|_{\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)}=O(\varepsilon)
$$

as $\varepsilon \rightarrow 0$, from Theorem 2.3 it follows that $\varepsilon>0$ can be chosen so small that $a_{\varepsilon} P+b Q$ is d-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, too. Since $a_{\varepsilon}^{-1} \in L_{N \times N}^{\infty}(\Gamma)$, the operator $a_{\varepsilon} I$ is invertible on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. From Theorem 2.1 it follows that the operator $P+a_{\varepsilon}^{-1} b Q=$ $a_{\varepsilon}^{-1}\left(a_{\varepsilon} P+b Q\right)$ is d-normal. By Lemma 5.3, $b^{-1} a_{\varepsilon}$ belongs to $L_{N \times N}^{\infty}(\Gamma)$. Hence $b^{-1}=b^{-1} a_{\varepsilon} a_{\varepsilon}^{-1} \in L_{N \times N}^{\infty}(\Gamma)$.

Furthermore, $b^{-1} a P+Q=b^{-1}(a P+b Q)$ and the operator $b^{-1} a P+Q$ is d-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. By Lemma 5.3, $a^{-1} b \in L_{N \times N}^{\infty}(\Gamma)$. Then $a^{-1}=a^{-1} b b^{-1}$ belongs to $L_{N \times N}^{\infty}(\Gamma)$. That is, we have shown that if $a P+b Q$ is d-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, then $a^{-1}, b^{-1} \in L_{N \times N}^{\infty}(\Gamma)$.

If $a P+b Q$ is n-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, then arguing as above, we conclude that the operator $P+a_{\varepsilon}^{-1} b Q$ is n-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. By Lemma 3.9, the operator $\left(a_{\varepsilon}^{-1} b\right)^{T} P+Q$ is d-normal on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. From Lemma 5.3 it follows that $\left[\left(a_{\varepsilon}^{-1} b\right)^{T}\right]^{-1} \in L_{N \times N}^{\infty}(\Gamma)$. Therefore, $b^{-1}=\left(a_{\varepsilon}^{-1}\right)^{-1} a_{\varepsilon}^{-1} \in L_{N \times N}^{\infty}(\Gamma)$. Furthermore, $b^{-1} a P+Q=b^{-1}(a P+b Q)$ and the operator $b^{-1} a P+Q=b^{-1}(a P+b Q)$ is n-normal on $L_{N_{*}}^{p(\cdot)}(\Gamma, \varrho)$. From Lemma 3.9 we get that the operator $P+\left(b^{-1} a\right)^{T} Q$ is d-normal on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$. Applying Lemma 5.3 to the operator $P+\left(b^{-1} a\right)^{T} Q$ acting on $L_{N}^{p^{*}(\cdot)}\left(\Gamma, \varrho^{-1}\right)$, we obtain $a^{-1} b \in L_{N \times N}^{\infty}(\Gamma)$. Thus $a^{-1}=a^{-1} b b^{-1} \in L_{N \times N}^{\infty}(\Gamma)$.

6. Semi-Fredholmness and Fredholmness of $a P+b Q$ are equivalent

6.1. Decomposition of piecewise continuous matrix functions

Denote by $P C^{0}(\Gamma)$ the set of all piecewise continuous functions a which have only a finite number of jumps and satisfy $a(t-0)=a(t)$ for all $t \in \Gamma$. Let $C_{N \times N}(\Gamma)$ and $P C_{N \times N}^{0}(\Gamma)$ denote the sets of $N \times N$ matrix functions with continuous entries and with entries in $P C^{0}(\Gamma)$, respectively. A matrix function $a \in P C_{N \times N}(\Gamma)$ is said to be nonsingular if $\operatorname{det} a(t \pm 0) \neq 0$ for all $t \in \Gamma$.

