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THE KALMAN–YAKUBOVICH–POPOV INEQUALITY

FOR PASSIVE DISCRETE TIME–INVARIANT SYSTEMS

YURY ARLINSKIĬ

(communicated by T. Ando)

Abstract. We consider the Kalman - Yakubovich - Popov (KYP) inequality(
X − A∗XA− C∗C −A∗XB− C∗D
−B∗XA− D∗C I − B∗XB−D∗D

)
� 0

for contractive operator matrices

(
A B
C D

)
:

(
H
M

)
→
(

H
N

)
, where H, M , and N are

separable Hilbert spaces. We restrict ourselves to the positive contractive solutions X . Using the
parametrization of the blocks of contractive operator matrices, the Kreı̆n shorted operator, and
the Möbius representation of the Schur class operator-valued function we find several equivalent
forms of the KYP inequality. The properties of solutions are established and it is proved that the
minimal solution of the KYP inequality satisfies the corresponding algebraic Riccati equation
and can be obtained by the iterative procedure with the special choice of the initial point. In
terms of the Kreı̆n shorted operators the necessary condition and some sufficient conditions for
uniqueness of the solution are established.

1. Introduction

The system of equations{
hk+1 = Ahk + Bξk,
σk = Chk + Dξk

, k � 0

describes the evolution of a linear discrete time-invariant system

τ =
{(

A B
C D

)
; H, M, N

}
with bounded linear operators A , B , C , D and separable

Hilbert spaces H (state space), M (input space), and N (output space). If the linear
operator Tτ defined by the block-matrix

Tτ =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
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is contractive, then the corresponding system is said to be passive. If the operator Tτ
is isometric (co-isometric, unitary) then the corresponding system is called isometric
(co-isometric, conservative). Isometric and co-isometric systems have been studied by
L. de Branges and J. Rovnyak [15], [16] and by T. Ando [4], conservative systems have
been investigated by B. Sz.-Nagy and C. Foias [33] and M.S. Brodskiı̆ [17]. Passive
systems are studied by D.Z. Arov et al [5, 6, 7, 8, 10, 11, 12].

The subspaces

Hc
τ := span {AnBM : n = 0, 1, . . .} and Ho

τ = span {A∗nC∗N : n = 0, 1, . . .}
(1.1)

are called the controllable and observable subspaces of the system

τ =
{(

A B
C D

)
; H, M, N

}
, respectively. If Hc

τ = H (Ho
τ = H ) then the system

τ is said to be controllable (observable), and minimal if τ is both controllable and
observable. If H = closure{Hc

τ + Ho
τ} then the system τ is said to be simple. Note

that from (1.1) it follows that

(Hc
τ)

⊥ =
∞⋂

n=0

ker (B∗A∗n), (Ho
τ)

⊥ =
∞⋂
n=0

ker (CAn).

Therefore

(1) the system τ is controllable ⇐⇒
∞⋂

n=0
ker (B∗A∗n) = {0} ;

(2) the system τ is observable ⇐⇒
∞⋂

n=0
ker (CAn) = {0} ;

(3) the system τ is simple ⇐⇒
(∞⋂

n=0
ker (B∗A∗n)

)⋂(∞⋂
n=0

ker (CAn)
)

= {0}.
The function

Θτ(λ ) := D + λC(IH − λA)−1B, λ ∈ D,

is called the transfer function of the system τ .
The result of D.Z. Arov [5] states that two minimal systems

τ1 =
{(

A1 B1

C1 D

)
; H1, M, N

}
and τ2 =

{(
A2 B2

C2 D

)
; H2, M, N

}
with the same transfer function Θ(λ ) are pseudo-similar, i.e., there exists a closed
densely defined operator Z : H1 → H2 such that Z is invertible, Z−1 is densely
defined, and

ZA1f = A2Zf , C1f = C2Zf , f ∈ domZ, and ZB1 = B2.

If the system τ is passive then Θτ belongs to the Schur class S(M, N) , i.e., Θτ(λ )
is holomorphic in the unit disk D = {λ ∈ C : |λ | < 1} and its values are contractive
linear operators from M into N . It is well known [16], [33], [4], [5], [7] that every
Θ(λ ) ∈ S(M, N) can be realized as the transfer function of some passive system, which
can be chosen as conservative simple (isometric controllable, co-isometric observable,
passive and minimal, respectively). Moreover, two simple conservative (isometric
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controllable, co-isometric observable) systems τ1 and τ2 having the same transfer
function are unitarily similar [15], [16], [17], [4], i.e., there exists a unitary operator U
from H1 onto H2 such that A1 = U−1A2U, B1 = U−1B2, C1 = C2U. In [10], [11]
necessary and sufficient conditions on Θ(λ ) ∈ S(M, N) have been established in order
that all minimal passive systems having the transfer function Θ(λ ) be unitarily similar
or similar.

A system τ =
{(

A B
C D

)
; H, M, N

}
is called X -passive with respect to the

supply rate function w(u, v) = ||u||2M − ||v||2N , u ∈ M, v ∈ N [31] if there exists a
positive selfadjoint operator X in H , possibly unbounded, such that

A domX1/2 ⊂ domX1/2, ranB ⊂ domX1/2

and
||X1/2(Ax + Bu)||2H − ||X1/2x||2H � ||u||2M − ||Cx + Du||2N

for all x ∈ domX1/2, u ∈M.
(1.2)

The condition (1.2) is equivalent to∥∥∥∥(X1/2 0
0 IM

)(
x
u

)∥∥∥∥2

−
∥∥∥∥(X1/2 0

0 IN

)(
A B
C D

)(
x
u

)∥∥∥∥2

� 0

for all x ∈ domX1/2, u ∈M.

(1.3)

If X is bounded then (1.3) becomes the Kalman – Yakubovich – Popov inequality (for
short, the KYP inequality)

Lτ(X) =
(

X − A∗XA− C∗C −A∗XB− C∗D
−B∗XA− D∗C I − B∗XB− D∗D

)
� 0. (1.4)

The classicalKalman-Yakubovich-Popov lemma states that if τ =
{(

A B
C D

)
; H, M, N

}
is a minimal system with finite dimensional state space H then the set of the solutions
of (1.4) is non-empty if and only if the transfer function Θτ belongs to the Schur class.
If this is a case then the set of all solutions of (1.4) contains the minimal and maximal
elements.

For the case dimH = ∞ the theory of the generalized KYP inequality (1.3) is
developed in [8] and the following results have been established.

THEOREM 1.1. [8, Theorem 1.2, Theorem 5.1]. Let

τ =
{(

A B
C D

)
; H, M, N

}
be a minimal system. Then the generalized KYP inequality (1.3) for τ has a solution
if and only if the transfer function Θτ coincides with the Schur class function in a
neighborhood of the origin.

Let Xτ be the set of all solutions X of (1.3) which have additional properties
(a) X1/2 (span {AnB, n = 0, 1, . . . , }) and X−1/2 (span {A∗nC∗, n = 0, 1, . . . , })

are dense in H ,
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(b) span {AnB, n = 0, 1, . . . , } is a core for the operator X1/2 .
Then the set Xτ is not empty and contains aminimal Xmin and amaximal Xmax elements
in the sense of quadratic forms: X ∈ Xτ ⇒ domX1/2

min ⊃ domX1/2 ⊃ domX1/2
max and

||X1/2
minu||2 � ||X1/2u||2 for all u ∈ domX1/2,

||X1/2v||2 � ||X1/2
maxv||2 for all v ∈ domX1/2

max.

Let Θ(λ ) ∈ S(M, N) . A passive system

.τ =
{( .

A
.
B.

