
Operators
and

Matrices
Volume 1, Number 3 (2007), 469–489

CANONICAL STRUCTURES FOR

PALINDROMIC MATRIX POLYNOMIALS

PETER LANCASTER, UWE PRELLS AND LEIBA RODMAN

(communicated by J. Pečarić)

Abstract. Spectral properties and canonical structures of palindromic matrix polynomials are
studied in terms of their linearizations, standard triples, and unitary triples. These triples describe
matrix polynomials via eigenvalues and Jordan chains. As an application of canonical structures
and their properties, criteria are developed for stable boundedness of solutions of systems of
linear differential equations with symmetries.

1. Introduction

The purpose of this paper is to study the spectral properties of palindromic matrix
polynomials (definitions below). Motivation for this investigation and many interesting
results can be found in works of Mackey et al. [15], [16], where practical examples and
computational issues are discussed. Earlier results for palindromic polynomials of even
degree can be found in the books of Gohberg, Lancaster, and Rodman, [5], [6]. Also,
there is recent work [17], on polynomials of the first degree. A more comprehensive
theory including both even and odd degree polynomials is the main objective of this
paper. In particular, the unitary properties of such functions will be studied, including
analysis of the appropriate choice of indefinite inner product.

We study n × n matrix polynomials

L(λ ) =
�∑

j=0

Ajλ j, (1)

with complex n × n matrix coefficients Aj , j = 0, 1, . . . , � and with det A� �= 0 . The
reverse polynomial of L(λ ) is defined by revL(λ ) =

∑�
j=0 λ

jA�−j = λ �L(λ−1). Now
we make the formal definition:

DEFINITION 1. A matrix polynomial L(λ ) with the property that, for all λ ∈ C ,
and a fixed μ = ±1,

rev(L(λ ))∗ = μL(λ ),
is said to be μ -palindromic.
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Thus, for a μ -palindromic polynomial we have A∗
j = μA�−j for j = 0, 1, . . . , � .

Furthermore, it is clear that, L(λ ) is μ -palindromic if and only if, with the same μ
and any λ ∈ C \ {0} ,

L(λ )∗ = μ λ
�
L(λ

−1
). (2)

Let us summarize the contributionsmade in this paper: Section 2 is largely a review
of “linearizations” and especially those with symmetries. In particular, links between
Hermitian and palindromic symmetries are established. Then Section 3 contains new
material concerning the definition of indefinite inner products in which linearizations of
palindromic polynomials have unitary properties. The notion of “standard triples” plays
a central role in the theory ofmatrix polynomials, and this is developed further in Section
4 to characterize standard triples of μ -palindromic polynomials. For Hermitian matrix
polynomials, the notion of standard triples which are “self-adjoint” plays the role of
Jordan structures in the theory of matrices. For palindromic polynomials, the analogous
“unitary triples” are required and are developed in Section 5. This theory depends on
canonical forms for H -unitary matrices.

The theory developed here (and elsewhere) can be applied to the study of stability
of the solutions of difference equations whose matrix coefficients form palindromic
polynomials. In Section 6 this theory is extended to admit μ -palindromic polynomials
with μ = ±1 . It contains a complete analysis of stability problems in the case of
polynomials with even degree. Partial results are obtained in the case of odd degree, but
the complete analogue of Theorem 14 for μ -palindromic polynomials of odd degree
remains open.

Before beginning the general theory, it will be useful to record three observations
concerning simple transformations of palindromic matrix polynomials:

PROPOSITION 1.
(a) If L(λ ) =

∑�
j=0 λ

jAj is μ -palindromic, then for every α ∈ C \ {0} , the
matrix polynomial

Mα(λ ) := (λα + α)L(λ ) (3)
is μ -palindromic as well.

(b) If L(λ ) is μ -palindromic and � is even, then L̃(λ ) := L(iλ ) is μ(−1)�/2 -
palindromic.

(c) If L(λ ) is μ -palindromic of even degree � , and |ω | = 1 is fixed, then the
matrix polynomial Lω(λ ) := (ω)�/2L(ωλ ) is μ -palindromic as well.

Proof. (a) Let Mα(λ ) =
∑�+1

j=0 λ
jBj. Then

B∗
�+1 = (αA�)∗ = μαA0 = μB0,

and for j = 1, 2, . . . , � :

B∗
j = (αAj−1 + αAj)∗ = αA∗

j−1 + αA∗
j = αμA∗

�−j+1 + αμA�−j = μB�+1−j.

For part (b) write, using the μ -palindromic property of L(λ ) :

(L(iλ ))∗ = μ(−iλ)�L((−iλ )−1) = μ(−1)�/2λ
�
L(iλ

−1
) = μ(−1)�/2λ

�
L̃(λ

−1
).

The part (c) is verified by a straightforward computation. �
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2. Linearizations with symmetries

DEFINITION 2. A matrix pencil λX + Y of size �n × �n is called a linearization
of L(λ ) (of equation (1)) if

E(λ )(λX + Y)F(λ ) =
[

L(λ ) 0
0 In(�−1)

]
for some unimodular (i.e., having constant nonzero determinant) matrix polynomials
E(λ ) and F(λ ) .

There is an extensive literature on matrix polynomials and their linearizations, see
for example [1], [2], [16], and in particular the monographs [7], [3] and references there.
The use of Definition 2 is consistent with our hypothesis that A� is nonsingular. An
important and well-known example of a linearization for L(λ ) is the pencil λA − B ,
where

A :=

⎡
⎢⎢⎢⎢⎣

A1 A2 · · · A�

A2 . .
.

0
... . .

.

. .
. ...

A� 0 · · · 0

⎤
⎥⎥⎥⎥⎦ , B :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−A0 0 0 · · · 0
0 A2 A3 · · · A�

0 A3 . .
.

0
...

... . .
.

. .
. ...

0 A� 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

This pencil obviously has a useful role to play when the coefficients of L(λ ) are
Hermitian. Assuming that A� is invertible, if C = A−1B is the companion matrix of
L(λ ) :

C :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 In 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 In

−A−1
� A0 −A−1

� A1 · · · −A−1
� A�−2 −A−1

� A�−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5)

then the pencil λ I − C is also a linearization.
More generally, consider the matrices

Si := Si(L) = ACi, i = 0, 1, . . . .

