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WEAK SIMULTANEOUS TRIANGULARIZATION

–– A DETERMINANT CONDITION

CHEN DUBI

(communicated by M. Neumann)

Abstract. We introduce and study the notion of weak triangularization for a set of N matrices,
which is a weaker version of simultaneous triangularization. We prove that for the special case
of 2-by-2 matrices, weak triangularization is equivalent to simultaneous triangularization.

1. Introduction

1.1. Simultaneous triangularization

Let A = {A1, A2, . . . AN} be a set of N matrices in Cn×n . We say that A admits
a simultaneous triangularization if there exists a matrix T such that the matrix

Ãj = T−1AjT

is upper triangular for every Aj ∈ A .
The problem of determining whether or not a set of matrices admits a simultaneous

triangularization is a long studied problem. In particular, we refer to the work of Radjavi
& Rosenthal [3]. One well known necessary and sufficient condition is the following
(Radjavi [4]):

THEOREM 1.1. A set of matrices A = {A1, A2, . . .AN} has a simultaneous trian-
gularization if and only if for every 1 � i, j, � � N

trace AiAjA� = trace A�AjAi.

It is also relatively easy to prove that every set of commuting matrices has a
simultaneous triangularization — yet by no means is this condition a sufficient one (as
every set of non commuting triangular matrices forms a counterexample). See [2] for
details.

In the present study, we look at a more relaxed property than simultaneous triangu-
larization; a property we refer to as weak triangularization, which will be defined later
in this section. To properly motivate the definition, we first start with the following:
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THEOREM 1.2. Let A = {A1, A2, . . .AN} be a set of N matrices in Cn×n , then
the following two conditions are equivalent:

1. A has a simultaneous triangularization.
2. There exists a set of upper triangular matrices Ã = {Ã1, Ã1, . . . ÃN} and an

invertible matrix T such that:

(I −
N∑

j=1

zjAj)−1 = T−1(I −
N∑

j=1

zjÃj)−1T (1.1)

Proof. Assume first A has a simultaneous triangularization. Then:

(I −
N∑

j=1

zjAj)−1 = (T−1T −
N∑

j=1

zjT
−1ÃjT)−1

= (T−1(I −
N∑

j=1

zjÃj)T)−1 = T−1(I −
N∑

j=1

zjÃj)−1T

as stated.
Assume next equation (1.1) holds. Expanding both sides into power series (for

sufficiently small z ) and observing the linear terms implies that

Aj = T−1ÃjT

which completes the proof. �
At this point, two remarks are due:
1. From Theorem 1.2, the following necessary condition for simultaneous trian-

gularization is easy to obtain:

PROPOSITION 1.3. If A has a simultaneous triangularization, then the polynomial

Det(I −
N∑

j=1

zjAj)

is a product of linear terms.

The polynomial Det(I − ∑N
j=1 zjAj) will play a key role in our further analysis.

Hereon, we will refer to Det(I −∑N
j=1 zjAj) as the characteristic polynomial of A and

denote

Det(I −
N∑

j=1

zjAj) = PA(z).

2. Since both statements in Theorem 1.2 are equivalent, both statement can be
chosen to define simultaneous triangularization.

This last statement is the motivation for the next definition, which is the key notion
in our study:

DEFINITION 1.4. Let A = {A1, A2, . . .AN} be a tuple of N matrices in Cn×n .
We say that A has a weak triangularization if there exists a tuple of upper triangular
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matrices Ã = {Ã1, Ã2, . . . , ÃN} (Ak ∈ Cn1×n1 ), and T ∈ Cn1×n, T� ∈ Cn×n1 such
that:

(I −
N∑

j=1

zjAj)−1 = T�(I −
N∑

j=1

zjÃj)−1T, and T�T = In.

The main objective in this study is to prove the following theorem

THEOREM 1.5. Let A = {A1, A2, . . . AN} be a tuple of N matrices in Cn×n , then
A has a weak triangularization if and only if the characteristic polynomial PA(z) is a
product of linear terms.

We remark that following the arguments of Theorem 1.2, if A = {A1, A2, . . .AN}
has a weak triangularization, then there for 1 � j � N we have that

Aj = T�ÃjT. (1.2)

However, the existence of an upper triangular set Ã = {Ã1, Ã2, . . . , ÃN} and a left
invertible matrix T satisfying equality (1.2) do not, in general, imply weak triangular-
ization.

