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Abstract. Compressions of Toeplitz operators to coinvariant subspaces of H2 are studied. Sev-
eral characerizations of such operators are obtained; in particular, those of rank one are described.
The paper is partly expository. Open questions are raised.

1. Introduction

Our setting is the open unit disk, D , in the complex plane, C . By H2 is meant
the standard Hardy space, the Hilbert space of holomorphic functions in D having
square-summable Taylor coefficients at the origin. As usual, H2 will be identified with
its space of boundary functions, the subspace of L2 (of normalized Lebesgue measure
m on ∂D ) consisting of the functions whose Fourier coefficients with negative indices
vanish.

A Toeplitz operator is the compression to H2 of a multiplication operator on L2 .
The operators of the paper’s title are compressions of multiplication operators to proper
invariant subspaces of the backward shift operator on H2 . While many such operators
have been studied, with interesting results, there seems not to exist a treatment of them
as a class, comparable, for example, to the treatment of Toeplitz operators by A. Brown
and P. R. Halmos in [8], a paper which inspired much subsequent work because of
the questions it raised. The present paper aims to play a role for truncated Toeplitz
operators like the one the Brown–Halmos paper did for Toeplitz operators. An effort
has been exerted to make the paper reasonably self-contained. Accordingly, proofs will
be provided for much of the background material.

Some preparation is needed prior to precise definitions. We let P denote the
orthogonal projection on L2 with range H2 . The operator P is given explicitly as a
Cauchy integral:

(Pf )(z) =
∫

f (ζ)
1 − ζ̄z

dm(ζ), |z| < 1.
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Using the expression on the right side, we can extend P to an operator on L1 . In this
incarnation, P maps L1 into H(D) , the space of holomorphic functions in D , and
is continuous relative to the weak topology of L1 and the topology of locally uniform
convergence of H(D) .

We shall need to deal with certain unbounded Toeplitz operators. For ϕ in L2 ,
the operator Tϕ , the Toeplitz operator on H2 with symbol ϕ , is defined by

Tϕ f = P(ϕf ).

It is known that Tϕ is bounded if and only if ϕ is in L∞ , in which case ‖Tϕ‖ = ‖ϕ‖∞ .
In view of the remarks in the preceding paragraph, if ϕ is not in L∞ , we can, according
to convenience, regard Tϕ either as an unbounded operator on H2 , with domain
containing H∞ , or as a transformation from H2 to H(D) . In the latter guise Tϕ is
continuous relative to the weak topology of H2 and the topology of locally uniform
convergence of H(D) .

We let S denote the unilateral shift operator on H2 . Its adjoint, the backward
shift, is given by

(S∗f )(z) =
f (z) − f (0)

z
.

Both S and S∗ are well defined as operators on H(D) , and are continuous with respect
to the topology of locally uniform convergence.

For ϕ in L2 one has S∗TϕS = Tϕ . In fact, because of the continuity of Tϕ and
of S∗TϕS as maps from H2 to H(D) , to establish the equality it suffices to show that
S∗TϕSf = Tϕ f for all f in H∞ . For such an f , and for any g in H2 ,

〈 S∗TϕSf , g〉 = 〈TϕSf , Sg〉 = 〈ϕSf , Sg〉
=
∫

ϕ(ζ)ζ f (ζ)ζ̄g(ζ)dm(ζ)

=
∫

ϕf ḡdm = 〈Tϕ f , g〉 ,

implying that S∗TϕSf = Tϕ f , as desired.
For the remainder of the paper, u will denote a nonconstant inner function. The

subspace K2
u = H2 � uH2 is a proper nontrivial invariant subspace of S∗ , the most

general one by the well-known theorem of A. Beurling. The orthogonal projection on
L2 with range K2

u will be denoted by Pu . Like P , the projection Pu can be extended
to a map from L1 to H(D) . In fact, letting Mu and Mū denote the multiplication
operators on L2 induced by u and ū , we have Pu = P − MuPMū . The operator Mū

acts isometrically from L1 to L1 , so PMū sends L1 into H(D) . As Mu maps H(D)
into itself, the operator MuPMū , and hence also Pu , can be regarded as an operator
from L1 to H(D) , as asserted.

For ϕ in L2 , the truncated Toeplitz operator on K2
u with symbol ϕ is the operator

Aϕ defined by
Aϕ f = Pu(ϕf ).

In the special case u(z) = zN , the matrix for Aϕ with respect to the monomial basis is
the N -by-N Toeplitz matrix formed in the standard way from the Fourier coefficients



ALGEBRAIC PROPERTIES OF TRUNCATED TOEPLITZ OPERATORS 493

ϕ̂(−N + 1), . . . , ϕ̂(N − 1) ( ϕ̂(0) on the main diagonal, ϕ̂(1) on the diagonal just
below the main diagonal, ϕ̂(−1) on the diagonal just above the main diagonal, etc.).

Clearly, a truncated Toeplitz operator does not have a unique symbol; for example,
Au = 0 . It will be shown in Section 3. that two symbols correspond to the same operator
if and only if their difference lies in uH2 + ūH̄2 .

A truncated Toeplitz operator obviously is bounded if it has a symbol in L∞ . Does
every bounded truncated Toeplitz operator possess an L∞ symbol? Unfortunately, I
have been unable to answer this basic question. It is discussed further, along with other
open questions, in the exposition to follow.

Just as in the Toeplitz case, an unbounded truncated Toeplitz operator can be
thought of in two ways: either as an unbounded operator on K2

u whose domain contains
K2

u ∩H∞ (hereafter denoted by K∞
u ), or as an operator from K2

u to H(D) , continuous
relative to the weak topology of K2

u and the topology of locally uniform convergence of
H(D) . This study focuses on bounded truncated Toeplitz operators. The set of those
operators will be denoted by T (K2

u ) . It is clearly a complex vector space, and is closed
under conjugation (since A∗

ϕ = Aϕ̄ ).
The compression of S to K2

u will be denoted by Su . Its adjoint, S∗u , is the
restriction of S∗ to K2

u . The operators Su and S∗u are the truncated Toeplitz operators
with symbols z and z̄ , respectively.

Brown and Halmos prove in [8] that a bounded operator T on H2 is a Toeplitz
operator if and only if S∗TS = T . There is an analogous but more involved charac-
terization of bounded truncated Toeplitz operators, given in Section 4., which forms
the basis for most of what follows. It states, roughly, that a bounded operator A on
K2

u belongs to T (K2
u ) if and only if A − S∗uASu (or, equivalently, A − SuAS∗u ) is an

operator of rank at most 2 of a special kind. It will also be shown in Section 4. that
T (K2

u) is closed in the weak operator topology.
As shown in [8], the only compact Toeplitz operator is the zero operator. In

contrast, T (K2
u) contains many compact operators, in fact, many finite-rank operators.

The operators in T (K2
u ) of rank one are determined in Section 5.. In Section 6. some

additional finite-rank operators in T (K2
u) are displayed. A characterization of the

general such operator is an open problem.
Section 7. contains a few results for the case where K2

u is finite dimensional. Even
the case dimK2

u = 2 is of interest. Some open questions will be mentioned.
In Section 8. it is shown that a bounded operator on K2

u lies in T (K2
u) if and only

if it is shift invariant, in a sense to be defined. Section 9. introduces certain measures
on ∂D that induce operators in T (K2

u) .
Section 10. introduces a family of rank-one perturbations of the compressed shift

Su . Among them are unitary perturbations originally analyzed by D. N. Clark [10].
Section 11. contains background on Clark’s work, and Section 12. discusses the role of
his unitaries in T (K2

u ) .
Chapter 13 introduces transforms due to R. B. Crofoot which map K2

u onto K2
uw

,
where uw = u−w

1−w̄u with w a point of D . Crofoot’s transforms are used in the concluding
Section 14. to help determine the spectra of the operators introduced in Section 10..

The next section contains most of the needed background on the spaces K2
u .
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In addition to the notations already introduced, the following ones will be used
throughout:

• The identity operator will be denoted by I . The space on which it acts will be
clear from the context.

• The inner product and norm in L2 will be denoted by 〈 ·, ·〉 and ‖ · ‖2 .
• The usual tensor notation will be used for operators of rank one: for f and g

vectors in a Hilbert space, f ⊗ g denotes the operator defined by (f ⊗ g)h =
〈 h, g〉 f .

Acknowledgements. I am grateful toKeiji Izuchi for a communicationwhich suggested
this study. Theorem 3.1 below was originally proved by Izuchi, who used ideas different
from the ones employed here. Thanks also go to Stephan R. Garcia for a communication
which prompted the results in Sections 13. and 14., and to Joseph Cima for pointing out
corrections to the first draft of the paper.

2. Background on K2
u

Nothing in this section is new, and the bulk of it can be found in standard sources,
for example [7], [13], [16].
2.1. Kernel Functions. For λ in D , the kernel function in H2 for the functional of
evaluation at λ will be denoted by kλ ; it is given explicitly by kλ (z) = 1/(1 − λ̄z) ,
and satisfies S∗kλ = λ̄kλ . More generally, for χ in H2 one has Tχ̄kλ = χ(λ )kλ ; in
fact, for f in H2 ,

〈Tχ̄kλ , f 〉 = 〈 kλ , χf 〉 = χ(λ )f (λ )

= 〈 χ(λ )kλ , f 〉 .

The kernel function in K2
u for the functional of evaluation at λ will be denoted by

ku
λ ; it equals Pukλ . As noted in Section 1., Pu = P −MuPMū . Since PMū | H2 = Tū ,

we have Pu | H2 = I − TuTū , and accordingly ku
λ = kλ − u(λ )ukλ , i.e.,

ku
λ (z) =

1 − u(λ )u(z)
1 − λ̄z

.

Note that the kernel functions ku
λ belong to K∞

u . Since their linear span is clearly
dense in K2

u , we see that K∞
u is dense in K2

u .

2.2. Angular Derivatives. Recall that the function u is said to have an angular
derivative in the sense of Carathéodory (an ADC ) at the point η of ∂D if u has a
nontangential limit u(η) of unit modulus at η , and u′ has a nontangential limit u′(η)
at η (equivalently, the difference quotient (u(z)−u(η))/(z−η) has the nontangential
limit u′(η) at η ). Information on this notion can be found, for example, in [16]. If η
is a regular point of u on ∂D then u has not only an ADC at η but, obviously, an
ordinary derivative there. A characterization, in terms of the zeros of u and the singular
measure of its singular part, for u to have an ADC at a singularity on ∂D can be found
in the papers [1], [2] of P. R. Ahern and D. N. Clark. Alternative characterizations can
be found, for example, in [16].
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The function u has an ADC at η if and only if every function in K2
u has a

nontangential limit at η . Then the limit defines a bounded linear functional on K2
u

(see [16], for example, for details). There is thus a corresponding kernel function ku
η .

Moreover, ku
λ → ku

η as λ tends to η nontangentially from D . From the expression
found earlier for ku

λ , one obtains

ku
η(z) =

1 − u(η)u
1 − η̄z

,

which can be written

ku
η(z) = ηu(η)

(
u − u(η)

z − η

)
.

It is known that if η is a point of ∂D at which u has a nontangential limit u(η) of
unit modulus, and if the difference quotient u−u(η)

z−η is in H2 , then u has an ADC at η
(see, for example, [16]).

2.3. Conjugation. The space K2
u , as is well known, carries a natural conjugation, an

antiunitary involution C , defined by (Cf )(ζ) = u(ζ)ζ̄ f (ζ) (|ζ | = 1) . In fact, the
map on L2 defined by the same equality is clearly antiunitary and involutive, and is
easily seen to map uH2 to H̄2

0 and H̄2
0 to uH2 . It thus preserves K2

u .
When convenient we shall write f̃ for Cf . The expression

k̃u
λ (z) =

u(z) − u(λ )
z − λ

is easily verified. In particular, k̃u
0 = S∗u .

If u has an ADC at the point η of ∂D , then one obtains the expression for k̃u
η

by replacing λ by η in the equality above:

k̃u
η =

u(z) − u(η)
z − η

.

Thus k̃u
η = η̄u(η)ku

η (see Section 2.2.).
An operator A on K2

u is called C -symmetric if CAC = A∗ . S. R. Garcia
and M. Putinar in [12] study the notion of C -symmetry in the abstract. They give
many examples, including our truncated Toeplitz operators (at least those with bounded
symbols). The following result is essentially theirs.