C D

)
;

.
H, M, N

}
with the transfer function Θ(λ ) is called the optimal ((∗ )-optimal) realization of

Θ(λ ) [6], [7] if for each passive system τ =
{(

A B
C D

)
; H, M, N

}
with the transfer

function Θ(λ ) and for each input sequence u0, u1, u2, ... in M the inequalities∥∥∥∥∥
n∑

k=0

.
Ak .

Buk

∥∥∥∥∥ .
H

�
∥∥∥∥∥

n∑
k=0

AkBuk

∥∥∥∥∥
H

(∥∥∥∥∥
n∑

k=0

.
Ak .

Buk

∥∥∥∥∥ .
H

�
∥∥∥∥∥

n∑
k=0

AkBuk

∥∥∥∥∥
H

)
hold for all n = 0, 1, ... .

Two minimal and optimal ( (∗) -optimal) passive realizations of a function from
the Schur class are unitarily similar [7]. In addition, the system

.τ∗ =
{( .

A∗
.
B∗.

C∗ D

)
;

.
H∗, M, N

}
is (∗) -optimal minimal realization of the function Θ(λ ) if and only if the system

.τ∗∗ =
{( .

A∗
∗

.
B∗
∗.

C∗∗ D∗

)
;

.
H∗, N, M

}
is optimal minimal realization of the function Θ∗(λ ) [7]. In [7] the construction of the
optimal ( (∗) -optimal) realization is given as the first (second) restriction of a simple
conservative realization of the function Θ .

Let τ =
{(

A B
C D

)
; H, M, N

}
be a minimal system. Suppose Θτ coincides

with the Schur class function in a neighborhood of the origin. Let Xmin and Xmax be
the minimal and maximal solutions of the KYP inequality (1.3). It is proved in [8] that
the systems

.τ =
{(

X1/2
minAX−1/2

min X1/2
minB

CX−1/2
min D

)
; H, M, N

}
,

.τ∗ =
{(

X1/2
maxAX−1/2

max X1/2
maxB

CX−1/2
max D

)
; H, M, N

}
are minimal optimal and minimal (∗) -optimal realizations of Θ , respectively. Note
that the contractive operators

.
T =

(
X1/2

minAX−1/2
min X1/2

minB
CX−1/2

min D

)
and

.
T∗ =

(
X1/2

maxAX−1/2
max X1/2

maxB
CX−1/2

max D

)
(1.5)
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are defined on the dense in H⊕M linear manifolds domX−1/2
min ⊕M and domX−1/2

max ⊕
M , respectively.

In this paper we consider the KYP inequality for a contractive operator T =(
A B
C D

)
. In this case the set of all solutions contains the identity operator. Hence

the minimal solution Xmin is a positive contraction, while the maximum one satisfies
Xmax � IH , so, Z = X−1

max is also a positive contraction and is the minimal solution of
the KYP inequality for the adjoint operator T∗ . That’s why we are interested in only
contractive positive solutions X of the KYP inequality.

We will keep the following notations. The class of all continuous linear operators
defined on a complex Hilbert space H1 and taking values in a complex Hilbert space
H2 is denoted by L(H1, H2) and L(H) := L(H, H) . The domain, the range, and
the null-space of a linear operator T are denoted by domT, ranT, and kerT . For a
contraction T ∈ L(H1, H2) the nonnegative square root DT = (I − T∗T)1/2 is called
the defect operator of T and DT stands for the closure of the range ranDT . It is well
known that the defect operators satisfy the relation TDT = DT∗T and TDT ⊂ DT∗ cf.
[33]. The set of all regular points of a closed operator T is denoted by ρ(T) and its
spectrum by σ(T) . We denote by IH the identity operator in a Hilbert space H and
by PL the orthogonal projection onto the subspace (the closed linear manifold) L .
A selfadjoint operator M is called nonnegative if (Mf , f ) � 0 for all f ∈ domM and
positive if (Mf , f ) > 0 for all f ∈ domM\{0} . If M and N are bounded operators in
a Hilbert space, M is a selfadjoint and nonnegative, and, in addition, ranN ⊂ ranM1/2

then by definition
N∗M−1N := (M−1/2N)∗M−1/2N,

where M−1/2 is the Moore–Penrose pseudo-inverse to M1/2 . The boundedness of
M−1/2N follows from the result of Douglas:

THEOREM 1.2. [19], [20]. For N, L ∈ L(H) the following statements are equiva-
lent:

(i) ranN ⊂ ranL ;
(ii) NN∗ � λLL∗ for some λ � 0 .
(iii) N = LK for some K ∈ L(H) , ranK ⊂ ranL∗ , ker K = kerN .

By Xmin and Xmax we will denote the minimal and the maximal elements of the
subset XT of the solutions of the generalized KYP inequality (1.3) for T defined in
Theorem 1.1.

We essentially use the following tools.
(1) The parametrization of the 2× 2 contractive block-operator matrix

T =
(

A B
C D

)
:

(
H
M

)
→
(

K
N

)
[13], [18], [30]:

B = FDD, C = DD∗G,
A = −FD∗G + DF∗LDG,

(1.6)

where the operators F ∈ L(DD, K) , G ∈ L(H, DD∗) and L ∈ L(DG, DF∗)
are contractions.
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(2) The notion of the shorted operator [22]:

SK = max {Z ∈ L(H ) : 0 � Z � S, ranZ ⊆K } ,
where S is a bounded nonnegative selfadjoint operator in the Hilbert space
H and K is a subspace in H .

(3) The Möbius representation

Θ(λ ) = Θ(0) + DΘ∗(0)Z(λ )(IDΘ(0) + Θ∗(0)Z(λ ))−1DΘ(0), λ ∈ D

of the Schur class operator-valued function Θ(λ ) by means of the operator-
valued parameter Z(λ ) from the Schur class S(DΘ(0), DΘ∗(0)) .

A representation of such a kind was studied in [32], [27], [14]. In this paper using the
equalities (1.6) we give a more simple and algebraic proof of the Möbius representation.
In particular, we establish that if Θ(λ ) is the transfer function of the passive system

τ =
{(

A B
C D

)
; H, M, N

}
with entries A , B , and C given by (1.6) then the parameter Z(λ ) is the transfer

function of the passive system ν =
{(

DF∗LDG F
G 0

)
; H, DD, DD∗

}
. Moreover, we

prove that the correspondence

τ =
{(

A B
C D

)
; H, M, N

}
←→ ν =

{(
DF∗LDG F

G 0

)
; H, DD, DD∗

}
preserves the properties of the system to be isometric, co-isometric, conservative, con-
trollable, observable, simple, optimal, and (∗) -optimal, and, in addition, preserves the
set of bounded solutions of the corresponding KYP inequalities.

We show that all positive contractive solutions of (1.4) for contraction T =(
A B
C D

)
satisfy the inequality

(IH − X)PH �
(
D2

T + T∗(IH − X)P′
HT
)

H
, (1.7)

where PH (P′
H ) is the orthogonal projection onto H in the Hilbert space H ⊕M

(H ⊕N ). We establish that the set of all positive contractive solutions of (1.7) for an
observable system contains a minimal element X0 which satisfies the Riccati equation

(IH − X)PH =
(
D2

T + T∗(IH − X)P′
HT
)
H

and can be obtained by the following iterative procedure

X(0) = 0, X(n+1) = IH −
(
D2

T + T∗(IH − X(n))P′
HT
)

H
� H, X0 = s− lim

n→∞X(n).