The paper is arranged as follows: hereon, Section 1. is devoted to provide the
proper background for the proof of Theorem 1.5, which will be presented in Section 2..
In Section 3. we show that for the special case of a tuple of N 2-by-2 matrices, weak
triangularization is equivalent to simultaneous triangularization.

Throughout the study, we will use the following two notations : for a Cp×n matrix
valued function F(z) , we denote by S(F) the linear span of the columns of F(z) . In
other words, we denote:

S(F) = {F(z)ξ | ξ ∈ Cn} .

For a matrix valued function F(z) : CN → Cn×n , we denote by MF(z) the algebraic
adjoint of F(z) .

1.2. Cramer’s rule

Let P(z) be a matrix polynomial with values in Cn×n . It is well known that P(z0)
is invertible if and only if DetP(z0) �= 0 , and so, roots of the (scalar) polynomial
Det P(z) are exactly the singular point of P−1(z) .By Cramer’s rule we can write:

P−1(z) =
1

DetP(z)
MP(z).

The following proposition will prove useful later, as we turn to prove Theorem 1.5:

PROPOSITION 1.6. Assume Det P(z) is of the form Det P(z) = p�
1(z)p2(z) and p1

is not a factor of p2 . Then MP(z) is not of the form MP(z) = p�
1(z)Q(z) (notice, here

p1(z) is scalar valued, whereas Q(z) is matrix valued of appropriate dimensions).

Proof. Assume, to arrive at a contradiction, that MP(z) is of the form MP(z) =
p�

1(z)Q(z) . By Cramer’s rule we have that

P−1(z) =
1

Det P(z)
MP(z) =

1
p2(z)

Q(z).
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Since p1(z) is not a factor of p2(z) , there exists z1 such that p1(z1) = 0 and p2(z1) �= 0 .
Since p2(z1) �= 0 , the matrix 1

p2(z1)
Q(z1) is well defined, and hence P(z1) is invertible.

This serves as a contradiction, since Det P(z1) = 0 . �
In a more simple manner, proposition 1.6 states that none of the irreducible factors

of Det P(z) are "lost" when evaluating the quotient 1
Det P(z)MP(z) .

1.3. Triangular realization of N variable matrix valued function

When thinking of realization of a rational matrix valued function in N complex
variables R(z) , several possibilities come to mined. One possible realization is as a
transfer function of Fornasini-Marchesini linear system, given by

R(z) = D + C(I −
N∑

j=1

zjAj)−1
N∑

j=1

zjBj

(see [6]). Such realizations, as shown in [1], turn to be a general form of realization; that
is, every rational matrix valued function R(z) , analytic at the origin, can be presented as
a transfer function of a Fornasini-Marchesini system. In [5], the problem of determining
whether or not a transfer function R (analytic at the origin) can be realized with
upper triangular state operators {A1, A2, . . . , AN} was addressed, and a necessary and
sufficient criterion was given through the following theorem:

THEOREM 1.7. A rational matrix valued function R(z) can be realized with upper
triangular state operators {A1, A2, . . . , AN} if and only if the complement of the points
of analyticity of R is a finite union of hyperplanes.

2. Proof of Theorem 1.5

Proof of main theorem. Assume first that the characteristic polynomial PA(z) is
a product of linear terms. Using Cramer’s formula for the inverse, this implies that the
set of singular points of the rational function

R(z) = (I −
N∑

j=1

zjAj)−1

is a finite union of hyperplanes (which are exactly the roots of PA(z) ). By Theorem 1.7
R(z) has the realization

R(z) = I + C1(I −
N∑

j=1

A1,jzj)−1
∑
j=1

zjB1,j

here
C1 ∈ Cn×n1 , A1,j ∈ Cn1×n1 , B1,j ∈ Cn1×n

and A1,j is upper triangular for 1 � j � N .



WEAK SIMULTANEOUS TRIANGULARIZATION 531

We denote

R1(z) =
[
C1(I −

∑N
j=1 A1,jzj)−1, (I − ∑N

j=1 zjAj)−1
]
.