The sequence begins with S0 = A and S1 = B and, for i = 0, 1, . . . , � , they have the
form

Si :=

2
66666666666666664

0 · · · 0 −A0 0 · · · · · · 0
... . .

.

. .
. ...

...
...

0 . .
. ...

...
...

−A0 · · · · · · −Ai−1 0 · · · · · · 0
0 · · · · · · 0 Ai+1 · · · · · · A�

...
...

... . .
.

0
...

...
... . .

.

. .
. ...

0 · · · · · · 0 A� 0 · · · 0

3
77777777777777775

. (6)
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In particular,

S�−1 =

2
66666664

0 · · · 0 −A0 0
... . .

.

. .
. ...

...

0 . .
. ...

...
−A0 · · · · · · −A�−2 0

0 · · · · · · 0 A�

3
77777775

, S� =

2
666664

0 · · · 0 −A0
... . .

.

. .
.

−A1

0 . .
. ...

−A0 −A1 · · · −A�−1

3
777775

. (7)

Note that Si does not depend on Ai , and the formulas for the Si make sense also when
A� is singular.

It is easily seen that all Si are nonsingular if and only if A� and A0 are nonsingular.
In this case C is nonsingular and

λSk−1 − Sk = ACk−1(λ I − C) = Sk−1(λ I − C), k = 1, 2, . . . , �.

This strict equivalence shows that, when both A� and A0 are nonsingular, λSk−1 − Sk

is a linearization of P(λ ) for each k .
Nowwe review some results from [13] concerning linearizations for μ -palindromic

matrix polynomials. First define the n� × n� matrix

R�,n :=

⎡
⎢⎣

0 In

. .
.

In 0

⎤
⎥⎦ = R�,1 ⊗ In.

Note that R�,1 is known as the SIP matrix — short for Standard Involutary Permutation
— of size � × � : it is square with 1’s on the lower left - upper right diagonal and zeros
elsewhere. Define also the subset of C� ,

P := {c ∈ C� : cT = c∗R�,1}. (8)

Observe that c ∈ P if and only if cj = c�−j+1 for j = 1, 2, . . . , � and P is a
linear space over R . With each c ∈ P define a corresponding polynomial pc(λ ) =
c1 + c2λ + · · · + c�λ �−1.

Also, for c ∈ C� and any matrix polynomial L(λ ) of degree � , let

Ac(L) := R�,n

�∑
i=1

ciSi−1(L), Bc(L) := R�,n

�∑
i=1

ciSi(L) = Ac(L)C.

From Section 6 of [13] we have:

LEMMA 2. Let L(λ ) have μ -palindromic symmetry. Then:
(a) S∗j = −μR�,nS�−jR�,n for j = 0, 1, . . . , �.
(b) The linear matrix polynomial

Lc,L(λ ) := λAc(L) − Bc(L) = Ac(L)(λ I − C) (9)

has μ -palindromic symmetry if and only if c ∈ P . In this case,

Lc,L(λ ) := λAc(L) + μAc(L)∗. (10)
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THEOREM 3. Let L(λ ) be a μ -palindromic matrix polynomial, c ∈ P , and
assume that pc(λ ) is nonzero at the eigenvalues of L(λ ) . Then the linear matrix
polynomial of (9), (10) is a μ -palindromic linearization for L(λ ) (with the same μ ).

A general study of linearizations of matrix polynomials was undertaken in [16],
and in [15] with emphasis on palindromic symmetry properties. The result of Theorem
3 appears (in a different context) as a particular case of Theorem 6.5 of [15]. See also
Theorem 6.7 of [16], which gives a result in the spirit of Theorem 3 for nonsymmetric
matrix polynomials.

Following [12], we have the following definition:

DEFINITION 3. Let L(λ ) be a μ -palindromic matrix polynomial given by (1), and
assume that detA� �= 0 and that in case � is even, also −1 /∈ σ(L) . The primary
linearization for a μ -palindromic matrix polynomial L(λ ) is the palindromic pencil
λAc + μA∗

c , where

Ac =
{

R�,n(Sk−1 + Sk) when � = 2k ,
R�,nSk when � = 2k + 1 .

(11)

(For any � this definition requires that 0 /∈ σ(L) and this is guaranteed here by the
assumption that detA� �= 0 and the palindromic symmetry.)

EXAMPLE 1. When � = 2 we choose pc(λ ) = 1+λ and the primary linearization
is determined by equation (10) and

Ac = R2,n(S0 + S1) =
[

A2 A2

A1 − A0 A2

]
=

[
μA∗

0 μA∗
0

−A0 + A1 μA∗
0

]
,

provided that −1 is not in the spectrum of L(λ ) .
When � = 3 we choose pc(λ ) = λ and the primary linearization is determined

by

Ac = R3,nS1 =

⎡
⎣ 0 A3 0

0 A2 A3

−A0 0 0

⎤
⎦ =

⎡
⎣ 0 μA∗

0 0
0 μA∗

1 μA∗
0

−A0 0 0

⎤
⎦ ,

provided only that 0 is not an eigenvalue of L(λ ) . �

Because we consider only matrix polynomials L(λ ) with det (A�) �= 0 , any μ -
palindromic matrix polynomial L(λ ) also has det (A0) �= 0 , and hence L(λ ) has
no zero eigenvalue; 0 /∈ σ(L) . Then, using (2), it is easily verified that for both
palindromic symmetries:

λ ∈ σ(L) ⇐⇒ (λ )−1 ∈ σ(L).