LEMMA 2.1. [12] The operators in T (K2
u) are C -symmetric.

Proof. Let ϕ be in L2 with Aϕ bounded. For f in K∞
u and g in K2

u ,

〈CAϕCf , g〉 = 〈Cg, AϕCf 〉
=
∫

u(ζ)ζ̄ g(ζ) · ϕ(ζ) u(ζ)ζ f (ζ)dm(ζ)

=
∫

ϕ̄f ḡdm = 〈Aϕ̄ f , g〉
= 〈A∗

ϕ f , g〉 .
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Since K∞
u is dense in K2

u , the desired conclusion follows. �
It will be shown later, in Section 5., that, for dimK2

u > 2 , not all C -symmetric
operators are in T (K2

u) . At this point it is easy to handle the case u(z) = zN , N � 3 .
For this u , the conjugation sends themonomial zk to zN−k−1 . Suppose A is the operator
on K2

u having the matrix (ajk)N−1
j,k=0 with respect to the monomial basis: ajk = 〈Azk, zj〉 .

The (j, k)th entry of the matrix for CAC is then equal to

〈CACzk, zj〉 = 〈Czj, ACzk〉
= 〈 zN−j−1, AzN−k−1〉 = ā(N−j−1)(N−k−1),

whereas 〈A∗zk, zj〉 = ākj . The condition that A be C -symmetric is thus that akj =
a(N−j−1)(N−k−1) for all j, k , which is the condition that the matrix for A be symmetric
with respect to reflection about the diagonal orthogonal to the main diagonal, clearly
weaker than the Toeplitz condition. (For N = 2 , however, the reasoning shows that all
C -symmetric operators are in T (K2

u ) .)

LEMMA 2.2. (a) For λ in D ,

S∗uk
u
λ = λ̄ku

λ − u(λ )k̃u
0, Suk̃

u
λ = λ k̃u

λ − u(λ )ku
0.

(b) For λ in D \ {0} ,

Suk
u
λ =

1

λ̄
ku
λ − 1

λ̄
ku
0, S∗u k̃u

λ =
1
λ

k̃u
λ − 1

λ
k̃u
0.

Proof. (a) For the first equality we have

S∗uk
u
λ = S∗((1 − u(λ )u)kλ ) = (1 − u(λ )u)S∗kλ + kλ (0)S∗(1 − u(λ )u)

= λ̄ (1 − u(λ )u)kλ − u(λ )S∗u = λ̄ku
λ − u(λ )k̃u

0,

as desired. We obtain the second equality by applying C to the first equality:

Suk̃
u
λ = CS∗uCCku

λ = CS∗u ku
λ

= C(λ̄ ku
λ − u(λ )k̃u

0) = λ k̃u
λ − u(λ )ku

0.

(b) For λ 	= 0 we have

Suk
u
λ = PuSku

λ = PuS((1 − u(λ )u)kλ ) = PuSkλ .

Since

(Skλ )(z) =
z

1 − λ̄ z
=

1

λ̄

(
1

1 − λ̄z
− 1

)
=

1

λ̄
(kλ (z) − 1),

we get

Suk
u
λ =

1

λ̄
Pu(kλ − 1) =

1

λ̄
(ku

λ − ku
0),

which is the first equality. As in (a), the second equality is obtained from the first
through an application of C . �

COROLLARY. If u has an ADC at the point η of ∂D , then the equalities in the
lemma hold with η in place of λ .

Proof. One obtains this by letting λ tend nontangentially to η and using continuity.
�
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2.4. Cyclic Vectors.

LEMMA 2.3. The function ku
0 is a cyclic vector of Su . The function k̃u

0 is a cyclic
vector of S∗u .

Proof. The second statement follows from the first through an application of C .
To prove the first statement, suppose the function f in K2

u is orthogonal to Sn
uk

u
0 for all

nonnegative integers n . We have

0 = 〈 f , Sn
uk

u
0〉 = 〈 S∗nf , ku

0〉 = (S∗nf )(0),

which says that all the Taylor coefficients of f at the origin vanish, hence that f = 0 .
�

2.5. Defect Operators.

LEMMA 2.4. I − SuS∗u = ku
0 ⊗ ku

0 , I − S∗uSu = k̃u
0 ⊗ k̃u

0 .

Proof. The second equality follows from the first through an application of C . To
obtain the first equality we note that the operator S∗u (= S∗ | K2

u) acts isometrically
on the subspace of functions in K2

u that vanish at 0 , in other words, on the orthogonal
complement of ku

0 . The self-adjoint operator I−SuS∗u thus vanishes on that orthogonal
complement, so it equals a scalar multiple of ku

0 ⊗ ku
0 . To determine the scalar we apply

Lemma 2.2(a) (with λ = 0 ):

(I − SuS
∗
u)k

u
0 = ku

0 + u(0)Suk̃
u
0 = (1 − |u(0)|2)ku

0

= 〈 ku
0, k

u
0〉 ku

0 = (ku
0 ⊗ ku

0)k
u
0.

Thus the scalar is 1 . �

2.6. Difference Quotients. For λ in D we define the operator Qλ on H2 by
Qλ = S∗(I − λS∗)−1 . Since K2

u is S∗ -invariant, it is also Qλ -invariant. The operator
Qλ is the Toeplitz operator with symbol z̄/(1 − λ z̄) (|z| = 1) , so for f in H2 ,

Qλ f = P

(
z̄f

1 − λ z̄

)
= P

(
f − f (λ )

z − λ
+

z̄f (λ )
1 − λ z̄

)
=

f − f (λ )
z − λ

.

Hence, if f is in K2
u , then the difference quotient (f − f (λ ))/(z − λ ) is also in K2

u .
We note also that k̃u

λ = Qλu .

2.7. Spectrum of Su .

LEMMA 2.5. The spectrum of Su consists of the set of singularities of u on ∂D

together with the zero set of u in D . The essential spectrum is the set of singularities
on ∂D . For λ in u−1(0) , the operator Su − λ I is a Fredholm operator of index 0
with a one-dimensional kernel. The operator Su has no eigenvalues on ∂D .
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Proof. Since Su is a contraction its spectrum is contained in D̄ . If λ is a point
of D where u is nonzero, or a regular point of u on ∂D , one easily checks that the
operator − 1

u(λ ) Ãku
λ

inverts Su − λ I .

Suppose λ is a zero of u . Then by Lemma 2.2(a) Suk̃u
λ = λ k̃u

λ , so λ is an
eigenvalue of Su . To verify that Su − λ I is a Fredholm operator we compute the
product (Su − λ I)Qλ , regarding Qλ here as an operator on K2

u . For f in K2
u ,

(Su − λ I)Qλ f = Pu

(
(z − λ )

(
f − f (λ )

z − λ

))
= f − f (λ )ku

0,

from which we conclude that (S − λ I)Qλ = I − (ku
0 ⊗ ku

λ ) . This tells us that Su − λ I
is right Fredholm with a range of codimension at most 1 . By C -symmetry Su − λ I is
also left Fredholm, hence Fredholm. Also by C -symmetry, the index of Su − λ I is 0 .
We know the dimension of the cokernel of Su − λ I is at most 1 and the dimension of
the kernel is at least 1 , so both are of dimension 1 .

It remains to show that every singularity of u on ∂D is in the essential spectrum.
Suppose first that the point η of ∂D lies in the resolvent set of u , so that (Su−λ I)−1 is
defined in a neighborhoodof η . We note that, for λ in D , we have kλ = (I−λ̄S)−1k0 ,
which after projection onto K2

u gives ku
λ = (I − λ̄Su)−1ku

0 . In particular, then,

u(λ ) − u(0)
λ

= k̃u
0(λ ) = 〈 k̃u

0, (I − λ̄Su)−1ku
0〉 .

As the function of λ on the right side extends holomorphically to a neighborhood of
η , we conclude that the same is true of u , i.e., η is a regular point of u . Hence every
singular point of u on ∂D belongs to the spectrum of Su .

Finally, consider a singularity λ of u on ∂D . The function z − λ is an outer
function so, by Beurling’s theorem, the operator S − λ I has a dense range. Therefore
Su − λ I also has a dense range. This tells us that S∗u has no eigenvalues on ∂D . By
C -symmetry, the same is true of Su , and so Su − λ I is injective. But Su − λ I , being
noninvertible, is not surjective. Therefore Su − λ I is not Fredholm, i.e., λ is in the
essential spectrum of Su . �

Additional known properties of K2
u will be introduced as the need arises. What

stands above will suffice for the time being.

3. Condition for Aϕ = 0

THEOREM 3.1. If ϕ is in L2 , then Aϕ = 0 if and only if ϕ belongs to uH2+ ūH̄2 .

Proof. Suppose ϕ is in uH2 + ūH̄2 , say ϕ = uψ + ūχ̄ with ψ and χ in H2 . For
f in K∞

u we have ϕf = ψuf + χ̄ūf , which is orthogonal to K2
u because uK∞

u ⊂ uH∞

and ūK∞
u ⊂ H̄∞

0 . Hence Aϕ f = 0 for f in K∞
u , and so Aϕ = 0 .

Suppose, conversely, that Aϕ = 0 , and write ϕ = ψ + χ̄ with ψ and χ in
H2 . Thus Aψ = −Aχ̄ . Now the operators Aχ̄ and S∗u commute, being restrictions
to K2

u of the commuting operators Tχ̄ and S∗ . Similarly, the operators Aψ and Su

(the adjoints of Aψ̄ and S∗u ) commute. Hence Aψ commutes with both Su and S∗u .
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Then Aψ(I−SuS∗u)ku
0 = (I−SuS∗u )Aψku

0 , implying by Lemma 2.4 that Aψku
0 is a scalar

multiple of ku
0 , say Aψku

0 = cku
0 . Thus

0 = (Aψ − cI)ku
0 = Pu((ψ − c)(1 − u(0)u))

= Pu(ψ − c),

implying that ψ − c is in uH2 . So we actually have Aψ = cI , and accordingly
Aχ̄ = −cI . Repeating the reasoning above, we conclude that χ + c̄ is in uH2 , and
hence that χ̄ + c is in ūH̄2 . Therefore ϕ = (ψ − c) + (χ̄ + c) is in uH2 + ūH̄2 . �

COROLLARY. If ϕ is in L2 , then there is a pair of functions ψ , χ in K2
u such that

Aϕ = Aψ+χ̄ . If ψ , χ is one such pair, the most general such pair equals ψ + cku
0 ,

χ − c̄ku
0 , with c a scalar.

Proof. Write ϕ = ϕ+ + ϕ− with ϕ+ in H2 and ϕ− in H̄2 . Let ψ = Puϕ+ ,
χ = Puϕ̄− . Then ϕ − ψ − χ̄ is in uH2 + ūH̄2 , so Aϕ = Aψ+χ̄ by the theorem.

Since ku
0 = 1 − u(0)u and Au = 0 , we have Aku

0
= I . Hence, if ψ , χ are

as above and ψ1 = ψ + cku
0 , χ1 = χ − c̄ku

0 , with c a scalar, then Aψ1 = Aψ + cI ,
Aχ̄1 = Aχ̄ − cI , so that Aψ1+χ̄1 = Aϕ .

Finally, suppose ψ1 , χ1 are in K2
u and Aψ1+χ̄1 = Aϕ . Then (ψ −ψ1) + (χ̄ − χ̄1)

is in uH2+ ūH̄2 , by the theorem. As the projection Pu annihilates uH2 + ūH̄2 , we have
ψ − ψ1 = −Pu(χ̄ − χ̄1) . Since PH̄2 consists of the constant functions, the function
Pu(χ̄ − χ̄1) must be a scalar multiple of Pu1 = ku

0 . Thus ψ1 = ψ + cku
0 for some

scalar c , and, accordingly, χ̄ − χ̄1 − cku
0 is in uH2 + ūH̄2 . Then χ − χ1 − c̄ku

0 is in
uH2 + ūH̄2 . Applying Pu again, we obtain

χ − χ1 = c̄Puk
u
0 = c̄Pu(1 − u(0)u) = c̄Pu1 = c̄ku

0,

i.e., χ1 = χ − c̄ku
0 . �

4. A Characterization

THEOREM 4.1. The bounded operator A on K2
u belongs to T (K2

u) if and only if
there are functions ψ , χ in K2

u such that

A − SuAS∗u = (ψ ⊗ ku
0) + (ku

0 ⊗ χ),

in which case A = Aψ+χ̄ .