Moreover, X0 = Xmin for a minimal system. We prove that the condition(
D2

T

)
H

= 0 (⇐⇒ H ∩ ranDT = {0})
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is necessary for the uniqueness of the solutions of (1.7). In the example it is shown
that this condition is not sufficient. Some sufficient conditions for the uniqueness are
obtained. It is proved (see Theorem 7.9) that if T ∈ L(H⊕M, H⊕N) is a contraction
and if ⎧⎨⎩

(
D2

T

)
H

= 0,
(
D2

T∗
)
H

= 0,

ran
((

D2
PNT

)
H

)1/2⋂
ran

((
D2

PMT∗
)

H

)1/2
= {0}

then the passive system τ = {T; H, M, N} is minimal and Xmin = Xmax = IH , i.e., any
passive and minimal realization of the transfer function of τ is unitarily equivalent to
the system τ .

2. Shorted operators

For every nonnegative bounded operator S in the Hilbert space H and every
subspace K ⊂H M.G. Kreı̆n [22] defined the operator SK by the formula

SK = max {Z ∈ L(H ) : 0 � Z � S, ranZ ⊆K } .
The equivalent definition

(SK f , f ) = inf
ϕ∈H 	K

{(S(f + ϕ), f + ϕ)} , f ∈H . (2.1)

The properties of SK , were studied in [1, 2, 3, 20, 23, 24, 25, 27]. SK is called the
shorted operator (see [1], [2]). It is proved in [22] that SK takes the form

SK = S1/2PΩS1/2,

where PΩ is the orthogonal projection in H onto the subspace

Ω = { f ∈ ran S : S1/2f ∈K } = ran S � S1/2(H �K ).

Hence (see [22]),
ran S1/2

K = ran S1/2PΩ = ran S1/2 ∩K .

It follows that
SK = 0 ⇐⇒ ran S1/2 ∩K = {0}.

The shortening operation possesses the following properties.

PROPOSITION 2.1. [2]. Let K be a subspace in H . Then
(1) if S1 and S2 are nonnegative selfadjoint operators then

(S1 + S2)K � (S1)K + (S2)K ;

(2) S1 � S2 � 0 ⇒ (S1)K � (S2)K ;
(3) if {Sn} is a nonincreasing sequence of nonnegative bounded selfadjoint op-

erators and S = s− lim
n→∞ Sn then

s− lim
n→∞ (Sn)K = SK .
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Let K ⊥ = H �K . Then a bounded selfadjoint operator S has the block-matrix
form

S =
(

S11 S12

S∗12 S22

)
:

(
K

K ⊥

)
→
(

K
K ⊥

)
.

It is well known (see [23]) that
the operator S is nonnegative if and only if

S22 � 0, ran S∗12 ⊂ ran S1/2
22 , S11 � S12S

−1
22 S∗12 (2.2)

and the operator SK is given by the block matrix

SK =
(

S11 − S12S
−1
22 S∗12 0

0 0

)
. (2.3)

If S−1
22 ∈ L(K ⊥) then the right hand side of (2.3) is called the Schur complement of

the matrix S . From (2.3) it follows that

SK = 0 ⇐⇒ ran S∗12 ⊂ ran S1/2
22 and S11 = S12S

−1
22 S∗12.

The next representation of the shorted operator is new.

THEOREM 2.2. Let X be a nonnegative selfadjoint contraction in the Hilbert
space H and let K be a subspace in H . Then holds the following equality

(IH − X)K = PK − PK X1/2(IH − X1/2PK ⊥X1/2)−1X1/2PK . (2.4)

Proof. Let us prove (2.4) for the case ||X|| < 1 . In this case the operator
IH − X1/2PK ⊥X1/2 has bounded inverse and

PK X1/2(IH − X1/2PK ⊥X1/2)−1X1/2PK = PK (IH − XPK ⊥)−1XPK .

Let X =
(

X11 X12

X∗
12 X22

)
be the block-matrix representation of the operator X with

respect to the decomposition H = K ⊕K ⊥ . Then

(IH − XPK ⊥)−1 =
(

IK X12(IK ⊥ − X22)−1

0 (IK ⊥ − X22)−1

)
.

Hence

PK − PK (IH − XPK ⊥)−1XPK =
(

IK − X11 − X12(IK ⊥ − X22)−1X∗
12 0

0 0

)
,

and from (2.3) we get (2.4). Observe that (2.4) all f ∈H is equivalent to the relation

||(IH − X1/2PK ⊥X1/2)−1/2X1/2PK f ||2 = ||PK f ||2 − ((IH − X)K f , f ).

The latter means that

sup
g∈H \{0}

|(X1/2PK f , g)|2
((IH − X1/2PK ⊥X1/2)g, g)

= ||PK f ||2 − ((IH − X)K f , f ) for all f ∈H . (2.5)
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Here we use the well known relations for a nonnegative selfadjoint operator B

sup
g∈dom B\{0}

|(h, g)|2
(Bg, g)

=
{ ||B−1/2h||2, h ∈ ranB1/2

+∞, h /∈ ranB1/2 ,

where B−1/2 is the Moore-Penroose pseudo-inverse.
For general case ||X|| � 1 using αX for 0 < α < 1 , letting α ↑ 1 , and taking

into account Proposition 2.1 we see that (2.5) holds also for X . �

3. Parametrization of contractive block-operator matrices

Let H, K, M , and N be Hilbert spaces and let T be a contraction acting from
H⊕M into K⊕N. The following well known result gives the parametrization of the
corresponding representation of T in the block-operator matrix form.

THEOREM 3.1. [13], [18], [30]. The operator matrix

T =
(

A B
C D

)
:

(
H
M

)
→
(

K
N

)
is a contraction if and only if D ∈ L(M, N) is a contraction and the entries A ,B , and
C take the form

B = FDD, C = DD∗G,
A = −FD∗G + DF∗LDG,

where the operators F ∈ L(DD, K) , G ∈ L(H, DD∗) and L ∈ L(DG, DF∗) are
contractions. Moreover, the operators F, G, and L are uniquely determined.

Next we derive expressions for the shorted operators (D2
T)H, (D2

PNT)H, (D2
T∗)K,

and (D2
PMT∗)K for a contraction T given by the block matrix form

T =
(−FD∗G + DF∗LDG FDD

DD∗G D

)
:

(
H
M

)
→
(

K
N

)
.

Let f ∈ H , h ∈ M , ϕ ∈ DD , ψ ∈ DF∗ . Using the relations F∗DF∗ = DFF∗ ,
D∗DD∗ = DDD∗ one can see that

||ϕ||2 + ||ψ ||2 − ||Fϕ + DF∗ψ ||2 = ||DFϕ − F∗ψ ||2,
||h||2 + ||f ||2 − ||Dh + DD∗Gf ||2 = ||DGf ||2 + ||DDh− D∗Gh||2.