Lemma 6.1. (see [6], Chap. VII, Lemma 2.2) Suppose Γ is a rectifiable Jordan curve. If a matrix function $f \in P C_{N \times N}^{0}(\Gamma)$ is nonsingular, then there exist an upper-triangular nonsingular matrix function $g \in P C_{N \times N}^{0}(\Gamma)$ and nonsingular matrix functions $c_{1}, c_{2} \in C_{N \times N}(\Gamma)$ such that $f=c_{1} g c_{2}$.

6.2. Compactness of commutators

LEMMA 6.2. Let Γ be a Carleson Jordan curve, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let @ be a Khvedelidze weight satisfying (3). If c belongs to $C_{N \times N}(\Gamma)$, then the commutators $c P-P c I$ and $c Q-Q c I$ are compact on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$.

This statement follows from Theorem 1.1 and [13, Lemma 6.5].

6.3. Equivalence of semi-Fredholmness and Fredholmness of $a P+b Q$

THEOREM 6.3. Let Γ be a Carleson Jordan curve satisfying the logarithmic whirl condition (1) at each point $t \in \Gamma$, let $p: \Gamma \rightarrow(1, \infty)$ be a continuous function satisfying (2), and let ϱ be a Khvedelidze weight satisfying (3). If $a, b \in P C_{N \times N}^{0}(\Gamma)$, then $a P+b Q$ is semi-Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ if and only if it is Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$.

Proof. The idea of the proof is borrowed from [29, Theorem 3.1]. Only the necessity portion of the theorem is nontrivial. If $a P+b Q$ is semi-Fredholm, then a and b are nonsingular by Theorem 5.4. Hence $b^{-1} a$ is nonsingular. In view of Lemma 6.1, there exist an upper-triangular nonsingular matrix function $g \in P C_{N \times N}^{0}(\Gamma)$ and continuous nonsingular matrix functions c_{1}, c_{2} such that $b^{-1} a=c_{1} g c_{2}$. It is easy to see that

$$
\begin{equation*}
a P+b Q=b c_{1}\left[(g P+Q)\left(P c_{2} I+Q c_{1}^{-1} I\right)+g\left(c_{2} P-P c_{2} I\right)+\left(c_{1}^{-1} Q-Q c_{1}^{-1} I\right)\right] \tag{18}
\end{equation*}
$$

From Lemma 6.2 it follows that the operators $c_{2} P-P c_{2} I$ and $c_{1}^{-1} Q-Q c_{1}^{-1} I$ are compact on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ and

$$
\left(P c_{2} I+Q c_{1}^{-1} I\right)\left(c_{2}^{-1} P+c_{1} Q\right)=I+K_{1}, \quad\left(c_{2}^{-1} P+c_{1} Q\right)\left(P c_{2} I+Q c_{1}^{-1} I\right)=I+K_{2}
$$

where K_{1} and K_{2} are compact operators on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. In view of these equalities, by Theorem 2.2, the operator $P c_{2} I+Q c_{1}^{-1} I$ is Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. Obviously, the operator $b c_{1} I$ is invertible because $b c_{1}$ is nonsingular. From (18) and Theorem 2.1 it follows that $a P+b Q$ is n-normal, d-normal, Fredholm if and only if $g P+Q$ has the corresponding property.