This statement implies that the spectrum of a μ -palindromic matrix polynomial is
symmetric about the unit circle: either the eigenvalues satisfy |λi| = 1 , or they occur in
pairs λj �= λk where λjλk = 1 . This symmetry implies that the linearizations must be
unitary in a suitable indefinite inner product (see Section 12.6 of [6]). Let us confirm
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this for the palindromic linearizations of Theorem 3. We have Lc(λ ) = λAc + μA∗
c ,

and since Ac is nonsingular,

Lc(λ ) = Ac(λ I + μU) (12)

where U = A−1
c A∗

c . But it is known that any matrix of the form ±M−1M∗ is H -unitary
for some nonsingular H (see Section 4.4 of [6] for details). Indeed there is a family
of indefinite inner products to choose from, namely, those generated by matrices of the
form

Hz := zAc + zA∗
c (13)

where |z| = 1 is such that Hz is nonsingular. Notice that Hz now depends on c ∈ P

(of (8)), and also on z .
Since λ I + μU is strictly equivalent to Lc(λ ) it is also a linearization (but

not palindromic). Thus the canonical structures of H -unitary matrices (and not just
the spectrum) are inherited by the palindromic linearization. These properties become
more apparent in linearizations of the form H(λ I−C) where H generates an indefinite
scalar product on C�n and C is the companion matrix of equation (5). Thus, in the
next section, the palindromic symmetry of (10) is abandoned in favor of the Hermitian
symmetry of H in linearizations of the form λH − HC .

3. Unitary properties of linearizations

It will be assumed here that L(λ ) =
∑�

j=0 Ajλ j is a μ -palindromic matrix poly-
nomial with nonsingular A� (and hence also with nonsingular A0 ). Consider the
linearization in companion form, λ I − C . We seek a nonsingular Hermitian matrix
H of size �n for which C∗HC = H . In this case, and in the terminology of [6], C
is said to be H -unitary. This admits a deeper analysis of the spectrum, σ(C) of C .
In particular, a sign characteristic appears which is associated with the eigenvalues on
the unit circle (if any). A class of matrices, H , will be determined, each of which
determines an indefinite inner product on C�n in which C is unitary. (This can be done
using (13), but a more direct approach is instructive.)

The first proposition shows that any H in which C is H -unitary has a special
structure.

PROPOSITION 4. Let C be a block-companionmatrix as in (5). If H is nonsingular
and Hermitian and C∗HC = H then H−1 is a block-Toeplitz matrix.

Proof. It is easily verified that any matrix T satisfying the equation CTC∗ = T
is block-Toeplitz. But if H is a nonsingular matrix satisfying C∗HC = H , then
CH−1C∗ = H−1 . Thus, H−1 is block-Toeplitz. �

We mention in passing that the inverses of block-Toeplitz matrices have been
extensively studied; as in [11]. In particular, these inverses are Bezoutian-like ma-
trices; see [14], [10], and especially Gohberg-Semencul formulas and their numerous
generalizations and applications (the original reference is [9]).
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Observe that

C∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −A�A
−1
0

I 0 0 −A�−1A
−1
0

0 I
...

...
...

0 0 · · · I −A1A
−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and then (as in Section II.2.4 of [6]) it is easily verified that

(C∗)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−A�−1A
−1
� I 0 · · · 0

−A�−2A
−1
� 0

...
...

−A1A
−1
� 0 · · · I

−A0A
−1
� 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

LEMMA 5. The equation XC = (C−1)∗X has linearly independent solutions Xj =
R�,nSj for j = 0, 1, . . . , � (with Sj defined as in (6)).

Proof. First it is claimed that

(R�,nS0)C = (C−1)∗(R�,nS0). (15)

But this is an easy verification using the definitions, and equations (5) and (14). Now
multiply (15) on the right with Ci and use the fact that Si = S0Ci for each i to see
that each Xi is a solution. The linear independence of the Xi follows from that of the
Si . �

To find Hermitian matrices H satisfying HC = (C−1)∗H (and so candidates
for the definition of a suitable inner product), we examine linear combinations of the
(generally non-Hermitian) solutions X0, . . . , X� . Thus, let z ∈ C�+1 and

H =
�∑

i=0

ziXi = R�,n

�∑
i=0

ziSi. (16)

Then H = H∗ is equivalent to R�,n
∑�

i=0 ziSi =
∑�

i=0 ziS∗i R�,n . But, using Lemma 13
of [12] for instance, we have S∗i = −μR�,nS�−iR�,n , so H = H∗ is equivalent to

R�,n

�∑
i=0

ziSi = −μR�,n

�∑
i=0

ziS�−i,

or, ∑
i

ziSi = −μ
∑

j

zjS�−j = −μ
∑

i

z�−iSi.

However, the matrices Si are linearly independent, so H is Hermitian if and only if
−μzi = z�−i for each i .
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So let us define

Qμ = {z = (z0, z1, . . . , z�) ∈ C�+1 : −μzi = z�−i for i = 0, 1, . . . , �}, (17)

and, whenever z ∈ Qμ , define qz(λ ) :=
∑�

i=0 ziλ i . We have proved the first part of:

THEOREM 6. Let L(λ ) be μ -palindromic and matrices S0, . . . , S� be defined as
in (6). Then all matrices of the form H = R�,n

∑�
j=0 zjSj with z ∈ Qμ , are Hermitian

and satisfy the equation HC = (C−1)∗H .
Furthermore, when z ∈ Qμ and detA0 �= 0 , H is nonsingular if and only if no

zero of qz(λ ) is an eigenvalue of L(λ ) .

Proof. It only remains to check the last statement. Since Si = S0Ci and A0

nonsingular implies S0 nonsingular, the conclusion follows immediately from

H = R�,n

�∑
i=0

ziSi = R�,nS0

�∑
i=0

ziC
i = R�,nS0qz(C).

�

EXAMPLE 2. For a palindromic matrix polynomial of even degree, say � = 2k , the
matrix Sk of (6) can be used to define an appropriate inner product, H . If μ = +1 , an
H in a relatively simple form is generated by taking zj = 0 if j �= k and zk = i , and it
is easily verified that z ∈ Qμ (and qz(λ ) = iλ k ). Thus, if μ = 1 then the matrix

H = iR�,nSk = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A∗
0 0 · · · 0

0 A∗
1 A∗

0 · · · ...
...

...
A∗

k−1 · · · A∗
1 A∗

0
−A0 −A1 · · · −Ak−1

0 −A0
...