Putting
ϕ = DDh− D∗Gf , ψ = LDGf ,

we get∥∥∥∥( f
h

)∥∥∥∥2

−
∥∥∥∥T ( f

h

)∥∥∥∥2

= ||f ||2 + ||h||2 − ||F(DDh− D∗Gf ) + DF∗LDGf ||2

−||DD∗Gf + Dh||2 = ||DGf ||2 + ||DDh− D∗Gh||2 − ||F(DDh− D∗Gf ) + DF∗LDGf ||2
= ||DGf ||2 − ||LDGf ||2 + ||DF(DDh− D∗Gh)− F∗LDGf ||2
= ||DLDGf ||2 + ||DF(DDh− D∗Gh)− F∗LDGf ||2.
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Thus, ∥∥∥∥DT

(
f
h

)∥∥∥∥2

= ||DF (DDh− D∗Gf )− F∗LDGf ||2 + ||DLDGf ||2. (3.1)

Similarly∥∥∥∥DT∗

(
g
ϕ

)∥∥∥∥2

= ||DG∗ (DD∗ϕ − DF∗g)−GL∗DF∗g||2+||DL∗DF∗g||2, g ∈ K,ϕ ∈ N,

(3.2)∥∥∥∥DPNT

(
f
h

)∥∥∥∥2

= ||DDh− D∗Gf ||2 + ||DGf ||2, f ∈ H, h ∈M, (3.3)∥∥∥∥DPMT∗

(
g
ϕ

)∥∥∥∥2

= ||DD∗ϕ − DF∗g||2 + ||DF∗g||2, g ∈ K,ϕ ∈ N. (3.4)

Since ranF∗ ⊂ DD, ranL ⊂ DF∗ , ranG ⊂ DD∗ , D∗DD∗ ⊂ DD, and F∗DF∗ ⊂ DF ,
for given f ∈ H there exists a sequence {hn}∞n=1 ⊂ DD such that

lim
n→∞DFDDhn = DFD∗Gf + F∗LDGf .

Using similar arguments from (3.1)– (3.4) we get

inf
h∈M

{∥∥∥∥DT

(
f
h

)∥∥∥∥2
}

= ||DLDGf ||2, inf
h∈M

{∥∥∥∥DPNT

(
f
h

)∥∥∥∥2
}

= ||DGf ||2,

inf
ϕ∈N

{∥∥∥∥DT∗

(
g
ϕ

)∥∥∥∥2
}

= ||DL∗DF∗g||2, inf
ϕ∈N

{∥∥∥∥DPMT∗

(
g
ϕ

)∥∥∥∥2
}

= ||DF∗g||2.

Now (2.1) yields the following equalities for the shorted operators⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
D2

T

)
H

= DGD2
LDGPH,(

D2
PNT

)
H

= D2
GPH,(

D2
T∗
)
K

= DF∗D2
L∗DF∗PK,(

D2
PMT∗

)
K

= D2
F∗PK.

(3.5)

From (3.5) it follows that(
D2

T

)
H

=
(
D2

PNT

)
H
⇐⇒ LDG = 0 ⇐⇒ DF∗LDG = 0 ⇐⇒ L∗DF∗ = 0.

Thus (
D2

T

)
H

=
(
D2

PNT

)
H
⇐⇒ (

D2
T∗
)
K

=
(
D2

PMT∗
)

K

⇐⇒ T =
(−FD∗G FDD

DD∗G D

)
.

(3.6)

The next statement easily follows from (3.1) and (3.2).

COROLLARY 3.2. Let

T =
(−FD∗G + DF∗LDG FDD

DD∗G D

)
:

(
H
M

)
→
(

K
N

)
.

be a contraction. Then
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(1) T is isometric if and only if

DFDD = 0, DLDG = 0,

(2) T is co-isometric if and only if

DG∗DD∗ = 0, DL∗DF∗ = 0.

Note that if D is isometric (co-isometric) then T takes the form

T =
(

LDG 0
DD∗G D

)
,

(
T =

(
DF∗L FDD

0 D

))
.

Let D ∈ L(M, N) be a contraction with nonzero defect operators and let Q =(
S F
G 0

)
:

(
H

DD

)
→
(

K
DD∗

)
be a bounded operator. Define the transformation

MD(Q) =
(−FD∗G 0

0 D

)
+
(

IK 0
0 DD∗

)(
S F
G 0

)(
IH 0
0 DD

)
. (3.7)

Clearly, the operator T = MD(Q) has the following matrix form

T =
(

S − FD∗G FDD

DD∗G D

)
:

(
H
M

)
→
(

K
N

)
.

PROPOSITION 3.3. Let H, M, N be separable Hilbert spaces, D ∈ L(M, N) be

a contraction with nonzero defect operators, Q =
(

S F
G 0

)
:

(
H
DD

)
→
(

H
DD∗

)
be a bounded operator, and let

T = MD(Q) =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
.

Then
(1) hold the equalities

∞⋂
n=0

ker (B∗A∗n) =
∞⋂

n=0
ker (F∗S∗n) ,

∞⋂
n=0

ker (CAn) =
∞⋂

n=0
ker (GSn) ,

(3.8)

(2) T is a contraction if and only if Q is a contraction. T is isometric (co-isometric)
if and only if Q is isometric (co-isometric). Moreover, hold the equalities(

D2
Q

)
H

=
(
D2

T

)
H

,
(
D2

PD∗Q

)
H

=
(
D2

PNT

)
H

,(
D2

Q∗
)
K

=
(
D2

T∗
)
K

,
(
D2

PDQ∗
)

K
=
(
D2

PMT∗
)

K
,

where D := DD, D∗ := DD∗ .
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Proof. Observe that

A = −FD∗G + S, B = FDD, C = DD∗G.

Let Ω be a neighborhood of the origin such that the resolvents (IH − λA∗)−1,
(IH − λA)−1, (IH − λS∗)−1 , and (IH − λS)−1 exist. Then

F∗ (IH − λA∗)−1 = F∗ (IH − λS∗ + λG∗DF∗)−1

= F∗
(
IH + λ (IH − λS∗)−1 G∗DF∗

)−1
(IH − λS∗)−1

=
(
IH + λF∗ (IH − λS∗)−1 G∗D

)−1
F∗ (IH − λS∗)−1 .

It follows that⋂
λ∈Ω

ker
(
F∗ (IH − λA∗)−1

)
=
⋂
λ∈Ω

ker
(
F∗ (IH − λS∗)−1

)
.

Similarly ⋂
λ∈Ω

ker
(
G (IH − λA)−1

)
=
⋂
λ∈Ω

ker
(
G (IH − λS)−1

)
.

For a bounded operator H in H holds

(IH − λH)−1 =
∞∑

n=0

λ nHn, |λ | < ||H||−1.

It follows that ⋂
λ∈Ω

ker
(
F∗ (IH − λS∗)−1

)
=

∞⋂
n=0

ker (F∗S∗n),⋂
λ∈Ω

ker
(
F∗ (IH − λA∗)−1

)
=

∞⋂
n=0

ker (F∗A∗n).

Since ranF∗ is contained in DD on which DD is injective and B∗ = DDF∗ , we get
∞⋂

n=0

ker (F∗A∗n) =
∞⋂

n=0

ker (DDF∗A∗n) =
∞⋂
n=0

ker (B∗A∗n).

Therefore, hold the relations in (3.8). Statement (2) is the consequence of Theorem 3.1
and formulas (3.1)–(3.5). �

PROPOSITION 3.4. Let D ∈ L(M, N) be a contraction with nonzero defect

operators, let Q =
(

S F
G 0

)
:

(
H

DD

)
→
(

H
DD∗

)
be a contraction, and let T =

MD(Q) . Then for every nonnegative selfadjoint contraction X in H hold the following
equalities (

D2
T + T∗(IH − X)P′

HT
)
H

=
(
D2

Q + Q∗(IH − X)P′
HQ
)
H

, (3.9)(
D2

Q + Q∗(IH − X)P′
HQ
)
H

=
(
D2

G − DGL∗DF∗X1/2(IH − X1/2FF∗X1/2)−1X1/2DF∗LDG
)
PH,

(3.10)

where PH ( P′
H ) is the orthogonal projection in H = H⊕M (H ′ = H⊕N) onto

H .
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Here

DF∗X1/2(IH − X1/2FF∗X1/2)−1X1/2DF∗

:=
(
(IH−X1/2FF∗X1/2)−1/2X1/2DF∗

)∗ (
(IH−X1/2FF∗X1/2)−1/2X1/2DF∗

)
.