Clearly, S(R(z)) ⊆ S(R1(z)) . We define:

Ãj =
[

A1,j B1,j

0n×n1 0n×n

]
and proceed with the following:

R1(z) − R1(0) =
[
C1(I −

∑N
j=1 A1,jzj)−1, (I − ∑N

j=1 zjAj)−1
] − [ C1, I ]

=
[
C1(I −

∑N
j=1 A1,jzj)−1 − C1, C1(I −

∑N
j=1 zjAj)−1

∑N
j=1 B1,j

]
= C1(I −

N∑
j=1

zjAj)−1
[
I − (I − ∑N

j=1 A1,j),
∑N

j=1 B1,j
]

=
[
C1(I −

∑N
j=1 A1,jzj)−1, (I − ∑N

j=1 zjAj)−1
] N∑

j=1

zj

[
A1,j B1,j

0n×n1 0n×n

]

= R1(z)
N∑

j=1

zjÃj.

From the last we have that

R1(z) = R1(0)(I −
N∑

j=1

zjÃj)−1.

Since S(R(z)) ⊆ S(R1(z)) , there exist a matrix T such that

(I −
N∑

j=1

zjAj)−1 = R1(z)T = R1(0)(I −
N∑

j=1

zjÃj)−1T. (2.3)

Taking z = 0 on both sides of (2.3)we have that R1(0)T = I . Upon setting R(0) = T� ,
we have

(I −
N∑

j=1

zjAj)−1 = T�(I −
N∑

j=1

zjÃj)−1T

as stated.
Next, assume that A has a weak triangularization. We denote:

D(z) = I −
N∑

j=1

zjAj, D̃(z) = I −
N∑

j=1

zjÃj.

Using Cramer’s rule, we can the write:

D1(z) =
1

Det D(z)
MD(z) = T�

(
1

Det D̃(z)
M

D̃

)
T =

1

Det D̃(z)
T�M

D̃
T

or
Det D̃

DetD(z)
MD(z) = T�M

D̃
T.
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Since T�M
D̃
T is a polynomial matrix, so is Det D̃

Det D(z)MD(z) , and so all factors of

Det D(z) are factors of Det D̃(z)MD(z) (with the same multiplicity). By Proposition
1.6, this implies that all factors of DetD(z) are factors of Det D̃(z) . Since Ã is upper
triangular, Det D̃(z) is a product of linear terms - and thus Det D(z) is a product of
linear factors. �

3. The special case N = 2

In the final section of this study, we prove the following theorem, which states
the interesting fact that for n = 2 , weak triangularization is equivalent to simultaneous
triangularization.

THEOREM 3.1. A set A = {A1, A2, . . . , AN} of C2×2 matrices has a simultaneous
triangularization if and only if the characteristic polynomial

PA(z) = Det(I −
N∑

j=1

zjAj)

is a product of linear terms.

Proof. Following the remark in Section 1., one direction is trivial. Assume Det(I−∑N
j=1 zjAj) is a product of linear terms. Let us denote

Ai =
[

ai bi

ci di

]
.

We adopt the following notations: we denote

a = (a1, a2, . . . aN), b = (b1, b2, . . . bN), c = (c1, c2, . . . cN), d = (d1, d2, . . . dN),

and for v = (v1, v2, . . . vN) , u = (u1, u2, . . . uN) ∈ CN we denote

〈 v, u〉 =
N∑

j=1

vjuj.

In the following, we assume b �= (0, 0, . . . , 0) and c �= (0, 0, . . . , 0) , for if one of
the two is indeed the zero vector, the statement is trivial.

Through direct calculation we have that the characteristic polynomial PA(z) is
given by:

DetD(z) = (1 − 〈 z, a〉 )(1 − 〈 z, d〉 ) − 〈 z, b〉 〈 z, c〉 .

And so, the characteristic polynomial is a product of linear terms if and only if there
exists v, w ∈ CN such that:

(1 − 〈 z, a〉 )(1 − 〈 z, d〉 ) − 〈 z, b〉 〈 z, c〉 = (1 − 〈 z, v〉 )(1 − 〈 z, w〉 ).