... 0
0 · · · −A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

is Hermitian and nonsingular and satisfies the equation C∗HC = H . This is the choice
of inner product identified in Section 12.4 of [6]. Matrix H is obviously nonsingular
since A0 is nonsingular.

If μ = −1 then the matrix H− = R�,nSk is nonsingular Hermitian and satisfies
C∗H−C = H− . In connection with Proposition 4, it can be verified from (18) that H−1

and H−1
− are, indeed, block Toeplitz. �
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EXAMPLE 3. In contrast to Example 2, there is a z ∈ P (depending on μ ) for
which H has a more elegant block-Toeplitz structure:

H = R�,n(S0 − S�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A� + A∗
� A∗

�−1 · · · A∗
2 A1∗

A�−1 A� + A∗
� A∗

�−1 · · · A∗
2

...
...

A2
. . . A∗

�−1
A1 A2 · · · A�−1 A� + A∗

�

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

This is obtained with qz(λ ) = 1 − μλ � . Clearly, H is nonsingular provided no
eigenvalue of L(λ ) is either zero or one of the � th roots of μ . (Note that this applies
whether � is even or odd.) �

EXAMPLE 4. For a μ -palindromic matrix polynomial of odd degree, say � =
2k + 1 , we may choose qz(λ ) = λ k − μλ k+1 and generate an H which is nonsingular
as long as the spectrum of L(λ ) does not contain either of the points 0, μ . Thus,
H = R�,n(Sk − μSk+1) .

We illustrate with the case � = 7 ( k = 3 ). The lower triangle of H is displayed
and the matrix can be completed by Hermitian symmetry:

H = R7,n(S3 − μS4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 0

μA0 μA1 μA2 μA3 + A4

−A0 μA0 − A1 μA1 − A2 μA2 0
0 −A0 μA0 − A1 μA1 0 0
0 0 −A0 μA0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�
In the sequel the choice of H will be that suggested by Examples 2 and 4. Thus,

when � = 2k we choose

H =
{

iR�,nSk when μ = +1 ,
R�,nSk when μ = −1 .

(20)

and when � = 2k + 1 it is assumed that μ /∈ σ(L) and

H = R�,n(Sk − μSk+1). (21)

4. Standard triples for μ -palindromic polynomials

We now take advantage of the well-developed theory of standard triples for matrix
polynomials (see [7], for example). Recall that a triple of matrices (X, T, Y) is said to
be a standard triple of the n×n matrix polynomial L(λ ) =

∑�
j=0 Ajλ j with detA� �= 0

if X is n × n� , T is n� × n� , Y is n� × n , and the equality

L(λ )−1 = X(λ I − T)−1Y
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holds for every complex λ for which L(λ ) is a nonsingular matrix. We will use several
properties of standard triples that are found, for instance, in [7]:

(a)Astandard triple is determined uniquely by L(λ ) up to similarity: If (X1, T1, Y1)
and (X2, T2, Y2) are two standard triples for the same L(λ ) , then there exists an invert-
ible matrix S such that

X1 = X2S, T1 = S−1T2S, Y1 = S−1Y2. (22)

Moreover, the invertible matrix S satisfying (22) is unique.
(b) If (X, T, Y) is a standard triple for L(λ ) , then Y is the unique solution of⎡

⎢⎢⎢⎣
X
XT
...

XT�−1

⎤
⎥⎥⎥⎦Y =

⎡
⎢⎢⎢⎣

0
...
0

A−1
�

⎤
⎥⎥⎥⎦ .

(c) One example of a standard triple is given by

X =
[

I 0 . . . 0
]
, T = C, Y =

⎡
⎢⎢⎢⎣

0
...
0

A−1
�

⎤
⎥⎥⎥⎦ , (23)

where C is the companion matrix (5) of L(λ ) .
For Hermitian matrix polynomials there are standard triples which reflect the

symmetry of the polynomial; see Theorem 12.2.2 of [6], for example. Analogous
properties for palindromic polynomials are contained in the next two theorems.

THEOREM 7. Let � = 2k , L(λ ) =
∑�

j=0 λ
jAj with A� and A0 nonsingular, and

let H be given by (20). Then the following are equivalent:
(i) L(λ ) is μ -palindromic,
(ii) C∗H = HC−1 ,
(iii) If (X, T, Y) is a standard triple for L(λ ) then so is

(iY∗(T∗)k−1, (T−1)∗, i(T∗)k−1X∗) when μ = +1 , (24)

(Y∗(T∗)k−1, (T−1)∗, (T∗)k−1X∗) when μ = −1 . (25)

Proof. The implication (i) ⇒ (ii) is just Theorem 6 above with a particular choice
of qz(λ ) ∈ Qμ .

For the implication (ii) ⇒ (iii) suppose first that μ = +1 . It is enough to consider
the case when (X, T, Y) is given by (23) (with � = 2k ). Since H = H∗ we also have
H = −i(C∗)kA∗R�,n . Now consider

iY∗(C∗)k−1H =
[

0 . . . 0 A−1
0

]
(C∗)2k−1A∗R�,n =

[
0 . . . 0 A−1

0

]
(S�−1)∗R�,n.

Use equation (7) to obtain

iY∗(C∗)k−1H =
[

0 . . . 0 I
]
R�,n = X. (26)
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Since (X, C, Y) is a standard triple, so is the similar triple

(XH−1, HCH−1, HY) = (XH−1, (C−1)∗, HY).

But it follows from (26) that XH−1 = iY∗(C∗)k−1 . So there is a standard triple(
iY∗(C∗)k−1, (C−1)∗, HY

)
.

It only remains to show that HY = i(C∗)k−1X∗ . From (26), X∗ = −iHCk−1Y , and
assumption (ii) means that HCk−1 = (C∗)−(k−1)H . Thus X∗ = −i(C∗)−(k−1)HY and,
finally, HY = i(C∗)k−1X∗ , as required.

To show that (ii) ⇒ (iii) when μ = −1 it is only necessary to make adjustments
to the above argument for the case μ = +1 noting the change in H and showing first
that Y∗(C∗)k−1 = X .