Let $g_{j}, j \in\{1, \ldots, N\}$, be the elements of the main diagonal of the uppertriangular matrix function g. Since g is nonsingular, all g_{j} are nonsingular, too. Assume for definiteness that $g P+Q$ is n-normal on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. By Theorem $2.5(a)$, the operator $g_{1} P+Q$ is n-normal on $L^{p(\cdot)}(\Gamma, \varrho)$. Hence the image of $g_{1} P+Q$ is closed. From Theorem 4.3 it follows that (15) is fulfilled with g_{1} in place of a. Therefore, the operator $g_{1} P+Q$ is Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$ due to Theorem 4.2. Applying Theorem $2.5(\mathrm{~b})$, we deduce that the operator $g^{(1)} P+Q$ is n-normal on $L_{N-1}^{p(\cdot)}(\Gamma, \varrho)$, where $g^{(1)}$ is the $(N-1) \times(N-1)$ upper-triangular nonsingular matrix function obtained from g by deleting the first column and the first row. Arguing as before with $g^{(1)}$ in place of g, we conclude that $g_{2} P+Q$ is Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$ and $g^{(2)} P+Q$ is n-normal on $L_{N-2}^{p(\cdot)}(\Gamma, \varrho)$, where $g^{(2)}$ is the $(N-2) \times(N-2)$ upper-triangular
nonsingular matrix function obtained from $g^{(1)}$ by deleting the first column and the first row. Repeating this procedure N times, we can show that all operators $g_{j} P+Q$, $j \in\{1, \ldots, N\}$, are Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$.

If the operator $g P+Q$ is d-normal, then we can prove in a similar fashion that all operators $g_{j} P+Q, j \in\{1, \ldots, N\}$, are Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$. In this case we start with g_{N} and delete the last column and the last row of the matrix $g^{(j-1)}$ on the j-th step (we assume that $g^{(0)}=g$).

Since all operators $g_{j} P+Q$ are Fredholm on $L^{p(\cdot)}(\Gamma, \varrho)$, from Theorem 2.5(b) we obtain that the operator $g P+Q$ is Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. Hence $a P+b Q$ is Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$, too.

7. Semi-Fredholmness and Fredholmness are equivalent for arbitrary operators in alg $\left(S, P C, L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$

7.1. Linear dilation

The following statement shows that the semi-Fredholmness of an operator in a dense subalgebra of $\operatorname{alg}\left(S, P C, L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$ is equivalent to the semi-Fredholmness of a simpler operator $a P+b Q$ with coefficients of a, b of larger size.

Lemma 7.1. Suppose Γ is a Carleson Jordan curve, $p: \Gamma \rightarrow(1, \infty)$ is a continuous function satisfying (2), and ϱ is a Khvedelidze weight satisfying (3). Let

$$
A=\sum_{i=1}^{k} A_{i 1} A_{i 2} \ldots A_{i r}
$$

where $A_{i j}=a_{i j} P+b_{i j} Q$ and all $a_{i j}, b_{i j}$ belong to $P C_{N \times N}^{0}(\Gamma)$. Then there exist functions $a, b \in P C_{D \times D}^{0}(\Gamma)$, where $D:=N(k(r+1)+1)$, such that A is n-normal (d-normal, Fredholm) on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$ if and only if $a P+b Q$ is n-normal (resp. d-normal, Fredholm) on $L_{D}^{p(\cdot)}(\Gamma, \varrho)$.

Proof. The idea of the proof is borrowed from [10] (see also [1, Theorem 12.15]). Denote by O_{s} and I_{s} the $s \times s$ zero and identity matrix, respectively. For $\ell=1, \ldots, r$, let B_{ℓ} be the $k N \times k N$ matrix

$$
B_{\ell}=\operatorname{diag}\left(A_{1 \ell}, A_{2 \ell}, \ldots, A_{k \ell}\right),
$$

then define the $k N(r+1) \times k N(r+1)$ matrix Z by

$$
Z=\left[\begin{array}{ccccc}
I_{k N} & B_{1} & O_{k N} & \ldots & O_{k N} \\
O_{k N} & I_{k N} & B_{2} & \ldots & O_{k N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O_{k N} & O_{k N} & O_{k N} & \ldots & B_{r} \\
O_{k N} & O_{k N} & O_{k N} & \ldots & I_{k N}
\end{array}\right]
$$

Put

$$
X:=\operatorname{column}(\underbrace{O_{N}, \ldots, O_{N}}_{k r}, \underbrace{-I_{N}, \ldots,-I_{N}}_{k}), \quad Y:=(\underbrace{I_{N}, \ldots, I_{N}}_{k}, \underbrace{O_{N}, \ldots, O_{N}}_{k r}) .
$$