The bulk of the proof will be accomplished in two lemmas.

LEMMA 4.1. For ψ , χ in K2
u ,

Aψ+χ̄ − SuAψ+χ̄S
∗
u = (ψ ⊗ ku

0) + (ku
0 ⊗ χ).

Proof. Since Su commutes with Aψ and S∗u commutes with Aχ̄ , we have

Aψ+χ̄ − SuAψ+χ̄S
∗
u = Aψ(I − SuS

∗
u) + (I − SuS

∗
u)Aχ̄ .
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Since I − SuS∗u = ku
0 ⊗ ku

0 (Lemma 2.4), the right side equals

(Aψku
0 ⊗ ku

0) + (ku
0 ⊗ Aχk

u
0).

Finally, Aψku
0 = ψ , Aχku

0 = χ . �

LEMMA 4.2. Let ψ , χ be in K2
u . Then for f , g in K∞

u ,

〈Aψ+χ̄f , g〉 =
∞∑

n=0

(〈 f , Sn
uk

u
0〉 〈 Sn

uψ , g〉 + 〈 f , Sn
uχ〉 〈 Sn

uk
u
0, g〉 ).

Proof. By Lemma 4.1,

Aψ+χ̄ − SuAψ+χ̄S
∗
u = (ψ ⊗ ku

0) + (ku
0 ⊗ χ).

Thus, for any positive integer n ,

Sn
uAψ+χ̄S

∗n
u − Sn+1

u Aψ+χ̄S
∗(n+1)
u = (Sn

uψ ⊗ Sn
uk

u
0) + (Sn

uk
u
0 ⊗ Sn

uχ).

Adding for n = 0, 1, . . . , N , we get

Aψ+χ̄ =
N∑

n=0

((Sn
uψ ⊗ Sn

uk
u
0) + (Sn

uk
u
0 ⊗ Sn

uχ)) + SN+1
u Aψ+χ̄S

∗(N+1)
u .

Thus, for f , g in K∞
u ,

〈Aψ+χ̄f , g〉 =
N∑

n=0

(〈 f , Sn
uk

u
0〉 〈 Sn

uψ , g〉+〈 f , Sn
uχ〉 〈 Sn

uk
u
0, g〉 )+〈Aψ+χ̄S

∗(N+1)
u f , S∗(N+1)

u g〉 .

It remains to show that the last summand on the right tends to 0 as N → ∞ . We have

〈Aψ+χ̄S
∗N
u f , S∗N

u g〉 = 〈 S∗N
u f , S∗N

u Aψ̄g〉 + 〈 S∗N
u Aχ̄ f , S

∗N
u g〉 .

The desired conclusion now follows because S∗N → 0 in the strong operator topology.
�

Proof of Theorem 4.1. It follows by Lemma 4.1 and the corollary to Theorem 3.1
that every operator in T (K2

u ) satisfies the condition of the theorem. Suppose, con-
versely, that A is a bounded operator in K2

u that satisfies the condition:

A − SuAS∗u = (ψ ⊗ ku
0) + (ku

0 ⊗ χ)

with ψ , χ in K2
u . The first part of the proof of Lemma 4.2 shows that, for any positive

integer N ,

A =
N∑

n=0

((Sn
uψ ⊗ Sn

uk
u
0) + (Sn

uk
u
0 ⊗ Sn

nχ)) + SN+1
u AS∗(N+1)

u .
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Since S∗N
u → 0 in the strong operator topology, we conclude that

A =
∞∑

n=0

((Sn
uψ ⊗ Sn

uk
u
0) + (Sn

uk
u
0 ⊗ Sn

uχ)),

the series converging in the strong operator topology. By Lemma 4.2 we can conclude
that A = Aψ+χ̄ . �

REMARK. An application of the conjugation C produces from Theorem 4.1 an
alternative necessary and sufficient condition for a bounded operator A to belong to
T (K2

u) , namely, the condition

A − S∗uASu = (ψ ⊗ k̃u
0) + (k̃u

0 ⊗ χ)

with ψ , χ in K2
u .

THEOREM 4.2. T (K2
u ) is closed in the weak operator topology.

Proof. Suppose the net (Aα) in T (K2
u ) convergesweakly to the bounded operator

A . By Theorem 4.1, for each index α there are functions ψα , χα in K2
u such that

Aα − SuAαS∗u = (ψα ⊗ ku
0) − (ku

0 ⊗ χα). (4.1)

Moreover, the functions χα can be taken to satisfy χα(0) = 0 (see the corollary to
Theorem 3.1). Then we have

Aαku
0 − SuAαS∗uk

u
0 = ‖ku

0‖2
2ψα ,

and it follows that the net (ψα) converges weakly, say to the function ψ in K2
u . The

net (ψα ⊗ ku
0) thus converges in the weak operator topology, and so by (4.1) the net

(ku
0 ⊗ χα) also converges in the weak operator topology, implying that the net (χα)

converges weakly, say to the function χ in K2
u . Passing to the limit in (4.1), we obtain

A − SuAS∗u = (ψ ⊗ ku
0) + (ku

0 ⊗ χ),

and it follows by Theorem 4.1 that A = Aψ+χ̄ . �
Among the operators in T (K2

u) are those in the commutant of Su . In fact, if the
bounded operator A on K2

u commutes with Su , then

A − SuAS∗u = A(I − SuS
∗
u) = Aku

0 ⊗ ku
0,

and it follows by Theorem 4.1 that A is the truncated Toeplitz operator with symbol
Aku

0 . It is known that such an A has an H∞ symbol with supremum norm equal to
‖A‖ . This result, first established in [15], is a corollary of the commutant lifting theorem
of B. Sz.–Nagy and C. Foiaş [17].

By the same token, a bounded operator on K2
u that commutes with S∗u is in

T (K2
u) and has a symbol in H̄∞ of supremum norm equal to the operator norm. The

question whether every operator in T (K2
u) has a bounded symbol concerns operators

that commute with neither Su nor S∗u .
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5. Rank-One Operators

THEOREM 5.1. (a) For λ in D , the operators ku
λ ⊗ k̃u

λ and k̃u
λ ⊗ ku

λ belong to
T (K2

u) .
(b) If u has an ADC at the point η of ∂D , then the operator ku

η ⊗ ku
η belongs to

T (K2
u) .
(c) The only rank-one operators in T (K2

u) are the nonzero scalar multiples of the
operators in (a) and (b).

Proof. (a) We consider first a point λ in D \ {0} and apply the criterion of
Theorem 4.1 to the operator ku

λ ⊗ k̃u
λ . By Lemma 2.2,

Su(ku
λ ⊗ k̃u

λ )S∗u = Suk
u
λ ⊗ Suk̃

u
λ

=
(

1

λ̄
ku
λ − 1

λ̄
ku
0

)
⊗ (λ k̃u

λ − u(λ )ku
0)

= (ku
λ ⊗ k̃u

λ ) − (ku
0 ⊗ k̃u

λ ) − u(λ )
λ̄

(ku
λ ⊗ ku

0) +
u(λ )
λ̄

(ku
0 ⊗ ku

0).

Thus

ku
λ ⊗ k̃u

λ − Su(ku
λ ⊗ k̃u

λ )S∗u = (ku
0 ⊗ k̃u

λ ) +
u(λ )
λ̄

((ku
λ − ku

0) ⊗ ku
0).

By Theorem 4.1, ku
λ⊗ k̃u

λ is the truncated Toeplitz operatorwith symbol u(λ )
λ̄ (ku

λ −ku
0)+

¯̃ku
λ . The symbol can be simplified because Aku

0
= I = A1 and Aku

λ
= Akλ . Replacing

ku
0 by 1 and ku

λ by kλ in the preceding expression, we obtain the symbol (written as a
function of the variable z on ∂D )

u(λ )
λ̄

(
1

1 − λ̄ z
− 1

)
+

ū − u(λ )
z̄ − λ̄

= u(λ )
(

z

1 − λ̄ z

)
+

z(ū − u(λ ))
1 − λ̄ z

=
zū

1 − λ̄ z
=

ū

z̄ − λ̄
.

Conclusion. ku
λ ⊗ k̃u

λ is the truncated Toeplitz operator with symbol ū/(z̄ − λ̄ ) .

Conjugating the last conclusion, we find that k̃u
λ ⊗ ku

λ is the truncated Toeplitz
operator with symbol u/(z− λ ) . Taking the limit as λ → 0 , we find that ku

0 ⊗ k̃u
0 and

k̃u
0 ⊗ ku

0 are the truncated Toeplitz operators with respective symbols ū/z̄ and u/z .

(b) Let η be a point of ∂D at which u has an ADC . By the corollary to
Lemma 2.2, the first part of the proof of (a) can be repeated with η in place of λ to

show that ku
η ⊗ k̃u

η is the truncated Toeplitz operator with symbol u(η)
η̄ (ku

η − ku
0) + ¯̃ku

λ .

In Section 2.3. we observed that k̃u
η = η̄u(η)ku

η . Combining this with the preceding
conclusion, we see that ku

η ⊗ ku
η is the truncated Toeplitz operator with symbol ku

η +
k̄u
η − ku

0 . As above in the proof of (a), we can replace ku
0 here by 1 , obtaining the

symbol ku
η + k̄u

η − 1 .
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(c) Suppose σ , τ are nonzero functions in K2
u such that the operator σ ⊗ τ

belongs to T (K2
u) . Since σ ⊗ τ is then C -symmetric, we have

τ ⊗ σ = C(σ ⊗ τ)C = σ̃ ⊗ τ̃.

Hence τ and σ̃ are linearly dependent, so, after a scaling, we can assume with no loss
of generality that τ = σ̃ .

By Theorem 4.1, there are functions ψ and χ in K2
u such that

(σ ⊗ σ̃) − (Suσ ⊗ Suσ̃) = (ψ ⊗ ku
0) + (ku

0 ⊗ χ). (5.1)

Various cases arise.

Case 1. One of ψ , χ is the zero function.

By C -symmetry it will be enough to treat the case ψ = 0 . Then (5.1) reduces to

(σ ⊗ σ̃) − (Suσ ⊗ Suσ̃) = ku
0 ⊗ χ. (5.2)

For the operator on the left side of (5.2) to have rank one, either σ and Suσ must
be linearly dependent or σ̃ and Sσσ̃ must be linearly dependent. Suppose σ and
Suσ are linearly dependent, say Suσ = λσ . By Lemma 2.5 (and its proof), |λ | < 1 ,
u(λ ) = 0 , and σ is a scalar multiple of k̃u

λ . Thus σ⊗ σ̃ is a scalar multiple of k̃u
λ ⊗ku

λ .
If σ̃ and Suσ̃ are linearly dependent, Suσ̃ = λσ̃ , the analogous argument shows that
λ is in D and σ ⊗ σ̃ is a scalar multiple of ku

λ ⊗ k̃u
λ .

For the remainder of the proofwe assume that neither ψ nor χ is the zero function.
By (5.1), either ku

0 is a linear combination of σ and Suσ , or ku
0 is a linear combination

of σ̃ and Suσ̃ . Since σ and σ̃ are interchangeable, it will be enough to treat the case
where ku

0 is a linear combination of σ and Suσ , say ku
0 = aσ + bSuσ .

Case 2. b = 0 .

In this case σ is a scalar multiple of ku
0 , so σ ⊗ σ̃ is a scalar multiple of ku

0 ⊗ k̃u
0 .

Case 3. a = 0 .

In this case ku
0 lies in the range of Su . That implies u(0) 	= 0 (for otherwise

ku
0 = 1 and S∗uk

u
0 = 0 ), and therefore Su is invertible, by Lemma2.5. By Lemma2.4(a)

we have Suk̃u
0 = −u(0)ku

0 , so σ = 1
bS−1

u ku
0 is a scalar multiple of k̃u

0 , and σ ⊗ σ̃ is a

scalar multiple of k̃u
0 ⊗ ku

0 .
In all remaining cases a 	= 0 	= b . Replacing σ by aσ and letting λ = −b̄/ā ,

we transform the equality ku
0 = aσ + bSuσ to ku

0 = (I − λ̄Su)σ , λ 	= 0 .

Case 4. 0 < |λ | < 1 .