Now consider the implication (iii) ⇒ (i). Applying a similarity transformation to
the triple of (24) we see that

(
Y∗, (T−1)∗, −μ(T∗)2k−2X∗) is a standard triple. So the

resolvent form for L(λ ) is

L(λ )−1 = X(λ I − T)−1Y = −μY∗(λ I − (T−1)∗)−1(T∗)�−2X∗, (27)

and

(
(
L(λ̄ )

)−1
)∗ = −μXT�−2(λ I − T−1)−1Y = −μXT�−1(λT − I)−1Y

= μXT�−1(I − λT)−1Y.
(28)

We also have

λ−�L(λ−1)−1 = λ−�X(λ−1I − T)−1Y = λ−�+1X(I + λT + λ 2T2 + · · · )Y
for |λ | �= 0 , λ �∈ σ(L) . But the orthogonality relations XTrY = 0 hold for r =
0, 1, . . . , � − 2 (see equation (1.3) of [7]), so

λ−�L(λ−1)−1 = XT�−1(I + λT + λ 2T2 + · · · )Y = XT�−1(I − λT)−1Y. (29)

Comparing with (28) we find that μ(
(
L(λ̄ )

)−1
)∗ = λ−�L(λ−1)−1 . But (see

equation (2)) this is equivalent to the statement that L(λ ) is μ -palindromic. �
Now we consider the case when the polynomial L(λ ) has odd degree, � = 2k+1 .

For the statement of the next theorem, as well as for use later on in the paper, we
introduce the function

φ(z) = zk(1 − μz)−1. (30)

Note that φ depends on μ , and φ(C) and φ((C−1)∗) are well-defined (provided
μ �∈ σ(C) ).

THEOREM 8. Let L(λ ) =
∑2k+1

j=0 λ jAj be μ -palindromic with A2k+1 and A0

nonsingular and assume μ /∈ σ(C) . As in (21), let

H = R�,n(Sk − μSk+1) = R�,nACk(I − μC) = H∗. (31)

Then the following are equivalent:
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(i) L(λ ) is μ -palindromic,
(ii) C∗H = HC−1 ,
(iii) If (X, T, Y) is a standard triple for L(λ ) then so is

(
Y∗φ(T∗), (T−1)∗, (φ((T−1)∗))−1X∗) .

Proof. The implication (i) ⇒ (ii) is an application of Theorem 6 with a particular
choice of qz(λ ) . As in the preceding proof, for the implication (ii) ⇒ (iii), it is enough
to consider the standard triple (23) (with A2k replaced by A2k+1 ).

Since H = H∗ = R�,nACk(I − μC) we also have H = (C∗)k(I − μC∗)A∗R�,n .
Now consider

Y∗φ(C∗)H =
[

0 . . . 0 A−1
0

]
(C∗)k(I − μC∗)−1(C∗)k(I − μC∗)A∗R�,n

=
[

0 . . . 0 A−1
0

]
(C∗)2kA∗R�,n

=
[

0 . . . 0 A−1
0

]
(S�−1)∗R�,n

= X. (32)

Since (X, C, Y) is a standard triple, so is the similar triple

(XH−1, HCH−1, HY) = (XH−1, (C−1)∗, HY).

But it follows from (32) that XH−1 = Y∗φ(C∗) . So there is a standard triple

(Y∗φ(C∗), (C−1)∗, HY),

and it only remains to verify that HY = (φ((C−1)∗)−1)X∗ . But (32) gives X∗ =
Hφ(C)Y and since HCj = (C∗)−jH , it follows that Hφ(C) = φ((C−1)∗)H and
X∗ = φ((C−1)∗)HY . Thus, HY = φ((C−1)∗)−1X∗ , as required.

It remains to prove that (iii) ⇒ (i). First, a little manipulation shows that

φ((T−1)∗)−1 = −μ(T∗)�−2{φ(T∗)}−1. (33)

Substitute this in the triple of (iii) and apply an obvious similarity to find that

(Y∗, (T−1)∗,−μ(T∗)�−2X∗)

is a standard triple. Hence, for the resolvent form:

L(λ )−1 = X(λ I − T)−1Y = −μY∗(λ I − (T−1)∗)−1(T∗)�−2X∗.

But this has the same form as (27) (for the even degree case). Furthermore, (29) has
the same form whether � is even or odd. Consequently (iii) ⇒ (i) is proved just as in
Theorem 7. �
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5. Unitary triples

In the case of Hermitian matrix polynomials there are standard triples of the
form (X, J, PX∗) which reveal the Jordan structure of the spectrum and the intimate
relationship between left and right eigenvectors. Our objective here is the derivation
of corresponding canonical structures for palindromic polynomials, L(λ ) . Theorems
7 and 8 suggest that there is a natural choice of scalar product in which the companion
matrix, C, is unitary. It is the (indefinite) scalar product defined on Cn by the matrices
H of (20) when � = 2k , and of (31) when � = 2k + 1 . Thus, C∗HC = H in both
cases. With this understanding, the ideas of this section apply whether � is odd or even.

Let J be a Jordan form for C and write J in block diagonal form:

J = J1 ⊕ J2 ⊕ J3, (34)

where the eigenvalues of J1 and J2 are all those of J inside, and on the unit circle,
respectively. Then J3 has the same structure as J1 , but the eigenvalues are the images
of those of J1 under the transformation α 	→ α−1 (in particular, they are all outside
the unit circle).

Let

Pε,J =

⎡
⎣ 0 0 P1

0 P2 0
P1 0 0

⎤
⎦ , (35)

where P1 is a block diagonal matrix formed by SIP matrices on the main diagonal (one
SIP matrix for each Jordan block in J1 with the same size as the Jordan block), and P2

is a block diagonal matrix formed by signed SIP matrices on the main diagonal (one SIP
matrix for each Jordan block, and of the same size as the Jordan block, of J2 ). Notice
that P2

ε,J = I and P∗
ε,J = Pε,J .