Define also $M_{0}=(\underbrace{I_{N}, \ldots, I_{N}}_{k})$ and for $\ell \in\{1, \ldots, r\}$, let

$$
M_{\ell}:=\left(A_{11} A_{12} \ldots A_{1 \ell}, A_{21} A_{22} \ldots A_{2 \ell}, \ldots, A_{k 1} A_{k 2} \ldots A_{k \ell}\right)
$$

Finally, put

$$
W:=\left(M_{0}, M_{1}, \ldots, M_{r}\right)
$$

It can be verified straightforwardly that

$$
\left[\begin{array}{cc}
I_{k N(r+1)} & O \tag{19}\\
W & I_{N}
\end{array}\right]\left[\begin{array}{cc}
I_{k N(r+1)} & O \\
O & A
\end{array}\right]\left[\begin{array}{ll}
Z & X \\
O & I_{N}
\end{array}\right]=\left[\begin{array}{cc}
Z & X \\
Y & O_{N}
\end{array}\right]
$$

It is clear that the outer terms on the left-hand side of (19) are invertible. Hence the middle factor of (19) and the right-hand side of (19) are n-normal (d-normal, Fredholm) only simultaneously in view of Theorem 2.1. By Theorem 2.5(b), the operator A is n-normal (d-normal, Fredholm) if and only if the middle factor of (19) has the corresponding property. Finally, note that the left-hand side of (19) has the form $a P+b Q$, where $a, b \in P C_{D \times D}^{0}(\Gamma)$.

7.2. Proof of Theorem $\mathbf{1 . 2}$

Obviously, for every $f \in P C(\Gamma)$ there exists a sequence $f_{n} \in P C^{0}(\Gamma)$ such that $\left\|f-f_{n}\right\|_{L^{\infty}(\Gamma)} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, for each operator $\alpha P+\beta Q$, where $\alpha=\left(\alpha_{r s}\right)_{r, s=1}^{N}, \beta=\left(\beta_{r s}\right)_{r s=1}^{N}$ and $\alpha_{r s}, \beta_{r s} \in P C(\Gamma)$ for all $r, s \in\{1, \ldots, N\}$, there exist sequences $\alpha^{(n)}=\left(\alpha_{r s}^{(n)}\right)_{r, s=1}^{N}, \beta^{(n)}=\left(\beta_{r s}^{(n)}\right)_{r, s=1}^{N}$ with $\alpha_{r s}^{(n)}, \beta_{r s}^{(n)} \in P C^{0}(\Gamma)$ for all $r, s \in\{1, \ldots, N\}$ such that

$$
\begin{aligned}
& \left\|(\alpha P+\beta Q)-\left(\alpha^{(n)} P+\beta^{(n)} Q\right)\right\|_{\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)} \\
& \leqslant N \max _{1 \leqslant r, s \leqslant N}\left\|\alpha_{r s}-\alpha_{r s}^{(n)}\right\|_{L^{\infty}(\Gamma)}\|P\|_{\mathcal{B}\left(L_{N}^{p \cdot(\cdot)}(\Gamma, \varrho)\right)} \\
& \quad+N \max _{1 \leqslant r, s \leqslant N}\left\|\beta_{r s}-\beta_{r s}^{(n)}\right\|_{L^{\infty}(\Gamma)}\|Q\|_{\mathcal{B}_{\left(L_{N}^{p(\cdot)}(\Gamma, \Omega)\right)}=o(1)}
\end{aligned}
$$