In this case the operator I− λ̄Su is invertible, and by Lemma 2.2(b) k̃u
λ − λ̄Suk̃u

λ =
ku
0 . Thus σ = k̃u

λ , and σ ⊗ σ̃ = k̃u
λ ⊗ ku

λ .

Case 5. |λ | > 1 , u(1/λ̄) 	= 0 .
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In this case the operator I − λ̄Su is invertible, by Lemma 2.5. By Lemma 2.2(a),

λ̄Suk̃
u
1/λ̄ = k̃u

1/λ̄ − λ̄u(1/λ̄)ku
0,

which tells us that σ = 1

λ̄u(1/λ̄ )
k̃u
1/λ̄ , and hence that σ ⊗ σ̃ is a scalar multiple of

k̃u
1/λ̄ ⊗ ku

1/λ̄ .

Case 6. |λ | > 1 , u(1/λ̄) = 0 .

In this case, by Lemma 2.5 (and its proof), the operator I − λS∗u has a one-
dimensional kernel spanned by the function k1/λ̄ . If ku

0 were in the range of I − λ̄Su it
would be orthogonal to k1/λ̄ , which it is not because k1/λ̄ (0) = 1 . This case therefore
does not arise.

Case 7. |λ | = 1 .

In this case, because the operator Su has no eigenvalues on ∂D (Lemma 2.5), the
function σ is uniquely determined by the condition ku

0 = σ − λ̄Suσ . Applying the
conjugation C to the last equality, we get k̃u

0 = σ̃ − λS∗u σ̃ , in other words,

u − u(0)
z

= σ̃ − λ (σ̃ − σ̃(0))
z

.

Hence
σ̃ =

u − γ
z − λ

,

where γ = u(0) + λσ̃(0) . That σ̃ belongs to H2 implies that γ must have unit
modules, and must in fact be the nontangential limit of u at λ (since an H2 function

is o
(

1
1−|z|

)
as |z| → 1 ). Thus we can write

σ̃ =
u − u(λ )

z − λ
.

In particular, the function (u − u(λ ))/(z − λ ) is in H2 . As noted in Section 2.2., we
can conclude that u has an ADC at λ . So σ̃ = k̃u

λ , and σ ⊗ σ̃ = ku
λ ⊗ k̃u

λ . �

COROLLARY. If dimK2
u � 3 , there is a C -symmetric rank-one operator on K2

u
that does not belong to T (K2

u ) .

Proof. Assume dimK2
u � 3 . A C -symmetric rank-one operator on K2

u has the
form f ⊗ f̃ , with f a nonzero function in K2

u . By Theorem 5.1, we need only show
we can choose f so that it is not a scalar multiple of ku

λ or of k̃u
λ for any λ .

Choose points z1 , z2 in D such that λ1 = u(z1) and λ2 = u(z2) are not equal.
Because dimK2

u � 3 , the linear map f �→ (f (z1), f (z2)) on K2
u has a nontrivial kernel.

Thus, there is a nonzero f in K2
u vanishing at z1 and at z2 . If λ is in D , or is a point

of ∂D where u has an ADC , then f is not a scalar multiple of ku
λ because ku

λ has no
zeros in D . Moreover, if λ is in D then, because the zero set of k̃u

λ is u−1(λ ) , and

f vanishes on at least two of those zero sets, f is not a scalar multiple of k̃u
λ . �



ALGEBRAIC PROPERTIES OF TRUNCATED TOEPLITZ OPERATORS 505

We noted in Section 2. that, in the case u = z2 , all C -symmetric operators on K2
u

are in T (K2
u ) . From Theorem 7.1(a) below one can see that the same conclusion holds

whenever dimK2
u = 2 .

If two commuting operators are C -symmetric then their product is C -symmetric.
It thus may be worth noting that there is a self-adjoint operator in T (K2

u) whose square
is not in T (K2

u) , provided dimK2
u � 3 . We consider the rank-two self-adjoint operator

A = (ku
0 ⊗ k̃u

0) + (k̃u
0 ⊗ ku

0) , which belongs to T (K2
u) by Theorem 5.1, and we assume

that its square also belongs to T (K2
u) , and that dimK2

u 	= 1 (to eliminate a trivial
case). We show that then dimK2

u = 2 .
We have

A2 = 〈 ku
0, k̃

u
0〉 (ku

0 ⊗ k̃u
0) + 〈 k̃u

0, k
u
0〉 (k̃u

0 ⊗ ku
0)

+‖k̃u
0‖2

2(k
u
0 ⊗ ku

0) + ‖ku
0‖2

2(k̃
u
0 ⊗ k̃u

0).

As ku
0 ⊗ k̃u

0 and k̃u
0 ⊗ ku

0 are in T (K2
u ) , and ‖ku

0‖2 = ‖k̃u
0‖2 , it follows that the operator

B = (ku
0 ⊗ ku

0) + (k̃u
0 ⊗ k̃u

0) is in T (K2
u) . By Theorem 4.1 the operator B − SuBS∗u has

rank one or two. By Lemma 2.2(a),

Su(k̃u
0 ⊗ k̃u

0)S
∗
u = (Suk̃

u
0 ⊗ Suk̃

u
0)

= (−u(0)ku
0) ⊗ (−u(0)ku

0) = −|u(0)|2(ku
0 ⊗ ku

0),

and so

B − SuBSu = (k̃u
0 ⊗ k̃u

0) + (1 − |u(0)|2)(ku
0 ⊗ ku

0) − (Suk
u
0 ⊗ Suk

u
0).

We know from Lemma 2.3 that ku
0 is a cyclic vector for the operator Su . Thus ku

0

and Suku
0 are linearly independent. If k̃u

0 is not a linear combination of ku
0 and Suku

0 ,
then the operator on the right side of the last equality has rank three. Hence there are
scalars a and b such that k̃u

0 = aku
0 + bSuku

0 . Applying Su to the last equality and
using Lemma 2.2(a) again, we get −u(0)ku

0 = aSuku
0 + bS2

uk
u
0 . Since ku

0 and Suku
0 are

linearly independent, b 	= 0 . Hence S2
uk

u
0 is a linear combination of ku

0 and Suku
0 ,

implying by the cyclicity of ku
0 that dimK2

u = 2 , as desired.

According to Theorem 5.1(b), if u has an ADC at the point η of ∂D , then the
operator ku

η ⊗ ku
η belongs to T (K2

u ) . The proof showed that ku
η ⊗ ku

η has ku
η + k̄u

η − 1
as a symbol. That symbol is bounded if η is a regular point of u but not, as will be
shown shortly, if η is a singular point. In the latter case the operator ku

η ⊗ ku
η provides

a test case for the question whether every operator in T (K2
u ) has a bounded symbol.

Assume u has an ADC at the singular point η of ∂D . The operator Aku
η

+ Ak̄u
η

is then bounded, but note that the operator Aku
η

is unbounded, for if it were bounded it
would invert the operator I − η̄Su , which according to Lemma 2.5 is not invertible. In
particular, then, ku

η is not bounded, and in fact ku
η+uH2 contains no bounded functions.
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To see that ku
η + k̄u

η is unbounded takes a bit more work. First note that, for z in
∂D ,

ku
η + k̄u

η = 2 Re

(
1

1 − η̄z

)
− 2 Re

(
u(η)u
1 − η̄z

)

=
1

1 − η̄z
+

1
1 − ηz̄

− 2 Re

(
u(η)u
1 − η̄z

)

=
2 Re(1 − η̄z)
|1 − η̄z|2 − 2 Re

(
u(η)u
1 − η̄z

)

= 1 − 2 Re

(
u(η)u
1 − η̄z

)

(since |1 − c|2 = 2 Re(1 − c) for |c| = 1 ). Our task, therefore, is to show that
Re(u(η)u/(1 − η̄z)) is unbounded. A lemma is needed.

LEMMA 5.1. Suppose α is an open subarc of ∂D on which the values of u lie
almost everywhere in the proper closed subarc β . Then every point of α is a regular
point of u .

Taking the lemma temporarily for granted, fix ε in
(
0, π2

)
, and let α = {eiθ :

|θ − argη| < ε} . Then on α \ {η} the argument of 1 − η̄z lies in the union of the
intervals

( π
2 − ε

2 , π
2 + ε

2

)
,
(− π

2 − ε
2 ,− π

2 + ε
2

)
. By the lemma, there is a subset of α

of positive measure on which the argument of u(η)u lies in the union of the same two
intervals, and hence on which the argument of u(η)u/(1 − η̄z) lies in the union of the
intervals (−ε, ε) , (π − ε, π + ε) . Thus, on a subset of α of positive measure we have∣∣∣∣∣Re

u(η)u
1 − η̄z

∣∣∣∣∣ � cos ε

∣∣∣∣∣ u(η)u
1 − η̄z

∣∣∣∣∣ � cos ε
|1 − eiε | ,

which establishes the unboundedness of Re(u(η)u/(1 − η̄z)) .
In the case at hand, if the operator ku

η ⊗ ku
η has a bounded symbol then there is

a function in uH2 + ūH̄2 whose difference with Re(u(η)u/(1 − η̄z)) is bounded, in
which case such a function can be taken to be real valued. Whether ku

η ⊗ ku
η has a

bounded symbol boils down to the question: If η is a singular point of u on ∂D at
which u has an ADC , does there exist a function h in H2 such that

Re

(
u(η)u
1 − η̄z

− uh

)

is bounded?

Proof of Lemma 5.1. After composing u from the left with a conformal automor-
phism of D , we can assume β has arc length less than π/2 , say. For z in D we let
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Pz be the corresponding Poisson kernel: Pz(ζ) = 1−|z|2
|ζ−z|2 (|ζ | = 1) . Thus

u(z) =
∫

Pz(ζ)u(ζ)dm(ζ).

Pick any point ζ# in β , and let u# be the function on ∂D that equals u on α and
equals ζ# off α . Then

u(z) =
∫

Pz(ζ)u#(ζ)dm(ζ) +
∫

Pz(ζ)(u(ζ) − u#(ζ))dm(ζ).

The first summand on the right side lies in the convex hull of β , which does not contain
0 , and the second summand tends to 0 as z tends to α , uniformly on closed subarcs
of α . It follows that u is bounded away from 0 near any point of α , which is known
to imply that such a point is a regular point of u (see for example [13, p. 63]). �

6. Finite-Rank Operators

The function λ �→ ku
λ on D is conjugate holomorphic. For j a natural number,

the derivative djku
λ/dλ̄ j is the kernel function for the functional on K2

u of evaluation of
the jth derivative at λ :

f (j)(λ ) =
〈

f ,
djku

λ
dλ̄ j

〉
.

The image of djku
λ/dλ̄ j under the conjugation C is djk̃u

λ/dλ j .

THEOREM 6.1. For n a natural number and λ in D , the operators

n−1∑
j=0

(
n − 1

j

)(
djk̃u

λ
dλ j

⊗ dn−j−1ku
λ

dλ̄ n−j−1

)
(6.1)

n−1∑
j=0

(
n − 1

j

)(
djku

λ
dλ̄ j

⊗ dn−j−1k̃u
λ

dλ n−j−1

)
(6.2)

are in T (K2
u ) , with respective symbols (n − 1)!u/(z− λ )n and (n − 1)!ū/(z̄ − λ̄ )n .

Proof. The adjoint operation transforms (6.1) into (6.2), so it will suffice to deal
with (6.1). The case n = 1 was obtained in Section 5.: letting ϕλ = u/(z − λ ) , we
have

Aϕλ = k̃u
λ ⊗ ku

λ . (6.3)

To obtain the desired conclusion one simply applies dn−1/dλ n−1 to both sides of (6.3),
using the Leibniz formula for the derivative of a bilinear expression on the right side.

�
COROLLARY. If r is a rational function without poles on ∂D , then the operators

Aru and Arū have finite rank.

Proof. It will suffice to consider Aru , because Arū = A∗
r∗u , where r∗(z) = r(1/z̄) .

In case r has only one pole, Theorem 6.1 implies Aru has finite rank, from which the
general case obviously follows. �
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There is a boundary version of Theorem 6.1 which requires some preliminaries. It
was noted in Section 2.2. that u has an ADC at the point η of ∂D if and only if every
function in K2

u has a nontangential limit at η . For n a natural number, one says that u
has an ADC of order n at η if each function in K2

u and its derivatives up to order n−1
have nontangential limits at η . If that happens, then u and its first n derivatives have
nontangential limits at η . Moreover, for j = 0, . . . , n− 1 , the functions djku

λ/dλ̄ j and
djk̃u

λ/dλ j converge in norm as λ tends nontangentially to η . The limit functions are

denoted by djku
η/dη̄j and djk̃u

η/dηj . See [1], [16] for more information.