Proof. Define the contraction

Q̃ =
(

X1/2S X1/2F
G 0

)
:

(
H
DD

)
→
(

H
DD∗

)
. (3.11)

Then
D2

Q̃
= D2

Q + Q∗(IH − X)P′
HQ.

By Proposition 3.3 the operator T̃ = MD(Q̃) is a contraction as well. Clearly,

D2
T̃

= D2
T + T∗(IH − X)P′

HT

Applying once again Proposition 3.3 we arrive to (3.9).
Since Q is a contraction, by Theorem 3.1 the operator S takes the form S =

DF∗LDG , where L ∈ L(DG, DF∗) is a contraction. Because Q̃ given by (3.11) is a
contraction, we get X1/2S = D

F̃∗ L̃DG , where F̃ = X1/2F and L̃ ∈ L(DG, D
F̃∗) is a

contraction. Since

D2
F̃∗ = IH − F̃F̃∗ = IH − X1/2FF∗X1/2

= IH − X + X − X1/2FF∗X1/2 = IH − X + X1/2D2
F∗X1/2,

we have ||D
F̃∗ f ||2 � ||DF∗X1/2f ||2 for all f ∈ H. Using Theorem1.2 we conclude that

ranD
F̃∗ ⊃ ran (X1/2DF∗) . Let D−1

F̃∗ = (IH− X1/2FF∗X1/2)−1/2 be the Moore-Penrose
inverse for D

F̃∗ . Then we obtain the equality

L̃ = D−1

F̃∗ (X1/2DF∗)L.

The first equality in (3.5) yields
(
D2

Q̃

)
H

= DGD2
L̃
DGPH . Since(

D2
Q̃

)
H

=
(
D2

Q + Q∗(IH − X)P′
HQ
)
H

,

we get (3.10). �

4. The Möbius representations

Let T : H1 → H2 be a contraction and let VT∗ be the set of all contractions
Z ∈ L(DT , DT∗) such that −1 ∈ ρ(T∗Z). In [28] the fractional-linear transformation

VT∗ � Z �−→ Q = T + DT∗Z(IDT + T∗Z)−1DT (4.1)

was studied and the following result has been established.
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THEOREM 4.1. [28]. Let T ∈ L(H1, H2) be a contraction and let Z ∈ VT∗ . Then
Q = T + DT∗Z(IDT + T∗Z)−1DT is a contraction,

||DQf ||2 = ||DZ(IDT + T∗Z)−1DTf ||, f ∈ H1,

ranDQ ⊂ ranDT , and ranDQ = ranDT if and only if ||Z|| < 1. Moreover, if Q ∈
L(H1, H2) is a contraction and Q = T + DT∗XDT , where X ∈ L(DT , DT∗) then

2 Re ((IDT − T∗X)f , f ) � ||f ||2

for all f ∈ DT , the operator Z = X(IDT − T∗X)−1 belongs to VT∗ , and

Q = T + DT∗Z(IDT + T∗Z)−1DT .

The transformation (4.1) is called in [28] the unitary linear-fractional transforma-
tion. If ||T|| < 1 then the closed unit operator ball in L(H1, H2) belongs to the set
VT∗ and, moreover

T + DT∗Z(IH1 + T∗Z)−1DT = D−1
T∗ (Z + T)(IH1 + T∗Z)−1DT

= DT∗(IH2 + ZT∗)−1(Z + T)D−1
T

for all Z ∈ L(H1, H2), ||Z|| � 1. Thus, the transformation (4.1) is an operator analog
of the well known Möbius transformation of the complex plane

z→ z + t
1 + t̄z

, |t| � 1.

The next theorem is a version of the more general result established by Yu.L. Shmul’yan
in [29].

THEOREM 4.2. Let M and N be Hilbert spaces and let the function Θ(λ ) be
from the Schur class S(M, N). Then

(1) the linear manifolds ranDΘ(λ ) and ranDΘ∗(λ ) do not depend on λ ∈ D,
(2) for arbitrary λ1, λ2 , λ3 in D the function Θ(λ ) admits the representation

Θ(λ ) = Θ(λ1) + DΘ∗(λ2)Ψ(λ )DΘ(λ3),

where Ψ(λ ) is L
(
DΘ(λ3), DΘ∗(λ2)

)
-valued function holomorphic in D .

Now using Theorems 4.1 and 4.2 we obtain the following result (cf. [14]).

THEOREM 4.3. Let M and N be Hilbert spaces and let the function Θ(λ ) be
from the Schur class S(M, N). Then there exists a unique function Z(λ ) from the
Schur class S(DΘ(0), DΘ∗(0)) such that

Θ(λ ) = Θ(0) + DΘ∗(0)Z(λ )(IDΘ(0) + Θ∗(0)Z(λ ))−1DΘ(0), λ ∈ D. (4.2)

We will say that the right hand side of (4.2) is the Möbius representation and the
function Z(λ ) is the Möbius parameter of Θ(λ ) . Clearly, Z(0) = 0 and by Schwartz’s
lemma we obtain

||Z(λ )|| � |λ |, λ ∈ D.

The next result provides the connections between the realizations of Θ(λ ) and Z(λ ) .
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THEOREM 4.4.

(1) Let τ =
{(

A B
C D

)
; H, M, N

}
be a passive system. Suppose DD �= 0 ,

DD∗ �= 0, and let

T =
(

A B
C D

)
=
(−FD∗G + DF∗LDG FDD

DD∗G D

)
:

(
H
M

)
→
(

H
N

)
.

Let Θ(λ ) be the transfer function of τ . Then
(a) the Möbius parameter Z(λ ) of the function Θ(λ ) is the transfer function

of the passive system

ν =
{(

DF∗LDG F
G 0

)
; H, DD, DD∗

}
;

(b) the system τ is isometric (co-isometric) ⇒ the system ν is isometric (co-
isometric);

(c) the equalities Hc
ν = Hc

τ , Ho
ν = Ho

τ hold and hence the system τ is control-
lable (observable) ⇒ the system ν is controllable (observable), the system
τ is simple (minimal) ⇒ the system ν is simple (minimal).

(2) Let a nonconstant function Θ(λ ) be from the Schur class S(M, N) and let Z(λ )
be the Möbius parameter of Θ(λ ) . Suppose that the transfer function of the
linear system

ν′ =
{(

S F
G 0

)
; H, DΘ(0), DΘ∗(0)

}
coincides with Z(λ ) in a neighborhood of the origin. Then the transfer function
of the linear system

τ′ =
{(−FΘ∗(0)G + S FDΘ(0)

DΘ∗(0)G Θ(0)

)
; H, M, N

}
coincides with Θ(λ ) in a neighborhood of the origin. Moreover
(a) the equalities Hc

τ′ = Hc
ν′ , Ho

τ′ = Ho
ν′ hold, and hence the system ν′ is

controllable (observable) ⇒ the system τ′ is controllable (observable),
the system ν′ is simple (minimal) ⇒ the system τ′ is simple (minimal),

(b) the system ν′ is passive ⇒ the system τ′ is passive,
(c) the system ν′ is isometric (co-isometric) ⇒ the system τ′ is isometric

(co-isometric).