as $n \rightarrow \infty$.
Let $A \in \operatorname{alg}\left(S, P C ; L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)$. Then there exists a sequence of operators $A^{(n)}$ of the form $\sum_{i=1}^{k} A_{i 1}^{(n)} A_{i 2}^{(n)} \ldots A_{i r}^{(n)}$, where $A_{i j}^{(n)}=a_{i j}^{(n)} P+b_{i j}^{(n)} Q$ and $a_{i j}^{(n)}, b_{i j}^{(n)}$ belong to $P C_{N \times N}(\Gamma)$, such that $\left\|A-A^{(n)}\right\|_{\mathcal{B}\left(L_{N}^{p(\cdot)}(\Gamma, \varrho)\right)} \rightarrow 0$ as $n \rightarrow \infty$. In view of what has been said above, without loss of generality, we can assume that all matrix functions $a_{i j}^{(n)}, b_{i j}^{(n)}$ belong to $P C_{N \times N}^{0}(\Gamma)$.

If A is semi-Fredholm, then for all sufficiently large n, the operators $A^{(n)}$ are semi-Fredholm by Theorem 2.3. From Lemma 7.1 it follows that for every semiFredholm operator $\sum_{i=1}^{k} A_{i 1}^{(n)} A_{i 2}^{(n)} \ldots A_{i r}^{(n)}$ there exist $a^{(n)}, b^{(n)} \in P C_{D \times D}^{0}(\Gamma)$, where $D:=N(k(r+1)+1)$, such that $a^{(n)} P+b^{(n)} Q$ is semi-Fredholm on $L_{D}^{p(\cdot)}(\Gamma, \varrho)$. By Theorem 6.3, $a^{(n)} P+b^{(n)} Q$ is Fredholm on $L_{D}^{p(\cdot)}(\Gamma, \varrho)$. Applying Lemma 7.1 again, we conclude that $\sum_{i=1}^{k} A_{i 1}^{(n)} A_{i 2}^{(n)} \ldots A_{i r}^{(n)}$ is Fredholm on $L_{N}^{p(\cdot)}(\Gamma, \varrho)$. Thus, for all sufficiently large n, the operators $A^{(n)}$ are Fredholm. Lemma 2.4 yields that A is Fredholm.