THEOREM 6.2. Let u have an ADC of order n at the point η of ∂D . Then the
operator

n−1∑
j=0

(
n − 1

j

)(
djk̃u

η

dηj
⊗ dn−j−1ku

η

dη̄j

)
(6.4)

and its adjoint belong to T (K2
u) .

Proof. In view of the preceding remarks, as λ tends nontangentially to η the
operator (6.1) converges in norm to the operator (6.4). Because T (K2

u) is closed in
operator norm, the desired conclusion follows. �

The following questions remain open.

What is the most general finite-rank operator in T (K2
u )? Is every such operator

a finite linear combination of the operators in Theorems 6.1 and 6.2?

What is the general rank-two self-adjoint operator in T (K2
u)?

7. Finite-Dimensional Case

THEOREM 7.1. Let K2
u have finite dimension N .

(a) The dimension of T (K2
u) is 2N − 1 .

(b) If λ1, . . . , λ2N−1 are distinct points of D , then the operators ku
λj
⊗ k̃u

λj
, j =

1, . . . , 2N − 1 , form a basis for T (K2
u ) .

Proof. (a) Every operator in T (K2
u) can be written as the sum of an operator with

a symbol in H∞ and an operator with a symbol in H̄∞ . The subspace of operators
with symbols in H∞ has dimension equal to the dimension of H∞/uH∞ , which is
N . The subspace of operators with symbols in H̄∞ (consisting of the adjoints of the
operators in the preceding subspace) also has dimension N . The intersection of the two
subspaces consists of the scalar multiples of the identity operator; its dimension is 1 .
Hence dimT (K2

u ) = N + N − 1 .
(b) We first show that if λ1, . . . , λN are distinct points of D then the kernel func-

tions ku
λj

, j = 1, . . . , N , are linearly independent. In fact, because K2
u has dimension

N , the inner function u is a Blaschke product of order N , say with zeros z1, . . . , zN .
The general function in K2

u is of the form p/q , where q(z) = ΠN
n=1(1 − z̄nz) , and

p is a polynomial of degree at most N − 1 . Hence, given distinct points λ1, . . . , λN

in D , and given any complex numbers w1, . . . , wN , there is a function f in K2
u such
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that f (λj) = wj , j = 1, . . . , N , implying the asserted linear independence of kλj ,
j = 1, . . . , N .

Now let λ1, . . . , λ2N−1 be distinct points of D . By (a), it will suffices to show that
the operators ku

λj
⊗ k̃u

λj
, j = 1, . . . , 2N−1 , are linearly independent. Let a1, . . . , a2N−1

be scalars such that
2N−1∑
j=1

aj(ku
λj
⊗ k̃u

λj
) = 0.

It will suffice to show that a1 = 0 . The linear independence of ku
λj

, j = 1, . . . , N ,

implies the linear independence of k̃u
λj

, j = 1, . . . , N , so there is a function g in K2
u

such that 〈 g, k̃u
λ1
〉 = 1 and 〈 g, k̃u

λj
〉 = 0 for j = 2, . . . , N . Then

0 =
2N−1∑
j=1

aj(ku
λj
⊗ k̃u

λj
)g

= a1k
u
λ1

+
2N−1∑
j=N+1

aj〈 g, k̃u
λj
〉 ku

λj
.

Since ku
λ1

, ku
λN+1

, . . . , ku
λ2N−1

are linearly independent, it follows that a1 = 0 . �
The question whether every operator in T (K2

u) has a bounded symbol has a trivial
affirmative answer if dimT (K2

u) is finite. However, there are quantitative versions of
the question that are nontrivial, and to my knowledge unsettled, in the finite-dimensional
case. For example:

Let K2
u be finite dimensional. What is the least upper bound of

inf{‖ϕ‖∞ : Aϕ = A}
as A ranges over the operators in T (K2

u ) of unit norm? What is the supremum of that
least upper bound as K2

u ranges over all spaces of the same dimension?

The case u(z) = zN is interesting. Let A be an operator in T (K2
u) for this u ,

and let (aj−k)N−1
j,k=0 be the matrix for A with respect to the monomial basis. We have

A = Aϕ precisely when ϕ̂(n) = an for n = −N + 1, . . . , N − 1 . The first of the two
preceding questions for this situation can be formulated thus:

Among all sequences a−N+1, . . . , aN−1 of complex numbers such that the matrix
(aj−k)N−1

j,k=0 has norm 1 what is the supremum of inf{‖ϕ‖∞ : ϕ̂(n) = an, n = −N +
1, . . . , N − 1} ?

The analogous question inwhich thematrix for A is restricted to be lower triangular
(or upper triangular) is settled by the solution of the classical Carathéodory interpolation
problem (see, for example, [15]): If the matrix (aj−k)∞j,k=0 is lower triangular and of unit
norm, and if the function ϕ in H∞ satisfies ϕ(z) = a0+a1z+· · ·+aN−1zN−1+O(zN) ,
then ‖ϕ‖∞ � 1 , and equality holds for a unique ϕ , a Blaschke product of order less
than N . As will be seen shortly, the same bound does not hold in the general case.
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If our sequence a−N+1, . . . , aN−1 satisfies a−n = ān then the corresponding
operator A is self-adjoint. If A = Aϕ in this case, then also A = AReϕ . So, to find the
infimum of interest, we need only consider real ϕ such that A = Aϕ . In that case we
can write ϕ = h + h̄ with h in H2 , and with a0

2 + a1z + · · ·+ aN−1zN−1 as its Taylor
polynomial of order N − 1 at the origin. We obtain the following questions:

Given a self-adjoint Toeplitz matrix (aj−k)N−1
j,k=0 , what is the infimum of 2‖Re h‖∞

over all functions h in H2 with power series of the form a0
2 + a1z + · · ·+ aN−1zN−1 +

O(zN)? What is the supremum of that infimum under the condition that the matrix
(aj−k)N−1

j,k=0 have unit norm?

The next theorem answers these questions for the case N = 2 . The method
of proof seems not to generalize easily to larger N . We note that the norm of the

two-by-two Toeplitz matrix

(
a b̄
b a

)
(a ∈ R) equals |a| + |b| .

THEOREM 7.2. Let a be a real number and b a nonzero complex number.
(a) If the function h in H2 satisfies h(0) = a/2 , h′(0) = b , and if c =

2‖Reh‖∞ < ∞ , then 2c
π cos πa

2c � |b| . Equality holds for a unique function h .
(b) The supremum of c

|a|+|b| over all a, b, c satisfying 2c
π cos πa

2c = |b| equals π
2

and is attained only for a = 0 .

Proof. (a) The extremal function h will be determined in the course of the proof.
Let h be as described. The strategy is to compose h with a conformal map of the strip
|Re z| < c

2 onto D and then to apply Schwarz’s lemma.
Define the function h0 in D by

h0(z) = − ic
π

Log

(
1 + z
1 − z

)
;

here Log denotes the principal branch of log . The function h0 is a conformal map of
D onto the strip |Re z| < c

2 . A short calculation shows that the inverse h−1
0 is given by

h−1
0 (z) = i tan πz

2c . Let g = h−1
0 ◦ h , a self-map of D . Letting α = g(0) , β = g′(0) ,

we have α = i tan πa
4c and β = πib

2c sec2 πa
4c . The function g−α

1−ᾱg maps D into D and

vanishes at 0 . An application of Schwarz’s lemma gives |g′(0)| � 1 − |α|2 , i.e.,

π|b|
2c

sec2 πa
4c

� 1 − tan2 πa
4c

.

Using the identity (1−tan2 θ)/ sec2 θ = cos 2θ , we can rewrite the preceding inequality
as

2c
π

cos
πa
2c

� |b|, (7.1)

the desired inequality. In particular, c � π|b|
2 .

The conditions h(0) = a
2 , h′(0) = b 	= 0 imply that c > |a| , giving − π

2 < πa
2c <

π
2 . The inequality c � π|b|

2 mentioned above can become an equality only for a = 0 .
If (7.1) becomes an equality then,by the condition for equality in Schwarz’s lemma,

g(z)−α
1−ᾱg(z) = ωz for a unimodular constant ω . One can determine ω by computing the
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derivative of g−α
1−ᾱz at 0 . After a short calculation one finds that ω = ib/|b| . Since

g(z) = ωz+α
1+ᾱωz , the extremal function in case (7.1) reduces to an equality is the function

h(z) = h0

(
ωz + α
1 + ᾱωz

)
,

a conformal map of D onto the strip |Re z| < c
2 .

(b) One easily checks that the function x cos 1
x is strictly increasing on the interval[

2
π ,∞) . It follows that for each a and b there is a unique c for which (7.1) becomes

an equality, When a = 0 , (7.1) becomes an equality for c = π|b|/2 , in which case
c

|a|+|b| = π
2 . It remains to show that c

|a|+|b| < π
2 in other cases where (7.1) is an

equality.
The general case can be reduced to the case a = 1 . Namely, if a, b, c make

(7.1) an equality and ρ is a nonzero real number, then ρa, ρb, |ρ|c also make (7.1) an
equality. It remains to show that c

1+b < π
2 if c > 1 , b > 0 , and 2c

π cos π
2c = b . With

the preceding conditions we have

1 + b
c

=
1
c

+
2
π

cos
π
2c

.

Denoting by f (c) the function on the right side, we have

f ′(c) = − 1
c2

+
1
c2

sin
π
2

= − 1
c2

(
1 − sin

π
2c

)
,

which is negative for c > 1 . Thus f decreases on (1,∞) . Also f (c) → 2
π as c → ∞ .

Hence f (c) > 2
π on (1,∞) , and 1+b

c > 2
π , the desired conclusion. �

COROLLARY. Let u(z) = z2 . Let A be the operator in T (K2
u ) whose matrix with

respect to the monomial basis is

(
0 i
−i 0

)
. If A = Aϕ with ϕ real, then ‖ϕ‖∞ � π

2 .

Equality holds for the unique function ϕ0 given by

ϕ0(eiθ) = Arg

(
1 + eiθ

1 − eiθ

)
=
{ π/2, 0 < θ < π

−π/2, −π < θ < 0.
(7.2)

Proof. The corollary is the special case of the theorem where a = 0 and b = −i .
Part (a) of the theorem gives, with c as defined in the theorem, c � π

2 . By the way c
is defined, this implies ‖ϕ‖∞ � π

2 if ϕ is real and A = Aϕ . By part (a) and its proof,
there is a unique ϕ0 such that ‖ϕ0‖∞ = π

2 and A = Aϕ0 , given by

ϕ0(z) = Re

(
i Log

(
1 + z
1 − z

))
,

from which (7.2) follows. (In the present case, α and ω from the proof of (a) are
given by α = 0 , ω = 1 . Equality is achieved in (7.1) when h = h0 .) �
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8. Shift Invariance

Given a bounded operator A on K2
u , we let QA denote the associated quadratic

form on K2
u :

QA(f ) = 〈Af , f 〉 .

We shall say that A is shift invariant if QA(f ) = QA(Sf ) whenever f and Sf are both in
K2

u . If this happens then, by the polarization identity,we also have 〈Af , g〉 = 〈ASf , Sg〉
whenever f , g, Sf , Sg are in K2

u .
We remark that if f is in K2

u , then Sf is in K2
u if and only if f is orthogonal

to k̃u
0 . This follows from the equality I − S∗uSu = k̃u

0 ⊗ k̃u
0 (Lemma 2.4), according to

which ‖f ‖ = ‖Suf ‖ (= ‖PuSf ‖) if and only if f is orthogonal to k̃u
0 .

THEOREM 8.1. A bounded operator on K2
u belongs to T (K2

u) if and only if it is
shift invariant.

Proof. Suppose the operator A = Aψ+χ̄ is in T (K2
u ) , where ψ and χ are in H2 .