Proof. Suppose D ∈ L(M, N) is a contraction with nonzero defects. Given the

operator matrix Q =
(

S F
G 0

)
:

(
H

DD

)
→
(

H
DD∗

)
. Let

T = MD(Q) =
(

S − FD∗G FDD

DD∗G D

)
:

(
H
M

)
→
(

H
N

)
and let Ω be a sufficiently small neighborhoodof the origin. Consider the linear systems{(

S F
G 0

)
; H, DD, DD∗

}
and

{(−FD∗G + S FDD

DD∗G D

)
; H, M, N

}



30 YURY ARLINSKIĬ

and define the transfer functions

Z(λ ) = λG(IH − λS)−1F and
Θ(λ ) = D + λDD∗G (IH − λ (S− FD∗G))−1 FDD

Since Θ(0) = D , we have for λ ∈ Ω

Z(λ )(IDD + Θ∗(0)Z(λ ))−1 = λG(IH − λS)−1F
(
IDD + λD∗G(IH − λS)−1F

)−1

= λG(IH − λS)−1
(
IH + λFD∗G(IH − λS)−1

)−1
F

= λG (IH − λS + λFD∗G)−1 F.

Hence

Θ(λ ) = Θ(0) + DΘ∗(0)Z(λ )(IDΘ(0) + Θ∗(0)Z(λ ))−1DΘ(0), λ ∈ Ω.

According to Theorem 3.1 the operator Q is a contraction if and only if F, G are
contractions and S = DF∗LDG , where L ∈ L(DG, DF∗) is a contraction. Now from
Proposition 3.3 we get that all statements of Theorem 4.4 hold true. �

PROPOSITION 4.5. Let Θ(λ ) be a function from the Schur class S(M, N) . Sup-
pose that the Möbius parameter Z(λ ) of Θ(λ ) is a linear function of the form Z(λ ) =

λK, ||K|| � 1 . Then there exists a passive realization τ =
{(

A B
C D

)
; H, M, N

}
such that (

D2
PNT

)
H

=
(
D2

T

)
H

, (4.3)

where T =
(

A B
C D

)
.

Conversely, if a passive system τ =
{(

A B
C D

)
; H, M, N

}
possesses the prop-

erty (4.3) then the Möbius parameter Z(λ ) of the transfer function Θ(λ ) of τ is a
linear function of the form λK .

Proof. Let Z(λ ) = λK, λ ∈ D, where K ∈ L(DΘ(0), DΘ∗(0)) is a contraction.
Then Z(λ ) can be realized as the transfer function of a passive system of the form

ν =
{(

0 F
G 0

)
; H, DΘ(0), DΘ∗(0)

}
.

Actually, take
H = ranK, F = K, G = j,

where j is the embedding of ranK into DΘ∗(0). It follows that GF = K . By Theorem

4.4 the system τ =
{(−FΘ∗(0)G FDΘ(0)

DΘ∗(0)G Θ(0)

)
; H, M, N

}
is a passive realization

of the function Θ(λ ) . From (3.6) it follows that
(
D2

PNT

)
H

=
(
D2

T

)
H

for T =(−FΘ∗(0)G FDΘ(0)
DΘ∗(0)G Θ(0)

)
.
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Assume now
(
D2

PNT

)
H

=
(
D2

T

)
H

, where T =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
is

a contraction and let Θ(λ ) be the transfer function of the system τ =
{(

A B
C D

)
; H, M, N

}
.

Then the entries A, B, and C take the form (1.6), and D = Θ(0). According to (3.6)

we have DF∗LDG = 0, i.e. T =
(−FΘ∗(0)G FDΘ(0)

DΘ∗(0)G Θ(0)

)
. By Theorem 4.4 the

Möbius parameter Z(λ ) of Θ(λ ) takes the form Z(λ ) = λGF. �

REMARK 4.6. Suppose Θ(λ ) = D ∈ L(M, N) for all λ . Let

τ =
{(

A B
C D

)
; H, M, N

}
be a realization of Θ . Since

CAnB = 0, B∗A∗nC∗ = 0 for n = 0, 1, . . . ,

the minimal realization with a nontrivial state space H does not exist.
Let Θ(λ ) ∈ S(M, N) and suppose D = Θ(0) is isometric (co-isometric) but non-

unitary. Then Θ(λ ) = D for all λ ∈ D and Z(λ ) = 0 ∈ S(0, DD∗) (∈ S(DD, 0) ). A
passive and observable (controllable) realization of Θ is of the form

τ =
{(

A 0
DD∗G D

)
; H, M, N

} (
τ =

{(
A FDD

0 D

)
; H, M, N

})
,

where G ∈ L(H, DD∗) , F ∈ L(DD, H) are contractions, A = LDG (A = DF∗L ),
L ∈ L(DG, H) (L ∈ L(H, DF∗) ) is a contraction.

EXAMPLE 4.7. Let A be completely non-unitary contraction in the Hilbert space
H and let Φ(λ ) be the Sz.-Nagy–Foias characteristic function of A* [33]:

Φ(λ ) =
(−A∗ + λDA(IH − λA)−1DA∗

)
�DA∗ , |λ | < 1.

Then Φ(λ ) ∈ S(DA∗ , DA) and is the transfer function of the conservative and simple
system

τ =
{(

A DA∗
DA −A∗

)
; H, DA∗ , DA

}
.

Let
Φ(λ ) = Φ(0) + DΦ∗(0)Z(λ )(IDΦ(0) + Φ∗(0)Z(λ ))−1DΦ(0), λ ∈ D

be the Möbius representation of the function Φ(λ ) . Since F and G∗ are imbedding
of the subspaces DA∗ and DA into H , we get that

DF∗ = Pker DA∗ , DG = Pker DA

and L = A � kerDA is isometric operator. Let

ν =
{(

APker DA I
PDA 0

)
; H, DA∗ , DA

}
.
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By Theorem 4.4

Z(λ ) = λPDA (IH − λAPker DA)
−1 � DA∗ , |λ | < 1

and this function is the transfer function of ν . Note that this function is precisely the
Sz.-Nagy–Foias characteristic function of the partial isometry A∗Pker DA∗ .

5. The KYP inequality and the Riccati equation

Let H, M and N be Hilbert spaces and let T be a bounded linear operator from
the Hilbert space H = H ⊕M into the Hilbert space H ′ = H ⊕ N given by the
block matrix

T =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
.

Suppose that X is a positive selfadjoint operator in the Hilbert space H such that

A domX1/2 ⊂ domX1/2, ranB ⊂ domX1/2.

As it was mentioned in Introduction the inequality (1.3)∥∥∥∥(X1/2 0
0 IM

)(
x
u

)∥∥∥∥2

−
∥∥∥∥(X1/2 0

0 IN

)(
A B
C D

)(
x
u

)∥∥∥∥2

� 0

for all x ∈ domX1/2, u ∈M

is called the generalized KYP inequality for T with respect to X [7], [8]. For a bounded
solution X the KYP inequality (1.3) takes the form (1.4).

Put

X̂ :=
(

X 0
0 IM

)
, X̃ :=

(
X 0
0 IN

)
.

Operators X̂ and X̃ are positive selfadjoint operators in Hilbert spaces H and H ′

respectively, dom X̂ = domX⊕M , dom X̃ = domX⊕N . Let the operator X satisfy
the KYP inequality. Define the operator TX :

domTX := ran X̂1/2 = ranX1/2 ⊕M,

TX := X̃1/2TX̂−1/2 =
(

X1/2 0
0 IN

)
T

(
X−1/2 0

0 IM

)
=
(

X1/2AX−1/2 X1/2B
CX−1/2 D

)
.