Let ω be chosen so that |ω | = 1 and I +ωC is invertible, and let K0 be obtained
from J by replacing every eigenvalue λ0 by the linear fractional transform i(1−ωλ0)

1+ωλ0
.

Then consider the matrix

K = ω−1(I + iK0)(I − iK0)−1. (36)

The matrix K has the following properties:
1. If J is written in the standard form : J = diag(J(i))q

i=1 where, for i = 1, 2, . . . , q ,
J(i) is a k(i) × k(i) Jordan block with eigenvalue λ (i) , then

K = diag(K(i))q
i=1,

where K(i) is an upper triangular matrix of size k(i) × k(i) with λ (i) on the main
diagonal.

2. Each matrix K(i) is similar to J(i) (so that K has the same eigenvalues and partial
multiplicities as J ).

3. K and J have the same lattice of invariant subspaces.

THEOREM 9. If C is H -unitary, then there is a nonsingular matrix S reducing
H and C simultaneously to the forms:

(S∗)−1HS−1 = Pε,J, SCS−1 = K. (37)
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Proof. It is easily verified that T := i(I −ωC)(I +ωC)−1 is H -selfadjoint. The
canonical forms for selfadjoint matrices in an indefinite inner product (Theorem 5.1.1
of [6]) implies that there is an invertible S such that

H = S∗P̂ε,ZS, T = S−1ZS (38)

where Z is a Jordan form of T , and where P̂ε,Z is constructed analogously to (35),
taking advantage of the symmetry of the eigenvalues of Z relative to the real axis; thus,
rather than using partition (34), one uses the partition

Z = Z1 ⊕ Z2 ⊕ Z3,

where the eigenvalues of Z1 have positive imaginary parts, the eigenvalues of Z2

are real, and Z3 is obtained from Z1 by replacing each eigenvalue with its complex
conjugate. But, with K0 as defined above (and noting property 2 above), it follows that
Z = K0 , and we obtain that in fact P̂ε,Z = Pε,J . Now

C = ω−1(I + iT)(I − iT)−1 = S−1
(
ω−1(I + iZ)(I − iZ)−1

)
S = S−1KS.

�
Observe that, since HC = (C−1)∗H , (37) implies

Pε,ZK = ((S−1)∗HS−1)(SCS−1) = (S−1)∗HCS−1 = (S−1)∗((C−1)∗H)S−1

= ((S−1)∗)(C−1)∗S∗)((S−1)∗HS−1) = (K−1)∗Pε,Z.

Thus, K∗Pε,ZK = Pε,Z , i.e. K is Pε,Z -unitary.

DEFINITION 4. A standard triple (X, T, Y) for a μ -palindromic polynomial L(λ )
is said to be a unitary triple if T = K , where K is defined by (36), and

X =

⎧⎨
⎩

iY∗(K∗)k−1Pε,J when � = 2k and μ = +1 ,
−Y∗(K∗)k−1Pε,J when � = 2k and μ = −1 ,
μY∗φ(K∗)Pε,J when � = 2k + 1 .

(39)

Here, the function φ is defined by (30).
The following theorem implies, in particular, that unitary triples do exist:

THEOREM 10. Let L(λ ) be a μ -palindromic matrix polynomialwith nonsingular
leading coefficient. Assume that a standard triple (X, T, Y) for L(λ ) is given (using
(23)) in the form

X =
[

I 0 · · · 0
]
S−1, T = SCS−1, Y = S

⎡
⎢⎢⎢⎣

0
...
0

A−1
�

⎤
⎥⎥⎥⎦ , (40)

where S is a matrix reducing H (of (20) or (31)) and C to canonical form, as in (37).
In the case of odd degree � , assume in addition that μ �∈ σ(C) . Then (X, T, Y) is a
unitary triple for L(λ ) .



CANONICAL STRUCTURES FOR PALINDROMIC MATRIX POLYNOMIALS 483

Equation (40) says that (X, T, Y) is similar to the triple of (23) and is therefore
a standard triple. It is, of course, the special choice of transforming matrix S which
ensures that (X, T, Y) is a unitary triple.

Proof. First consider the case that � is even: � = 2k . It follows immediately
from (37) that T = K and, from the definition of a unitary triple it remains to show that
X = iY∗(K∗)k−1Pε,J and X = −Y∗(K∗)k−1Pε,J according as μ = +1 and μ = −1 ,
respectively.

Using (40),

Y∗(K∗)k−1Pε,J =
[

0 . . . 0 (A−1
� )∗

]
S∗(K∗)k−1Pε,J. (41)

Now (37) implies K∗ = (S−1)∗C∗S∗ and hence S∗(K∗)k−1 = (C∗)k−1S∗ . But
Pε,J = (S−1)∗HS−1 , so S∗(K∗)k−1 = (C∗)k−1HS−1Pε,J and, since C∗H = HC−1 ,

S∗(K∗)k−1Pε,J = (C∗)k−1HS−1 = HC−(k−1)S−1.

Using this in (41),

Y∗(K∗)k−1Pε,J =
[

0 . . . 0 μA−1
0

]
HC−(k−1)S−1. (42)

Use the definition of H for the case μ = +1 to obtain,

Y∗(K∗)k−1Pε,J = i
[

0 . . . 0 A−1
0

]
R�,nSkC

−(k−1)S−1

= i
[

0 . . . 0 A−1
0

]
R�,nS1S

−1

= −i
[

I 0 . . . 0
]
S−1 (using definitions of R�,n, S1)

= −iX.

Thus, iY∗(K∗)k−1Pε,J = X and (X, T, Y) is indeed a unitary triple. The case μ = −1
requires a simple modification of H at the last step and, in the same way, leads to
−Y∗(K∗)k−1Pε,J = X . This concludes the argument for even � .

Nowconsider the case of � odd: � = 2k+1 . We have to show that Y∗φ(K∗)Pε,J =
μX . The preceding line of argument can be followed (with φ(z) in place zk−1 ) up to
and including equation (42), which now takes the form

Y∗φ(K∗)Pε,J =
[

0 . . . 0 μA−1
0

]
Hφ(C−1)S−1.