Comparing the linear and quadratic terms on both sides we obtain that

〈 z, a + d〉 = 〈 z, v + w〉 (3.4)

and
〈 z, v〉 〈 z, w〉 = 〈 z, a〉 〈 z, d〉 − 〈 z, b〉 〈 z, c〉 (3.5)

We proceed in several steps:
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Step 1:

Det

[ 〈 z, v − d〉 〈 z, b〉
〈 z, c〉 〈 z, v − a〉

]
= 0

Proof of Step 1. We compute

Det

[ 〈 z, v − d〉 〈 z, b〉
〈 z, c〉 〈 z, v − a〉

]
= 〈 z, v − d〉 〈 z, v− a〉 − 〈 z, b〉 〈 z, c〉

= 〈 z, v〉 2 − 〈 z, v〉 〈 z, a〉 − 〈 z, v〉 〈 z, d〉
+〈 z, d〉 〈 z, a〉 − 〈 z, b〉 〈 z, c〉

= 〈 z, v〉 2−〈 z, v〉 〈 z, a〉−〈 z, v〉 〈 z, d〉+〈 z, v〉 〈 z, w〉
= 〈 z, v〉 (〈 z, v〉 − 〈 z, a〉 − 〈 z, d〉 + 〈 z, w〉 )
= 〈 z, v〉 (〈 z, v + w〉 − 〈 z, a + d〉 ) = 0

as stated.
Step 2: There exists λ such that v − d = λb or v − d = λc .

Proof of Step 2. By Step 1, we have that

〈 z, v − d〉 〈 z, v− a〉 = 〈 z, c〉 〈 z, b〉 (3.6)

Let us denote

V1 = (v − d)⊥ , V2 = (v − a)⊥ , V3 = (b)⊥ , V4 = (c)⊥

Since V1 ∪ V2 and V3 ∪ V4 are the set of roots of the left and right hand side of (3.6)
respectively, it is clear that

V1 ⊆ V3 ∪ V4

PROPOSITION 3.2. V1 = V3 or V1 = V4

Proof. We first notice, since all spaces are finite dimensional of dimension N −1 ,
equality is equivalent to inclusion. And so, to arrive at a contradiction, we assume that
V1 � V3 and V1 � V4 . Since V1 ⊆ V3 ∪ V4 , there exists w1, w2 such that

w1, w2 ∈ V1, w1 ∈ V3, w1 /∈ V4, w2 /∈ V3, w2 ∈ V4 (3.7)

Since V1 is a linear space, w1 + w2 ∈ V1 ⊆ V3 ∪ V4 , implying either w1 ∈ V4 or
w2 ∈ V3 , contradicting (3.7). �

By Proposition 3.2, either (v − d)⊥ = (b)⊥ or (v − d)⊥ = (c)⊥ and so there
exists λ such that v − d = λb or v − d = λc .

Step 3: The matrices A1, A2, . . .AN have a common eigenvector.

Proof of Step 3. We divide the proof into two possible cases:
CASE 1: v − d = λb : In such case, we clearly have 〈 z, v − d〉 = λ 〈 z, b〉 . Next,

since Det

[ 〈 z, v − d〉 〈 z, b〉
〈 z, c〉 〈 z, v − a〉

]
= 0 , it is clear that λ 〈 z, v−a〉 = 〈 z, c〉 , yielding

vi − di = λbi, λ (vi − ai) = ci.
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Upon setting ξ0 =
(

1
−λ

)
we have:

Aiξ0 =
(

ai bi

ci di

)(
1
−λ

)
=

(
ai−λbi

ci−λdi

)
=

(
ai−vi+di

λ (vi−ai−di)

)
=

(
1
−λ

)
(ai−vi+di)

= wiξ0

as stated.
CASE 2: v − d = λc : Once again, by using the determinant equivalence shown

in Step 1, it is easy to verify that λ (vi − ai) = bi for every 1 � i � N . Repeating the

computation done in the first case, now with ξ0 =
(−λ

1

)
, is readably seen that

Ajξ0 = viξ0

which completes the proof of Step 3.
Step 4: The tuple A admits a simultaneous triangularization.

Proof of Step 4. To finalize the theorem, we notice that if ξ1 is any linearly
independent vector to ξ0 , the matrix representation of linear transformation v 	→ Ajv
with respect to the ordered bases B = {ξ0, ξ1} is upper triangular, which completes the
proof. �
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