(5.1)

Clearly, the following statements are equivalent:
(1) X is a solution of the KYP inequality (1.3);
(2) the operator TX is a densely defined contraction, i.e.,∥∥∥∥(X1/2x

u

)∥∥∥∥2

−
∥∥∥∥TX

(
X1/2x

u

)∥∥∥∥2

� 0, x ∈ domX1/2, u ∈M;
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(3) the operator T is a contraction acting from a pre-Hilbert space dom X̂ into a
pre-Hilbert space dom X̃ equipped by the inner products((

x1

u1

)
,

(
x2

u2

))
= (X1/2x1, X1/2x2)H + (u1, u2)M,((

x1

v1

)
,

(
x2

v2

))
= (X1/2x1, X1/2x2)H + (v1, v2)N,

x1, x2 ∈ domX1/2, u1, u2 ∈M, v1, v2 ∈ N;

(4) Z = X−1 is the solution of the generalizedKYP inequality for the adjoint operator

T∗ =
(

A∗ C∗

B∗ D∗

)
:

(
H
N

)
→
(

H
M

)
,

i.e.,∥∥∥∥( Z1/2 0
0 IN

)(
x
v

)∥∥∥∥2

−
∥∥∥∥( Z1/2 0

0 IM

)(
A∗ C∗

B∗ D∗

)(
x
v

)∥∥∥∥2

� 0

for all x ∈ domZ1/2, v ∈ N.

(5.2)

In addition, if

TX =
(

A1 B1

C1 D

)
is defined by (5.1) then

X1/2Af = A1X
1/2f , C1X

1/2f = Cf , f ∈ domX1/2, B1 = X1/2B.

It follows that

X1/2AnB = An
1B1, X1/2A∗n

1 C1 = A∗nC, n = 0, 1, . . . , (5.3)

the transfer functions of the systems τ = {T; H, M, N} and τX = {TX; H, M, N}
coincide in a neighborhood of the origin, and∥∥∥∥ n∑

k=0
Ak

1B1uk

∥∥∥∥ =
∥∥∥∥X1/2

(
n∑

k=0
AkBuk

)∥∥∥∥ ,∥∥∥∥ n∑
k=0

A∗k
1 C∗

1uk

∥∥∥∥ =
∥∥∥∥X−1/2

(
n∑

k=0
A∗kC∗uk

)∥∥∥∥ (5.4)

for all n = 0, 1, . . . , and for each input sequence u0, u1, u2, ... in M .
By Theorem 1.1 the subset Xτ of all solutions of the generalized KYP inequality

(1.3) for a minimal system τ = {T; H, M, N} contains the minimal and maximal
elements Xmin and Xmax , respectively. If, in addition, τ is a passive then IH is a
solution of (1.3). Therefore, Xmin and X−1

max are positive contractions.

PROPOSITION 5.1. Let

τ =
{(

A B
C D

)
; H, M, N

}
be a minimal and passive system. Suppose that X is solution of (1.3) and X � Xmin .
Then X = Xmin .
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Proof. Let Θ(λ ) be the transfer function of τ and let
.τ =

{ .
T; H, M, N

}
, where

.
T =

( .
A

.
B.

C D

)
is defined by (1.5). Then the system

.τ is a passive minimal and optimal realization
of Θ . Since Xmin � IH , we have for all n = 0, 1, . . . , and for each input sequence
u0, u1, u2, ... in M the inequalities∥∥∥∥∥

n∑
k=0

.
Ak .

Buk

∥∥∥∥∥ �
∥∥∥∥∥

n∑
k=0

AkBuk

∥∥∥∥∥ .

Construct the passive system τX = {TX; H, M, N} , where TX =
(

A1 B1

C1 D

)
is defined

by (5.1). From (5.3) it follows that τX is a passive and controllable realization of Θ(λ ) .
Since X � Xmin , from (5.4) we get∥∥∥∥ n∑

k=0
Ak

1B1uk

∥∥∥∥ =
∥∥∥∥X1/2

(
n∑

k=0
AkBuk

)∥∥∥∥ �
∥∥∥∥X1/2

min

(
n∑

k=0
AkBuk

)∥∥∥∥
=
∥∥∥∥ n∑

k=0

.
Ak

.
Buk

∥∥∥∥ .

for all n = 0, 1, . . . , and for each input sequence u0, u1, u2, ... in M . Because
.τ is

optimal, we get X = Xmin . �
Assume that the positive selfadjoint operator X in H satisfies the KYP inequality.

If

inf
u∈M

{∥∥∥∥X̂1/2

(
x
u

)∥∥∥∥2

−
∥∥∥∥X̃1/2T

(
x
u

)∥∥∥∥2
}

= 0

for all x ∈ domX1/2

(5.5)

we will say that the operator X satisfies the Riccati equation.

PROPOSITION 5.2. A positive selfadjoint operator X satisfies the Riccati equation
(5.5) if and only if the continuation of the operator TX defined by (5.1) meets the
condition (

D2
TX

)
H

= 0.

Proof. By (5.1) we get for all �f ∈ dom X̂1/2∥∥∥DTX X̂1/2 �f
∥∥∥2

= ||X̂1/2 �f ||2 − ||TXX̂1/2 �f ||2 = ||X̂1/2 �f ||2 − ||X̃1/2T �f ||2.

It follows that (5.5) holds if and only if

inf
u∈M

{∥∥∥∥DTX

(
X1/2x

u

)∥∥∥∥2
}

= 0 for all x ∈ domX1/2.

Because ranX1/2 is dense in H , the latter is equivalent to
(
D2

TX

)
H

= 0. �
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PROPOSITION 5.3. Let D ∈ L(M, N) be a contraction with nonzero defect
operators. Let

Q =
(

S F
G 0

)
:

(
H

DD

)
→
(

H
DD∗

)
and let

T = MD(Q) =
(

S − FD∗G FDD

DD∗ D

)
:

(
H
M

)
→
(

H
N

)
.

Then if X is a solution of the generalized KYP inequality (the Riccati equation) for
Q then X is a solution of the generalized KYP inequality (the Riccatti equation) for
T . Moreover, the KYP inequalities for T and Q are equivalent on the set of bounded
solutions.

Proof. If X is a solution of the generalized KYP inequality for Q then ranF ⊂
domX1/2 and SdomX1/2 ⊂ domX1/2 . It follows that

ranFDD ⊂ domX1/2, (S− FD∗G)domX1/2 ⊂ domX1/2.

From (3.7) we have the relation

MD

((
X1/2 0
0 IDD∗

)
Q

(
X−1/2 0

0 IDD

))
=
(

X1/2 0
0 IN

)
MD(Q)

(
X−1/2 0

0 IM

)
.

Now the result follows from Propositions 3.3 and 5.2. �

6. Equivalent forms of the KYP inequality and the Riccati equation for a passive
system

THEOREM 6.1. Let

T =
(

A B
C D

)
=
(−FD∗G + DF∗LDG FDD

DD∗G D

)
:

(
H
M

)
→
(

H
N

)
be a contraction and let

Q =
(

DF∗LDG F
G 0

)
:

(
H

DD

)
→
(

H
DD∗

)
.