Substituting H = R�,n(Sk − μSk+1) , we obtain

Y∗φ(K∗)Pε,J =
[

0 . . . 0 μA−1
0

]
R�,nACk(I − μC){−μC−(k−1)(I − μC)−1}S−1

= − [
0 . . . 0 A−1

0

]
R�,nACS−1

= − [
0 . . . 0 A−1

0

]
R�,nS1S

−1

=
[

I 0 . . . 0
]
S−1 = X.

Thus, whether � is even or odd, (X, T, Y) of (40) forms a unitary triple. �
The next result shows that the nonsingular matrices commuting with the canonical

matrix K generate a class of unitary triples by similarity.
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THEOREM 11. Let L(λ ) be a μ -palindromic polynomial with a unitary triple
(X, K, Y) , and let V be a nonsingular matrix which commutes with K (so that K =
V−1KV ) and is Pε,J -unitary (so that V∗Pε,JV = Pε,J ). Then the standard triple

(XV, K = V−1KV, V−1Y)

is also unitary.

Proof. Let X̂ = XV and Ŷ = V−1Y , and first let the polynomial have even degree
� = 2k , and assume μ = 1 . We have only to prove that X̂ = iŶ∗(K∗)k−1Pε,J .

Since (X, K, Y) is unitary, X = iY∗(K∗)k−1Pε,J . Then

X̂V−1 = iY∗(K∗)k−1 = iŶ∗V∗(K∗)k−1Pε,J = iŶ∗(K∗)k−1V∗Pε,J,

where the first and the second equalities follow in view of Y = VŶ and of K∗V∗ =
V∗K∗ , respectively. Thus X̂ = iŶ∗(K∗)k−1(V∗Pε,JV) and, since V is Pε,J -unitary,
X̂ = iŶ∗(K∗)k−1Pε,J, as required.

Clearly, this argument is easily adapted to show that the same result holds when
μ = −1 . Furthermore, for polynomials of odd degree, a similar argument applies with
the function i(K∗)k−1 replaced by φ(K∗) . �

The results of Theorem 9 imply that the linearization Lp(λ ) := Hλ − HC of the
μ -palindromic matrix polynomial L(λ ) is congruent to the matrix pencil

Pε,Jλ − Pε,JK = (S∗)−1Lp(λ )S−1.

We also know that for a standard triple (X, J, Y) of L(λ ) with J in the Jordan form,
we have Q−1CQ = J, where

Q =

⎡
⎢⎢⎢⎣

X
XJ
...

XJ�−1

⎤
⎥⎥⎥⎦ .

We conclude this section with remarks on the relationship between the matrix S and
the matrix Q of eigen/principal vectors of C.

Let J = Λ+N ≡ diag(J(i))q
i=1 be the Jordan matrix of C , where Λ is the diagonal

matrix of the eigenvalues and N is nilpotent. As before we assume that In� + ωC is
nonsingular for some ω ∈ C with |ω | = 1, and it will be useful to define the functions
ψ and its inverse ψ−1 by

ψ(λ ) = i
(1 − ωλ )
(1 + ωλ )

, ψ−1(λ ) =
1
ω

(1 + iλ )
(1 − iλ )

.

Then, by definition (see equation (36)), K0 = ψ(Λ) + N and K = ψ−1(K0). Now
consider the upper triangular matrix

ψ(J) = i(In� − ωJ)(In� + ωJ)−1.
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There exist a nonsingular matrix Xψ such that

(Xψ )−1ψ(J)Xψ = Jψ := ψ(Λ) + N = K0 (43)

is the Jordan matrix of ψ(J). Note that the nilpotent matrix N is the same as for J. For
the matrix K we now have

K = ψ−1(K0) = ψ−1(Jψ ) = ψ−1((Xψ )−1ψ(J)Xψ ) = (Xψ )−1JXψ .

Thus, K and J are similar. From (37) we have SCS−1 = K and so (XψS)C(XψS)−1 =
J . We have established:

PROPOSITION 12. With Xψ and S defined as in (43) and (37), we have that
Q := (XψS)−1 is a matrix of eigen/principal vectors of C.

It is interesting that Xψ has an explicit form. To derive this form recall that, for
i = 1, ..., q, the matrix J(i) is of size k(i) × k(i) , and define km :=

∑m
i=1 k(i) . In

particular, we have k1 = k(1) and kq = n�. Let us abbreviate Vi := ψ(J) − ψ(λi)In�

and denote the k -th column of In� by ek . Then

Xψ = [Vk(1)−1
1 ek1 , · · · , V1ek1 , ek1 ,V

k(2)−1
2 ek2 , · · · , V2ek2 , ek2 , · · ·
· · · , Vk(q)−1

q ekq , · · · , Vqekq , ekq ]Ω,

where Ω is a nonsingular diagonal matrix to be used for an appropriate normalization.
So if we solve the eigenvalue problem CQ = QJ then QXψ = S−1. Note, that in the
semisimple case the Jordan matrix J is diagonal and hence K = J and Xψ = In� which
implies S−1 = Q.

6. Perturbation theory for difference equations

In this section we apply the results of Section 5 to study stable boundedness (see
the definition below) properties of the following difference equation:

A0xi + A1xi+1 + · · · + A�xi+� = 0, i = 0, 1, . . . , (44)

where {xi}∞i=0 is a sequence of vectors in Cn to be determined, and A0, . . . , A� are given
matrices in Cn×n . We study this equation under the hypotheses that the polynomial
L(λ ) =

∑�
j=0 Ajλ j is μ -palindromic, where μ = 1 or μ = −1 , and the leading

coefficient A� is nonsingular. These hypotheses will apply throughout this section. In
addition, in case � is odd, we assume that μ �∈ σ(L) , to ensure full applicability of
Theorem 8 (see Example 4).

Difference equations of this kind have been studied in the context of spectral
theory of matrix polynomials [8], [3], also matrix polynomials with symmetries [5], [6],
and see [17] for a comprehensive treatment of first degree equations (44) with various
symmetries.