To prove A is shift invariant, it will suffice to show that QA(Sf ) = QA(f ) for all f in
(k̃u

0)
⊥∩K∞

u . (This is so because K∞
u is dense in K2

u , and k̃u
0 is itself in K∞

u , implying
that (k̃u

0)
⊥ ∩ K∞

u is dense in (k̃u
0)

⊥ .)
Let f be in (k̃u

0)
⊥ ∩ K∞

u . Because Su commutes with Aψ and with Aχ , we get

QA(Sf ) = 〈AψSuf , Suf 〉 + 〈 Suf , AχSuf 〉
= 〈 SuAψ f , Suf 〉 + 〈 Suf , SuAχ f 〉
= 〈Aψ f , S∗uSuf 〉 + 〈 S∗uSuf , Aχ f 〉 .

Because Suf = Sf we have S∗uSuf = f , so the right side reduces to 〈Aψ+χ̄f , f 〉 =
QA(f ) , which establishes the shift invariance of A .

For the other direction, suppose the bounded operator A on K2
u is shift invariant.

We shall prove A is in T (K2
u ) by showing that A satisfies the criterion in the remark

following the proof of Theorem 4.1.
Let B = A−S∗uASu . The shift invariance of A implies that QB annihilates (k̃u

0)
⊥ :

if the function f in K2
u is orthogonal to k̃u

0 then

QB(f ) = 〈Af , f 〉 − 〈 S∗uASuf , f 〉
= 〈Af , f 〉 − 〈ASf , Sf 〉 = 0.

By the polarization identity, then, 〈Bf , g〉 = 0 whenever f and g are in (k̃u
0)

⊥ ; in
other words, the compression of B to (k̃u

0)
⊥ is the zero operator.

The orthogonal projection in K2
u with range (k̃u

0)
⊥ equals I − c(k̃u

0 ⊗ k̃u
0) , where

c = ‖k̃u
0‖−2

2 . We have, then,

0 = (I − c(k̃u
0 ⊗ k̃u

0))B(I − c(k̃u
0 ⊗ k̃u

0)),

implying that

A − S∗uASu = B = c(k̃u
0 ⊗ B∗k̃u

0) + c(Bk̃u
0 ⊗ k̃u

0) − c2〈Bk̃u
0, k̃

u
0〉 (k̃u

0 ⊗ k̃u
0).
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By Theorem 4.1 and the remark following its proof, A is in T (K2
u) . �

9. u -Compatible Measures

We let K∞+
u denote the space of functions in K2

u that are continuous on D̄ . A
remarkable theorem of A. B. Aleksandrov states that K∞+

u is dense in K2
u ; a clearly

presented proof can be found in [9, Section 8.5 ]. Of course, if dimK2
u is finite then

K2
u = K∞+

u . This is a trivial case as far as the present section goes, so we shall assume
for the remainder of the section that K2

u is infinite dimensional.
The finite positive Borel measure μ on ∂D will be called u -compatible if K∞+

u
is, relative to the K2

u norm, boundedly embedded in L2(μ) . Thus, μ is u -compatible
if there is a positive constant c such that

∫ |f |2dμ � c‖f ‖2
2 for all f in K∞+

u . If
this happens then also

∣∣∫ f ḡdμ
∣∣ � c‖f ‖2‖g‖2 for all f and g in K∞+

u , so, by the
Aleksandrov density theorem, the sesquilinear functional

(f , g) �→
∫

f ḡdμ

on K∞+
u ×K∞+

u extends by continuity to a bounded sesquilinear functional on K2
u×K2

u .
The operator on K2

u that induces the extended sesquilinear functional will be denoted
by Aμ . It is a positive operator on K2

u , of norm at most c , satisfying

〈Aμ f , g〉 =
∫

f ḡdμ

for all f and g in K∞+
u .

THEOREM 9.1. If the measure μ is u -compatible, then the operator Aμ lies in
T (K2

u) .

A lemma is needed.

LEMMA 9.1. K∞+
u ∩ (k̃u

0)
⊥ is dense in (k̃u

0)
⊥ .

Proof. By Aleksandrov’s theorem there is a function h in K∞+
u such that

〈 h, k̃u
0〉 = 1 . Let g belong to (k̃u

0)
⊥ . By Aleksandrov’s theorem, again, there is

a sequence (f n)∞1 in K∞+
u converging in norm to g . Then 〈 f n, k̃u

0〉 → 0 . Thus, the
functions f n − 〈 f n, k̃u

0〉 h lie in K∞+
u ∩ (k̃u

0)
⊥ and converge to g as n → ∞ . �

Proof of Theorem 9.1. By Theorem 8.1, it will suffice to show that the quadratic
form QAμ is shift invariant. By Lemma 9.1, it will suffice for this to show that∫ |Sf |2dμ =

∫ |f |2dμ for all f in K∞+
u ∩ (k̃u

0)
⊥ , which is obviously true because

|Sf | = |f | on ∂D . �
A complex Borel measure ν on ∂D will be called u -compatible if its total

variation |ν| is u -compatible. In that case, just as in the positive case, there is
a corresponding operator Aν in T (K2

u) , defined initially by 〈Aνf , g〉 =
∫

f ḡdν
(f , g ∈ K∞+

u ) . There are some open questions:

Is every operator in T (K2
u) equal to Aν for a u -compatible measure ν ?
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An affirmative answer would be implied by an affirmative answer to the question
whether every operator in T (K2

u ) has a bounded symbol.

Is every positive operator in T (K2
u) equal to Aμ for a positive u -compatible

measure μ ?

Can one characterize the positive u -compatible measures?

Aleksandrov [5] has answered a special case of the last question by characterizing
the positive measures μ on ∂D such that K2

u embeds isometrically in L2(μ) ; these
are the positive u -compatible measures μ such that Aμ = I . Aleksandrov’s result:
K2

u embeds isometrically in L2(μ) if and only if the Poisson integral of μ equals

Re
(

1+uh
1−uh

)
with h a function in the unit ball of H∞ . The next theorem answers

another (and simpler) case of the last question.

THEOREM 9.2. For η a point of ∂D , the point mass δη is u -compatible if and
only if u has an ADC at η .

Proof. One sees immediately that if u has an ADC at η then δη is u -compatible,
and Aδη = ku

η ⊗ ku
η .

For the other direction, assume δη is u -compatible. One could rely here on
a theorem of Aleksandrov [4] which implies that, if the positive measure μ is u -
compatible, then the functions in K2

u have nontangential limits almost everywhere
with respect to μ . In the case μ = δη , this tells us that the functions in K2

u have
nontangential limits at η , which (as noted in Section 2.2.) implies u has an ADC at
η . An alternative approach will be presented.

Since δη is u -compatible, the linear functional f �→ f (η) extends from K∞+
u

to a bounded linear functional on K2
u . Let h be the function in K2

u that induces the
functional. For f and g in K∞+

u we have

〈Aδη f , g〉 = f (η)g(η)

= 〈 (h ⊗ h)f , g〉 ,

from which one concludes (by Aleksandrov’s density theorem) that Aδη = h ⊗ h .
By Theorem 5.1, the rank-one operators in T (K2

u) are the scalar multiples of
the operators ku

λ ⊗ k̃u
λ and k̃u

λ ⊗ ku
λ with λ in D , and the scalar multiples of the

operators ku
η′ ⊗ ku

η′ , with η′ a point of ∂D at which u has an ADC . A simple

argument shows that, for λ in D , the functions ku
λ and k̃u

λ are linearly independent
except when u is a particular Blaschke factor, a case excluded at the beginning of
the section by the assumption that K2

u is infinite dimensional. It must be, then, that
h is a scalar multiple of ku

η′ for some η′ on ∂D at which u has an ADC . It
remains to prove that η′ = η . By Lemma 9.2 below, if η′ 	= η then there is
a function f in K∞+

u such that f (η′) 	= 0 = f (η) . Since f (η) = 0 we have
〈Aδη f , f 〉 = |f (η)|2 = 0 , implying that Aδη f = 0 , but since f (η′) 	= 0 we have
Aδη f = const.(ku

η′ ⊗ ku
η′)f = const. f (η′))ku

η′ 	= 0 , a contradiction. �
COROLLARY. If the positive u -compatible measure μ has a point mass at the point

η of ∂D , then u has an ADC at η .
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Proof. Under the hypotheses δη is u -compatible, and Theorem 9.2 applies. �

LEMMA 9.2. If η and η′ are distinct points of ∂D , then there is a function f in
K∞+

u such that f (η′) 	= 0 = f (η) .

Proof. Choose a linearly independent pair f 1, f 2 of functions in K∞+
u . If the pairs

(f 1(η), f 1(η′)) , (f 2(η), f 2(η′)) are linearly independent, then a linear combination of
f 1 and f 2 has the desired property. In the contrary case there is a nontrivial linear
combination f 3 of f 1 and f 2 such that f 3(η) = f 3(η′) = 0 . Applying a suitable
power of S∗ to f 3 , we obtain a function f 4 in K∞+

u such that f 4(η) = f 4(η′) = 0 and
f 4(0) 	= 0 . The function

f 5 = S∗f 4 −
(

(S∗f 4)(0)
f 4(0)

)
f 4

is then in K∞+
u and satisfies f 5(0) = 0 , f 5(η) = −η̄f 4(0) , f 5(η′) = −η̄′f 4(0) , and the

function f 6 = S∗f 5 is in K∞+
u and satisfies f 6(η) = −η̄2f 4(0) , f 6(η′) = −η̄′2f 4(0) .

A linear combination of f 5 and f 6 has the desired property. �

10. Modified Compressed Shifts

The compressed shift Su agrees with S on the subspace (k̃u
0)

⊥ of K2
u , and it maps

k̃u
0 to −u(0)ku

0 (see Lemma 2.2(a)). For c a complex number, we define the operator
Su,c by Su,c = Su + c(ku

0 ⊗ k̃u
0) . Thus Su,c , being the sum of two operators in T (K2

u) , is
itself in T (K2

u ) . It agrees with S on (k̃u
0)

⊥ and maps k̃u
0 to (c(1− |u(0)|2)− u(0))ku

0

(since ‖k̃u
0‖2

2 = ‖ku
0‖2

2 = 1 − |u(0)|2 ).
The next theorem extends the criterion from Theorem 4.1 for an operator to belong

to T (K2
u) .

THEOREM 10.1. Let c be a complex number. The bounded operator A on K2
u

belongs to T (K2
u) if and only if there are functions ψ and χ in K2

u such that

A − Su,cAS∗u,c = (ψ ⊗ ku
0) + (ku

0 ⊗ χ).

Proof. A calculation gives

A − SuAS∗u = A − Su,cAS∗u,c

+c(ku
0 ⊗ SuA

∗k̃u
0) + c̄(SuAku

0k̃
u
0 ⊗ ku

0)

+|c|2〈Ak̃u
0, k̃

u
0〉 (ku

0 ⊗ ku
0),

showing that the criterion in this theorem and the one in Theorem 4.1 imply each other.
�

COROLLARY. If the bounded operator A on K2
u commutes with Su,c for some c ,

then A belongs to T (K2
u) .

Proof. A calculation, using the equality Suk̃u
0 = −u(0)ku

0 , gives

I − Su,cS
∗
u,c = (|1 + cu(0)|2 − |c|2)(ku

0 ⊗ ku
0). (10.1)
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Hence, if ASu,c = Su,cA , then

A − Su,cAS∗u,c = A(I − Su,cS
∗
u,c)

= (|1 + c̄u(0)|2 − |c|2)(Aku
0 ⊗ ku

0),

and it follows by the theorem that A is in T (K2
u) . �

Recall from above that the operator Su,c maps k̃u
0 to (c(1 − |u(0|2) − u(0))ku

0 .
The operator Su,c agrees with S on (k̃u

0)
⊥ and maps (k̃u

0)
⊥ isometrically onto (ku

0)
⊥ .

If c is such that c(1− |u(0)|2)− u(0) has unit modulus, then Su,c is an isometry of K2
u

onto itself, in other words, a unitary operator. For |α| = 1 , we let cα denote the value
of c such that c(1 − |u(0)|2) − u(0) = α , namely cα = (α + u(0))/(1 − |u(0)|2) ,
and we let Uα denote the unitary operator Su,cα . The operators Uα were first studied
by D. N. Clark [10] who, in particular, found concrete spectral representations for them,
and noted that they are the only rank-one unitary perturbations of Su . The following
section is devoted to background material on Clark’s unitary perturbations.