REFERENCES

[1] C. J. Bishop, A. Böttcher, Yu. I. Karlovich, and I. M. Spitkovsky, Local spectra and index of singular integral operators with piecewise continuous coefficients on composed curves, Math. Nachr., 206 (1999), 5-83.
[2] A. BÖTTCHER AND YU. I. KARLOVICH, Toeplitz and singular integral operators on Carleson curves with logarithmic whirl points, Integral Equations Operator Theory, 22 (1995) 127-161.
[3] A. Böttcher and Yu. I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators, Progress in Mathematics, 154, Birkhäuser, Basel, 1997.
[4] A. BÖTTCHER AND YU. I. KARLOVICH, Cauchy's singular integral operator and its beautiful spectrum, In: "Systems, approximation, singular integral operators, and related topics" (Bordeaux, 2000), Operator Theory: Advances and Applications, 129 (2001), 109-142.
[5] A. BötTcher and B. Silbermann, Analysis of Toeplitz Operators, 2nd edition, Springer-Verlag, Berlin, 2006.
[6] K. P. Clancey and I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, Operator Theory: Advances and Applications, 3, Birkhäuser, Basel, 1981.
[7] G. DAVID, Operáteurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Super., 17 (1984), 157-189.
[8] P. Duren, Theory of H^{p} Spaces, Academic Press, New York, 1970.
[9] T. Finck, S. Roch, AND B. Silbermann, Two projections theorems and symbol calculus for operators with massive local spectra, Math. Nachr., 162 (1993), 167-185.
[10] I. Gohberg and N. Krupnik, Singular integral operators with piecewise continuous coefficients and their symbols, Math. USSR Izvestiya, 5 (1971), 955-979.
[11] I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations, Vols. 1 and 2. Operator Theory: Advances and Applications, 53-54. Birkhäuser, Basel, 1992.
[12] I. Gohberg, N. Krupnik, and I. M. Spitkovsky, Banach algebras of singular integral operators with piecewise continuous coefficients, Integral Equations Operator Theory, 17 (1993), 322-337.
[13] A. Yu. Karlovich, Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces, J. Integr. Equat. Appl., 15 (2003), 263-320.
[14] A. Yu. Karlovich, Algebras of singular integral operators on Nakano spaces with Khvedelidze weights over Carleson curves with logarithmic whirl points, In: "Pseudodifferential Equations and Some Problems of Mathematical Physics", Rostov-on-Don, 2005, 135-142, Available at www. arxiv.org.
[15] A. Yu. Karlovich, Algebras of singular integral operators with piecewise continuous coefficients on weighted Nakano spaces, In: "The Extended Field of Operator Theory", Operator Theory: Advances and Applications, 171 (2006), 171-188.
[16] V. M. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces, In: "Function Spaces, Differential Operators and Nonlinear Analysis FSDONA 2004", 2005, 152-175, Available at math. cas.cz/fsdona2004/proceedings.html.
[17] V. M. KOKILASHVILI AND S. G. SAMKO, Singular integral equations in the Lebesgue spaces with variable exponent, Proc. Razmadze Math. Inst., 131 (2003), 61-78.
[18] V. M. Kokilashvili and S. G. SamKo, Boundedness in Lebesgue spaces with variable exponent of maximal, singular and potential operators, In: "Pseudodifferential Equations and Some Problems of Mathematical Physics", Rostov-on-Don, 2005, 152-158.
[19] V. M. KOKILASHVILI, V. PaAtashVILI, AND S. G. SAMKO, Boundary value problems for analytic functions in the class of Cauchy type integrals with density in $L^{p(\cdot)}(\Gamma)$, Boundary Value Problems, 1 (2005), 43-71.
[20] V. M. Kokilashvili, V. Paatashvili, and S. G. Samko, Boundedness in Lebesgue spaces with variable exponent of the Cauchy singular operator on Carleson curves, In: "Modern Operator Theory and Applications. The Igor Borisovich Simonenko Anniversary Volume", Operator Theory: Advances and Applications, 170 (2006), 167-186.
[21] O. KovÁčIK AND J. RÁKOSNík, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41(116) (1991), 592-618.
[22] N. Krupnik, Banach Algebras with Symbol and Singular Integral Operators. Operator Theory: Advances and Applications, 26, Birkhäuser, Basel, 1987.
[23] G. S. Litvinchuk and I. M. Spitkovsky, Factorization of Measurable Matrix Functions, Operator Theory: Advances and Applications, 25, Birkhäuser, Basel, 1987.
[24] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.
[25] H. NaKANO, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
[26] I. I. Privalov, Boundary Properties of Analytic Functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., MoscowLeningrad, 1950 (in Russian).
[27] I. M. SpitKovsky, Block operators and related questions of the theory of factorization of matrix-valued functions, Soviet Math. Dokl., 22 (1980), 471-475.
[28] I. M. Spitkovsky, A Fredholm criterion for block-triangular operators and related questions of factorization theory of matrix functions, Deposited at VINITI on May 28, 1981, no. 2543-81, 23 p. (in Russian).
[29] I. M. SpitKovsky, Singular integral operators with PC symbols on the spaces with general weights, J. Funct. Anal., 105 (1992), 129-143.

Alexei Yu. Karlovich Departamento de Matemática Instituto Superior Técnico

Av. Rovisco Pais 1
1049-001, Lisbon, Portugal
e-mail: akarlov@math.ist.utl.pt

[^0]: Mathematics subject classification (2000): 47B35, 47A53, 45E05, 45F15, 46E30, 47L80.
 Key words and phrases: Semi-Fredholm operator, Carleson curve, Khvedelidze weight, generalized Lebesgue space with variable exponent, singular integral operator.

 The author is partially supported by F.C.T. (Portugal) grants SFRH/BPD/11619/2002 and FCT/FEDER/POCTI/ MAT/59972/2004.