We say that equation (44) is bounded, if every solution sequence is bounded. A
criterion for boundedness will be given in the next theorem in terms of the following
concept:
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DEFINITION 5. A matrix polynomial L(λ ) is said to have simple structure with
respect to the unit circle if the spectrum σ(L) lies on the unit circle and all elementary
divisors of L(λ ) are linear.

This condition implies that, for every λ0 ∈ σ(L) , the multiplicity of λ0 as a zero
of det (L(λ )) coincides with the dimension of the kernel of L(λ0) .

THEOREM 13. Let the matrix polynomial L(λ ) =
∑�

j=0 λ
jAj have μ -palindromic

symmetry with A� nonsingular. Then equation (44) is bounded if and only if L(λ ) has
simple structure with respect to the unit circle.

This theorem was proved in [6] (Theorem 13.7.3) for the case of even degree � and
μ = 1 . In the present more general context the proof is essentially the same, but uses
the fact that the companion matrix of a μ -palindromic matrix polynomial is H -unitary
for a suitable nonsingular Hermitian matrix H (Theorems 7 and 8 above). The details
are omitted.

We are also interested in the case when equation (44) is stably bounded, i.e., all
solutions of (44) are bounded and, in addition, all solutions of every system

Ã0yi + Ã1yi+1 + · · · + Ã�yi+� = 0, i = 0, 1, . . . ,

with
Ã∗

j = μÃ�−j, j = 0, 1, . . . , �,

are bounded provided ‖Ãj − Aj‖ is small enough (for j = 0, 1, . . . , � ). To characterize
stably bounded equations, it will be convenient to treat the cases of even and odd degrees
separately.

THEOREM 14. Let L(λ ) =
∑�

j=0 λ
jAj be a μ -palindromic matrix polynomials of

even degree � = 2k with A� nonsingular. Then the following statements are equivalent:
(a) Equation (44) is stably bounded.
(b) For every eigenvalue λ0 of the companion matrix C , the quadratic form

(x, i(1+μ)/2R�,nSkx), x ∈ Ker (C − λ0I), (45)

is either positive definite or negative definite.
(c) the spectrum of L(λ ) lies on the unit circle, and the quadratic form(

x, i(1+μ)/2λ0

(
λ−�/2 L(λ )

)(1)
(λ0)x

)
, x ∈ KerL(λ0) (46)

is either positive definite or negative definite, for every λ0 ∈ σ(L) .

Proof. For the case μ = 1 , Theorem 14 was established in [4], see also [5] and, in
particular, [6, Theorem 13.8.1].

Assume now that μ = −1 . Since C is R�,nSk -unitary (Theorem 7), the implica-
tion (b) =⇒ (a) follows from the general perturbation theory of unitary matrices with
respect to an indefinite inner product (see [5], [6]).
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Next, for each x ∈ KerL(λ0) , write

x̂ =

⎡
⎢⎢⎢⎣

x
λ0x
...

λ �−1
0 x

⎤
⎥⎥⎥⎦ .

Then x̂ ∈ Ker (C − λ0I) and, conversely, every vector in Ker (C − λ0I) has the form
x̂ for some x ∈ KerL(λ0) . A computation shows that if, in addition, |λ0| = 1 , then(

x, λ0

(
λ−�/2 L(λ )

)(1)
(λ0)y

)
= (x̂, R�,nSkŷ), x, y ∈ KerL(λ0) (47)

(cf. formula (12.6.31) in [6]). Now, the spectral theory of unitary matrices with respect
to indefinite inner products (see, e.g., [6, Section 4.3]) shows that, in view of the
definiteness of the quadratic form (45), all eigenvalues of C , or equivalently of L(λ ) ,
must be unimodular. Thus, using (47), we find that (b) and (c) are equivalent.

It remains to prove that (a) =⇒ (c) in the case μ = −1 . We follow the line
of proof used in [6, Theorem 13.8.1] which, in turn, goes back to [4]. Let ω ∈ C ,
|ω | = 1 , and define the matrix polynomials

Lω(λ ) := ω�/2L(ωλ )

and

R(λ ) := (1 − iλ )�Lω

(
1 + iλ
1 − iλ

)
.

Select ω so that the leading coefficient of R(λ ) is invertible. A straightforward
computation, using the palindromic property of L(λ ) (with μ = −1 ) shows that
R(λ )∗ = −R(λ ) . Now repeat the arguments in the proof of [6, Theorem 13.8.1] using
the matrix polynomial iR(λ ) (with Hermitian coefficients) instead of R(λ ) . �

We are not aware of a direct analogue to Theorem 14 for palindromic matrix
polynomials of odd degree. However, a sufficient condition for (44) to be stably
bounded can be given:

PROPOSITION 15. Let L(λ ) =
∑�

j=0 λ
jAj be a μ -palindromicmatrix polynomials

of odd degree � = 2k + 1 and with nonsingular A� . Assume that for every eigenvalue
λ0 , the quadratic form

(x, R�,n(Sk − μSk+1)x), x ∈ Ker (C − λ0I), (48)

is either positive definite or negative definite. Then equation (44) is stably bounded.

There is a proof of Proposition 15 similar to that of Theorem 14 in which Theorem
8 is used, together with the general perturbation theory of matrices which are unitary
with respect to an indefinite inner product.

We do not know whether or not the converse statement of Proposition 15 holds. In
other words, whether the definiteness of the quadratic forms (48) is also necessary for
stable boundedness.
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We note also that one can use Proposition 1(a) to obtain from Theorem 14 a
sufficient condition for stable boundedness of difference equations (44) corresponding to
palindromicmatrix polynomials of odd degree 2k+1 . Indeed, if the difference equation
corresponding to a palindromic matrix polynomial of the form (3) is stably bounded,
then the stable boundedness holds also for the difference equation corresponding to the
palindromic matrix polynomial L(λ ) (but the converse is generally false). Thus, the
statement (c) in Theorem 14 applied to the polynomial Mα(λ ) , for some unimodular
α , gives a sufficient condition for the stable boundedness of the difference equation
associated with L(λ ) . It should be noted however that this condition is rather restrictive.
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