By equality (10.1) from the preceding proof, the numbers cα satisfy |cα | =
|1 + cαu(0)| , which one can easily check directly; in fact, 1 + cαu(0) = α c̄α .

11. Clark’s Unitary Perturbations

This section contains background on the operators Uα , including Clark’s spectral
representation and mention of subsequent results of Aleksandrov and A. G. Poltoratski.
Some proofs are included.
11.1. Clark Measures. For α on ∂D we let μα be the measure on ∂D whose
Poisson integral is the real part of the function α+u

α−u . Thus, we have the Herglotz
integral representation

α + u(z)
α − u(z)

=
∫

ζ + z
ζ − z

dμα(ζ) + i Im
α + u(0)
α − u(0)

(|z| < 1). (11.1)

The function Re α+u
α−u = 1−|u|2

|α−u|2 has the nontangential limit 0 almost everywhere (with
respect to m ) on ∂D , implying that μα is a singular measure. It also has nontangential
limit ∞ almost everywherewith respect to μα , implying that u has nontangential limit
α almost everywhere with respect to μα . The measures μα are thus mutually singular.

Aleksandrov [3] proved that the measures μα form a disintegration of Lebesgue
measure: one has

m =
∫

μαdm(α)

in the sense that ∫
f dm =

∫ (∫
f dμα

)
dm(α) (11.2)

for every continuous function f on ∂D . While the proof of this is not difficult,
Aleksandrov also established the deeper result that (11.2) extends to L1 functions: if
f is an integrable Borel function on ∂D then f is in L1(μα) for almost every α , and
(11.2) holds. Full details can be found in [9, pp. 212–217].
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11.2. Clark’s Transforms. A key step in Clark’s analysis of the operators Uα is the
recognition that, for each α , there is a natural isometry, involving Cauchy integrals,
mapping L2(μα) onto K2

u . The Cauchy integral K ν of the finite complex Borel
measure ν on ∂D is defined by

(K ν)(z) =
∫

1

1 − ζ̄z
dν(ζ).

The integral on the right is well defined for z off the support of ν , but here our concern
is |z| < 1 . We shall also be concerned with the case where ν is singular. In that case
K ν is zero only if ν = 0 . In fact, the nth Taylor coefficient of K ν at the origin is∫
ζ̄ndν(ζ) . If this vanishes for all n , and ν is singular, the F. and M. Riesz theorem

implies that ν = 0 .
For |α| < 1 we define the linear map Vα : L2(μα) → H(D) by Vαq = (1 −

ᾱu)K (qμα) .

THEOREM A (Clark [10]). The map Vα is an isometry of L2(μα) onto K2
u .

Proof. For λ and z in D we reexpress the inner product

〈 kλ , kz〉 L2(μα ) =
∫

1

(1 − λ̄ ζ)(1 − zζ̄)
dμα(ζ). (11.3)

The integrand in the integral on the right can be rewritten as

1

2(1 − λ̄z)

[
ζ̄ + λ̄
ζ̄ − λ̄

+
ζ + z
ζ − z

]
,

so that, by (11.1),

〈 kλ , kz〉 L2(μα ) =
1

2(1 − λ̄z)

[
ᾱ + u(λ )
ᾱ − u(λ )

+
α + u(z)
α − u(z)

]
.

After a bit of algebra one finds that

〈 kλ , kz〉 L2(μα ) = (1 − αu(λ ))−1(1 − ᾱu(z))−1ku
λ (z). (11.4)

Looking back at (11.3), we see (11.4) tells us first that Vαkλ = (1 − αu(λ ))−1ku
λ ,

and second that 〈 kλ , kz〉 L2(μα ) = 〈Vαkλ , Vαkz〉 . Hence Vα maps the linear span of
the functions kλ in L2(μα) isometrically onto the linear span of the functions ku

λ in
K2

u . A limit argument then shows Vα is an isometry from the closure of the first span
onto the closure of the second span. The latter closure is clearly K2

u . The former one is
L2(μα) , for a function q in L2(μα) orthogonal to it satisfies K (qμα) = 0 , implying
(as remarked above) that q = 0 . �

It should be noted that Clark’s original work has been vastly generalized, for
example in [6], and the treatment here has benefited from this subsequentwork, although
the essentials are already in [10]. Instead of Vα , Clark worked with V−1

α , which, by
a remarkable theorem of Poltoratski [14], is a standard boundary map. Poltoratski’s
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theorem: Each function f in K2
u has a nontangential limit μα -almost everywhere on

∂D coinciding with V−1
α f .

Because u has the nontangential limit α almost everywhere with respect to μα ,
Poltoratski’s theorem is easy to verify for the functions ku

λ and k̃u
λ . From this alone one

can see that V−1
α transforms the conjugation C on K2

u into the conjugation q(ζ) �→
αζ̄q(ζ) on L2(μα) .

11.3. Transform of Su . We let Zα denote the canonical multiplication operator on
L2(μα) , the operator of multiplication by the coordinate function.

LEMMA 11.1. V−1
α SuVα = Zα − (1 − αu(0))(1 ⊗ Z∗

α1) .

Proof. We shall establish the corresponding expression for V−1
α S∗uVα , from which

the desired one follows immediately. Working with S∗u is convenient because S∗u =
S∗ | K2

u , and S∗ interacts with the Cauchy integral in a simple way:

(S∗K ν)(z) =
∫

ζ̄
1 − ζ̄z

dν(ζ). (11.5)

We shall need the expressions for V−1
α ku

0 and V−1
α k̃u

0 . Setting λ = 0 in the expression
for Vαkλ found earlier, we see that V−1

α ku
0 is the constant function (1 − αu(0)) .

Applying a conjugation, we get V−1
α k̃u

0 = α(1 − ᾱu(0))Z∗
α1 .

Let q be a function in L2(μα) . Using (11.5) we get

S∗uVαq = S∗((1 − ᾱu)K (qμα))
= (1 − ᾱu)S∗K (qμα) + (K (qμα))(0)S∗(1 − ᾱu)

= VαZ∗
αq − ᾱ〈 q, 1〉 L2(μα )k̃

u
0.

Applying V−1
α to this equality and using the expression above for V−1

α k̃u
0 , we obtain

the desired equality. �

11.4. Clark’s Spectral Representation. From the expressions for V−1
α ku

0 and V−1
α k̃u

0
found in the preceding subsection, we have

V−1
α (ku

0 ⊗ k̃u
0)Vα = (V−1

α ku
0 ⊗ V−1

α k̃u
0)

= ᾱ(1 − αu(0))2(1 ⊗ Z∗
α1).

This together with Lemma 11.1 enables us to determine how the operator Su,c is
transformed under V−1

α :

V−1
α Su,cVα = Zα + (1 − αu(0))(c(ᾱ − u(0)) − 1)(1 ⊗ Z∗

α1).

Thus, for the particular value c = (ᾱ − u(0))−1 we have V−1
α Su,cVα = Zα , so Su,c ,

being unitary, must equal Uβ for some β on ∂D . We denote this β by βα . To find
the expression for βα in terms of α we note that, for c = (ᾱ − u(0))−1 , we have

βαku
0 = Su,ck̃

u
0 = (c(1 − |u(0)|2) − u(0))ku

0

=
(

1 − |u(0)|2
ᾱ − u(0)

− u(0)
)

ku
0 =

(
1 − ᾱu(0)
ᾱ − u(0)

)
ku
0.
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Hence

βα =
1 − ᾱu(0)
ᾱ − u(0)

=
α − u(0)
1 − u(0)α

.

THEOREM B (Clark [10]). V−1
α UβαVα = Zα .

12. Clark’s Unitary Perturbations – The Sequel

Let α be a point of ∂D , and let βα = α−u(0)
1−u(0)α

, as in Clark’s Theorem B, which

says V−1
α UβαVα = Zα . By the corollary to Theorem 10.1, the commutant of Uβα is

contained in T (K2
u ) . That commutant is the transform under Vα of the commutant of

Zα , which consists of themultiplication operators on L2(μα) induced by the functions in
L∞(μα) . Thus T (K2

u) contains the von Neumann algebra {q(Uβα ) : q ∈ L∞(μα)} .
The measure μα is u -compatible; in fact, it is one of the measures μ , characterized

by Aleksandrov, with the property that Aμ = I (see Section 9.). So, if q is in L∞(μα)
then qμα is also u -compatible. For f and g in K2

u , thanks to Poltoratski’s theorem,
we can write

〈 q(Uβα )f , g〉 = 〈 qf , g〉 L2(μα ) =
∫

f ḡqdμα

= 〈Aqμα f , g〉 .

Thus q(Uβα ) = Aqμα . The map q �→ Aqμα is a ∗ -isomorphism of L∞(μα) onto the
commutant of Uβα .

In a certain very weak sense, the Clark unitary operators generate T (K2
u) . Let

Aϕ be an operator in T (K2
u) , where ϕ = ψ + χ̄ with ψ , χ in K2

u . By Poltoratski’s
theorem, for α in ∂D , the functions ψ and χ extend via boundary limits to functions in
L2(μα) , coinciding respectively with V−1

α ψ and V−1
α χ . The function ϕ thus similarly

extends. We can form the (possibly unbounded) operator ϕ(Zα) , which transforms
under Vα to ϕ(Uβα ) . For f and g in K∞+

u we use Aleksandrov’s disintegration
theorem to obtain

〈Aϕ f , g〉 =
∫

ϕf ḡdm =
∫ [∫

ϕf ḡdμα
]

dm(α)

=
∫
〈ϕ(Zα f , g〉 L2(μα )dm(α).

Since 〈ϕ(Zα)f , g〉 L2(μα ) = 〈ϕ(Uβα )f , g〉 , we get

〈Aϕ f , g〉 =
∫
〈ϕ(Uβα )f , g〉 dm(α). (12.1)

Thus,

Aϕ =
∫

ϕ(Uβα )dm(α) (12.2)

in the sense that (12.1) holds for all f and g in K∞+
u .

To illustrate the last result we consider the case ϕ = ku
η+ k̄u

η , where η is a singular
point of u on ∂D at which u has an ADC . For this ϕ we have Aϕ = I + (ku

η ⊗ ku
η)
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(see the proof of Theorem 5.1(b)). It will be shown that the operator ϕ(Uβα ) is
unbounded except for two values of α , indicating that life is more complicated than
the neat equality (12.2) suggests.

It is known that, because u has an ADC at η , the measure μu(η) has a mass point
at η of magnitude 1/|u′(η)| , while μα({η}) = 0 for α 	= u(η) (see for example
[16, pp. 51–52]. We first show that ϕ belongs to L∞(μα) for α = u(η) and for
α = −u(η) .

The value of ku
η at η is |ϕ′(η)| . Hence ϕ(η) = 2|ϕ′(η)| . However, if u(ζ) =

u(η) and ζ 	= η , then

ku
η(ζ) =

1 − u(η)u(ζ)
1 − η̄ζ

=
1 − u(η)u(η)

1 − η̄ζ
= 0,

and so ϕ(ζ) = 0 . As a function in L∞(μu(η)) , then, ϕ equals 2|ϕ′(η)| times the
characteristic function of the singleton {η} . Since μu(η) has a mass point at η of
magnitude 1/|ϕ′(η)| , we have ϕμu(η) = 2δη . As Aδη = ku

η ⊗ ku
η , we see that

ϕ(Uβu(η) ) = 2(ku
η ⊗ ku

η) .
If u(ζ) = −u(η) then

ϕ(ζ) = 2 Re

(
1 − u(η)u(ζ)

1 − η̄ζ

)
= 4 Re

1
1 − η̄ζ

= 2.

Hence, as a function in L2(μ−u(η)) , ϕ is the constant function 2 , and we have
ϕ(Uβ−u(η) ) = 2I . (Note, incidentally, that Aϕ is the average of ϕ(Uβu(η) ) and
ϕ(Uβ−u(η) ) .)

Finally, assume α is different for u(η) and from −u(η) . We show that ϕ is not
in L∞(μα) , and hence that ϕ(Uβα ) is unbounded. If u(ζ) = α then

ϕ(ζ) =
1 − u(η)α

1 − η̄ζ
+

1 − u(η)ᾱ
1 − ηζ̄

= 1 − u(η)α
1 − η̄ζ

− u(η)ᾱ
1 − ηζ̄

,

so it will suffice to show that the function

ϕ1(ζ) =
u(η)α
1 − η̄ζ

+
u(η)ᾱ
1 − ηζ̄

is not in L∞(μα) . A bit of algebra gives

ϕ1(ζ) =
Re(u(η)ᾱ(1 − η̄ζ))

Re(1 − η̄ζ)
.

We write ζ = eiθ , η = eiθ0 , u(η)ᾱ = eit0 . Since α 	= ±u(η) , we can assume
0 < |t0| < π . Then, by an easy calculation,

1 − η̄z = −2i exp

(
i

(
θ − θ0

2

))
sin

(
θ − θ0

2

)
,
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giving

Re(1 − η̄ζ) = 2 sin2

(
θ − θ0

2

)
.

Similarly,

u(η)ᾱ(1 − η̄ζ) = −2i exp

(
i

(
θ − θ0

2
+ t0

))
sin

(
θ − θ0

2

)
,

giving

Re(u(η)ᾱ(1 − η̄ζ)) = 2 sin

(
θ − θ0

2
+ t0

)
sin

(
θ − θ0

2

)
.

It follows that

ϕ1(ζ) = sin

(
θ − θ0

2
+ t0

)/
sin

(
θ − θ0

2

)
.

As θ → θ0 , i.e., as ζ → η , the denominator in the fraction on the right tends to 0 , and
the numerator tends to sin t0 , which is not 0 ., The fraction thus tends to ∞ . Since η
is a singularity of u it lies in the support of the measure μα . The desired conclusion,
that ϕ1 is not in L∞(μα) , follows.

Question: Is T (K2
u ) generated by the Clark unitaries in a stronger sense than

the one described above?

13. Crofoot’s Transforms

For w in D we let uw denote the inner function u−w
1−w̄u . We define the linear map

Jw : K2
u → H2 by Jwf =

√
1 − |w|2f /(1 − w̄u) . The following theorem is a special

case of a result of R. B. Crofoot [11].

THEOREM 13.1. Jw is an isometry of K2
u onto K2

uw
.

Proof. We show first that JwK2
u ⊂ K2

uw
. Let f be in K2

u and g in H2 . We need to
show that 〈 Jwf , uwg〉 = 0 , which amounts to showing that the Toeplitz operator with
symbol ūw/(1 − w̄u) annihilates K2

u . Since, on ∂D ,

ūw

1 − w̄u
=

1
uw(1 − w̄u)

=
1

u − w
=

ū
1 − wū

,

the Toeplitz operator in question equals T1/(1−wū)Tū . Since Tū annihilates K2
u , the

desired conclusion follows.
By the same token, since u = uw+w

1+w̄uw
, the map g �→ √

1 − |w|2g/(1 + w̄uw) on
K2

uw
has range in K2

u . But that map inverts Jw :

(1 − w̄u)(1 + w̄uw) = (1 − w̄u)
(

1 + w̄

(
u − w
1 − w̄u

))
= 1 − |w|2.

Hence JwK2
u = K2

uw
.
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To prove Jw is an isometry, let f and g belong to K2
u . We have

〈 Jwf , Jwg〉 = (1 − |w|2)
〈

f
1 − w̄u

,
g

1 − w̄u

〉
= (1 − |w|2)

∞∑
j,k=0

w̄jwk〈 ujf , ukg〉 .

If j < k then 〈 ujf , ukg〉 = 〈 ūk−jf , g〉 = 0 since ūf is orthogonal to H2 . Similarly,
the inner product is 0 if j > k , while if j = k it equals 〈 f , g〉 . Hence

〈 Jwf , Jwg〉 = (1 − |w|2)
∞∑
j=0

|w|2j〈 f , g〉 = 〈 f , g〉 .

�

THEOREM 13.2. JwT (K2
u)J

−1
w = T (K2

uw
) .

In other words, the Crofoot transform of a truncated Toeplitz operator is a truncated
Toeplitz operator. A few lemmas are needed

LEMMA 13.1. The transformation Jw intertwines the conjugation on K2
u with the

conjugation on K2
uw

.

Proof. For f in K2
u we have (on ∂D )

Jwf̃ =
√

1 − |w|2uz̄ ¯f /(1 − w̄u)

=
√

1 − |w|2
(

uwuz̄ ¯f
u − w

)
=
√

1 − |w|2
(

uwz̄

( ¯f
1 − wū

))
= (Jwf )∼.

�

LEMMA 13.2. For λ in D ,

J−1
w kuw

λ =

√
1 − |w|2

1 − wu(λ )
ku
λ , J−1

w k̃u
λ =

√
1 − |w|2

1 − w̄u(λ )
k̃uw
λ .

Proof. Because of Lemma 13.1, it will suffice to establish the first equality. For f
in K2

u ,

〈 f , ku
λ 〉 = f (λ ) =

1 − w̄u(λ )√
1 − |w|2 (Jwf )(λ ) =

1 − w̄u(λ )√
1 − |w|2 〈 Jwf , kuw

λ 〉

=

〈
f ,

1 − wu(λ )√
1 − |w|2 J−1

w kuw
λ

〉
.

�
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LEMMA 13.3.

J−1
w S∗uw

Jw = S∗u +
w̄

1 − w̄u(0)
(k̃u

0 ⊗ ku
0)

J−1
w SuwJw = Su +

w

1 − wu(0)
(ku

0 ⊗ k̃u
0).

Proof. The two equalities are adjoints of each other, so it will suffice to establish

the first one. We first need to determine S∗
(

1
1−w̄u

)
. We have

S∗
(

1
1 − w̄u

)
= S∗

(
1

1 − w̄u
+ 1

)
= S∗

(
w̄u

1 − w̄u

)
= w̄uS∗

(
1

1 − w̄u

)
+

w̄
1 − w̄u(0)

S∗u.

Consequently

S∗
(

1
1 − w̄u

)
=
(

w̄
1 − w̄u(0)

)
k̃u
0

1 − w̄u
.

Using this we get, for f in K2
u ,

S∗wJwf =
√

1 − |w|2S∗
(

f
1 − w̄u

)
=

√
1 − |w|2
1 − w̄u

S∗f +
√

1 − |w|2f (0)S∗
(

1
1 − w̄u

)
= JwS∗u f +

√
1 − |w|2f (0)

(
w̄

1 − w̄u(0)

)
k̃u
0

1 − w̄u

= JwS∗u f +
w̄f (0)

1 − w̄u(0)
Jwk̃u

0

= Jw

(
S∗u +

w̄
1 − w̄u(0)

(k̃u
0 ⊗ ku

0)
)

f .

�
Proof of Theorem 13.2. Let the operator B belong to T (K2

uw
) , and let A =

J−1
w BJw . We shall show that A is in T (K2

u) , which will give the theorem, by verifying
the criterion in Theorem 10.1.

Since B is in T (K2
uw

) , there are functions ψ and χ in K2
uw

such that

B − SuwBS∗uw
= (ψ ⊗ kuw

0 ) + (kuw
0 ⊗ χ).

By Lemma 13.3, J−1
w SuwJw = Su,c where c = w

1−wu(0)
. Therefore

A − Su,cAS∗u,c = (J−1
w ψ ⊗ J−1

w kuw
0 ) + (J−1

w kuw
0 ⊗ J−1

w χ).
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By Lemma 13.2 the right side equals√
1 − |w|2

1 − wu(0)
(J−1

w ψ ⊗ ku
0) +

√
1 − |w|2

1 − w̄u(0)
(ku

0 ⊗ J−1
w χ).

By Theorem 10.1, A is in T (K2
u ) . �

14. More on the Operators Su,c

In this section we determine the spectra of the operators Su,c . It is convenient to
adopt an alternative notation, suggested by Lemma 13.3. For w a complex number
different from 1/u(0) we define the operator Au,w in T (K2

u) by

Au,w = Su +
w

1 − u(0)w
(ku

0 ⊗ k̃u
0).

Thus Au,w = Su,c with c = w/(1 − u(0)w) . When |w| = 1 one has Au,w = Uβ with

β = w−u(0)
1−u(0)w

(a Clark unitary).

The spectrum of Su is given in Lemma 2.5. The essential spectrum is the set of
singularities of u on ∂D . The only other points in the spectrum are the zeros of u in
D , if there are any, each of which is an eigenvalue of unit multiplicity. The operators
Au,w , being compact perturbations of Su , have the same essential spectrum. If λ is
a spectral point of Au,w not in the essential spectrum, then Au,w − λ I is a Fredholm
operator, of index 0 by C -symmetry, so λ must be an eigenvalue.

We consider first the case |w| < 1 . In this case Lemma 13.3 tells us that Au,w

is unitarily equivalent under Crofoot’s transformation Jw to Suw . By Lemma 2.5, the
eigenvalues of Su,w are the zeros of uw , i.e., the points λ in D where u(λ ) = w ,
each an eigenvalue unit multiplicity. Note that, by the corollary to Theorem 10.1,
the commutant of Au,w belongs to T (K2

u) . That commutant is mapped by Crofoot’s
transformation to the commutant of Suw , which by the commutant lifting theorem equals
{h(Suw) : h ∈ H∞} , and is isometrically isomorphic to H∞/uwH∞ .

When |w| = 1 we have, as noted above, Au,w = Uβ with β = w−u(0)
1−u(0)w

. By

Clark’s Theorem B, Uβ is unitarily equivalent under Clark’s transformation Vw to the
multiplication operator Zw on L2(μw) . The spectrum of Au,w is thus the support of μw ,
which consists of the set of singularities of u on ∂D together with the set of regular
points of u on ∂D that belong to supp μw . From (11.1) one sees that a point of the
latter kind is a regular point of u on ∂D where u takes the value w , hence (as pointed
out in Section 12.) a mass point of μw (of magnitude 1/|u′(w)| ). The point is therefore
an eigenvalue of Au,w of unit multiplicity.

The following lemma reduces the case |w| > 1 to the case |w| < 1 .

LEMMA 14.1. If |w| < 1 and w 	= u(0) , then A∗
u,1/w̄ = A−1

u,w .

Proof. Let w be as described. We know from the discussion above that 0 is
not in the spectrum of Au,w , i.e., Au,w is invertible. Let c be any complex number.



ALGEBRAIC PROPERTIES OF TRUNCATED TOEPLITZ OPERATORS 525

We compute Au,wS∗u,c and show we get the identity when c = 1
w̄−u(0)

, i.e., when

Su,c = Au,1/w̄ . We have

Au,wS∗u,c =
(

Su +
w

1 − u(0)w
(ku

0 ⊗ k̃u
0)
)

(S∗u + c̄(k̃u
0 ⊗ ku

0))

= I −
[
1 + c̄u(0) +

wu(0)
1 − u(0)w

− c̄w(1 − |u(0)|2)
1 − u(0)w

]
(ku

0 ⊗ ku
0).

After some algebra the expression in square brackets on the right side reduces to

1

1 − u(0)w
(1 − c̄(w − u(0))),

so we get Au,wS∗u,c = I when c = 1/(w̄ − u(0)) . �
Now suppose |w| > 1 , w 	= 1/u(0) . By Lemma 14.1, A∗

u,w is the inverse of
Au,1/w̄ . We know that the spectral points of Au,1/w̄ not in the essential spectrum are
the points λ such that u(λ ) = 1/w̄ . The corresponding points in the spectrum of the
adjoint of the inverse of Au,1/w̄ are thus the points λ such that u(1/λ̄) = 1/w̄ . But

since u is an inner function it satisfies u(1/z̄) = 1/u(z) . We conclude that the points in
the spectrum of Au,w not in the essential spectrum are the points λ such that u(λ ) = w .
As in the previous cases, each such point is an eigenvalue of unit multiplicity.

The following theorem summarizes the results on the spectrum of Au,w .

THEOREM 14.1. Let w be a complex number different from 1/u(0) . The essential
spectrum of Au,w is the set of singular points of u on ∂D . A regular point λ of u
lies in the spectrum if and only if u(λ ) = w , in which case λ is an eigenvalue of unit
multiplicity.

The preceding theoremdoes not apply in one case, the case Su,c with c = −1/u(0) .
This is the limiting case of Au,w where u(0) 	= 0 , and w → ∞ . A calculation like that
in the proof of Lemma 14.1 (but simpler) shows that Su − 1

u(0)
(ku

0 ⊗ k̃u
0) is the inverse

of S∗u . Its spectral points outside the essential spectrum are thus the points λ such that
u(1/λ̄) = 0 , in other words, the poles to u .
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