Then the following inequalities are equivalent⎧⎨⎩
(

X 0
0 IM

)
− T∗

(
X 0
0 IN

)
T � 0

0 < X � IH
, (6.1)

⎧⎨⎩
(

X − A∗XA− C∗C −A∗XB− C∗D
−B∗XA− D∗C IM − B∗XB− D∗D

)
� 0

0 < X � IH
,

{
(IH − X)PH �

(
D2

T + T∗(IH − X)P′
HT
)

H

0 < X � IH
, (6.2)
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(

X − G∗G DGL∗DF∗X1/2

X1/2DF∗LDG IH − X1/2FF∗X1/2

)
� 0

0 < X � IH
, (6.3)

{
X � G∗G + DGL∗DF∗X1/2(IH − X1/2FF∗X1/2)−1X1/2DF∗LDG

0 < X � IH
, (6.4)⎧⎨⎩

(
X 0
0 IDD

)
− Q∗

(
X 0
0 IDD∗

)
Q � 0

0 < X � IH
, (6.5)

⎧⎨⎩
(

X − G∗G− DGL∗DF∗XDF∗LDG −DGL∗DF∗XF
−F∗XDF∗LDG IDD − F∗XF

)
� 0

0 < X � IH
, (6.6)

{
(IH − X)PH �

(
D2

Q + Q∗(IH − X)P′
HQ
)
H

0 < X � IH
. (6.7)

Recall (see Introduction) that for a bounded selfadjoint and nonnegative M and
for a bounded N in the case ranN ⊂ ranM1/2 the operator N∗M−1N is defined as
(M−1/2N)∗M−1/2N . Here M−1/2 is the Moore–Penrose pseudo-inverse to M1/2 .

Proof. Note that (6.6) is (6.5) rewritten in terms of the entries. By Proposition
5.3 the inequalities (6.1) and (6.5) are equivalent. Let us prove the equivalence of (6.1)
and (6.2). Suppose that X satisfies (6.1) and put Y = IH − X. The operator Y is
nonnegative contraction and ker (IH − Y) = {0} . In terms of the operator Y we have

0 �
(

X 0
0 IM

)
− T∗

(
X 0
0 IN

)
T =

(
IH − Y 0

0 IM

)
− T∗

(
IH − Y 0

0 IN

)
T

= I − T∗T + T∗YP′
HT − YPH,

i.e.,

(YPHf , f ) �
((

D2
T + T∗YP′

HT
)
(f + u), f + u

)
, f ∈ H⊕M, u ∈M. (6.8)

The equality (2.1) for the shorted operator yields that the operator Y is a solution of
the system {

YPH �
(
D2

T + T∗YP′
HT
)

H
,

0 � Y < IH
(6.9)

If X is a solution of the system (6.2) then Y = IH − X satisfies (6.8) and therefore X
satisfies (6.1). Similarly (6.5) is equivalent to (6.7). Note that by Proposition 3.4 the
right hand sides of (6.2) and (6.7) are equal. Using (3.10) we get that (6.7) is equivalent
to (6.4). (6.3) is equivalent to (6.4) in accordance with (2.2). �

PROPOSITION 6.2. Suppose Θ(λ ) ∈ S(M, N) and let Z(λ ) be the Möbius
parameter of Θ . Then the passive minimal realization

ν =
{(

S F
G 0

)
; H, DΘ(0), DΘ∗(0)

}
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of Z(λ ) is optimal ((*)-optimal) if and only if the passive minimal realization

τ =
{(−FΘ∗(0)G + S FDΘ(0)

DΘ∗(0)G Θ(0)

)
; H, M, N

}
of Θ(λ ) is optimal ((*)-optimal).

Proof. According to Theorem 6.1 the set of all solutions of the KYP inequality

(6.1) for T =
(−FΘ∗(0)G + S FDΘ(0)

DΘ∗(0)G Θ(0)

)
coincides with the set of all solutions of

the KYP inequality (6.5) for Q =
(

S F
G 0

)
. If the system ν ( τ ) is the optimal

realization of Z(λ ) (Θ(λ ) ) then by (5.4) the minimal solution of (6.5) in the set XQ

(of (6.1) in set XT , respectively) is Xmin = IH . Therefore, the minimal solution of
(6.1) (6.5) is IH as well. Thus, the system τ (ν ) is the optimal realization of Θ(λ )
(Z(λ ) ). Passing to the adjoint systems

ν∗ =
{(

S∗ G∗

F∗ 0

)
; H, DΘ∗(0), DΘ(0)

}
and

τ∗ =
{(−G∗Θ(0)F∗ + S∗ G∗DΘ∗(0)

DΘ(0)F∗ Θ∗(0)

)
; H, N, M

}
and their transfer functions Z∗(λ ) and Θ∗(λ ) , respectively,we get that ν is (*)-optimal
if and only if τ is (*)-optimal. �

The next theorem is an immediate consequence of Theorem 6.1.

THEOREM 6.3. Let

T =
(

A B
C D

)
=
(−FD∗G + DF∗LDG FDD

DD∗G D

)
:

(
H
M

)
→
(

H
N

)

be a contraction and let Q :=
(

DF∗LDG F
G 0

)
:

(
H
DD

)
→
(

H
DD∗

)
. Then the

following equations are equivalent on the operator interval (0, IH] :

X−A∗XA−C∗C−(A∗XB+C∗D)(IM−B∗XB−D∗D)−1(B∗XA+D∗C) = 0, (6.10)

(IH − X)PH =
(
D2

T + T∗(IH − X)P′
HT
)

H
, (6.11)

(IH − X)PH =
(
D2

Q + Q∗(IH − X)P′
HQ
)
H

, (6.12)

X − G∗G− S∗XS− S∗XF(IH − F∗XF)−1F∗XS = 0, (6.13)

X = G∗G + S∗X1/2(IH − X1/2FF∗X1/2)−1X1/2S, (6.14)

where S = DF∗LDG . Moreover, the equations (6.11) – (6.14) are equivalent to the
equation (5.5).
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The equivalent equations (6.11) – (6.14) will be called the Riccati equations.

REMARK 6.4. Let Q =
(

S F
G 0

)
:

(
H
L1

)
→
(

H
L2

)
be an isometric operator.

Then F is isometry, DF∗ is the orthogonal projection, S = DF∗LDG , and DL = 0 .
Denote K = kerF∗ = ranDF∗ . Since DF∗ = PK , we get

D2
G − DGL∗DF∗X1/2(IH − X1/2FF∗X1/2)−1X1/2DF∗LDG

= S∗
(
PK − PK X1/2(IH − X1/2PK ⊥X1/2)−1X1/2PK

)
S.

Taking into account Theorem 2.2 and 6.4 we get the corresponding KYP inequality

IH − X � S∗ (IH − X)K S.

REMARK 6.5. Suppose Θ(λ ) ∈ S(M, N) and D = Θ(0) is isometric (co-isometric)
but non-unitary. Then this function admits a passive realization of the form

τ =
{(

A 0
DD∗G D

)
; H, M, N

}
,

(
τ =

{(
A FDD

0 D

)
; H, M, N

})
,

where A = LDG (A = DF∗L ), L ∈ L(DG, H) (L ∈ L(H, DF∗) ) is a contraction (see
Remark 4.6). The corresponding KYP inequality (6.4) is of the form

X � G∗G + DGL∗XLDG (X � L∗DF∗X1/2(IH − X1/2FF∗X1/2)−1X1/2DF∗L).

EXAMPLE 6.6. Let H , M , and N be separable Hilbert spaces. Suppose G ∈
L(H, N) and F ∈ L(M, H) are such that G∗G = FF∗ = αIH , where α ∈ (0, 1) .
Then DG = DF∗ = (1 − α)1/2IH . Let L be a unitary operator in H . By Theorem 3.1
the operator

Q =
(

(1 − α)L F
G 0

)
:

(
H
M

)
→
(

H
N

)
is a contraction. Consider the passive system

ν =
{(

(1− α)L F
G 0

)
; H, M, N

}
.

Because ranF = ranG∗ = H , the system ν is minimal. The corresponding Riccati
equation (6.14) takes the form

X = αIH + (1− α)2L∗X(IH − αX)−1L, 0 < X � IH. (6.15)

We will prove that X = IH is the unique solution of (6.15).
Put W = (1 − α)(IH − αX)−1. Then (1 − α)IH < W � IH. From (6.15) we

obtain the equation
L∗WL + W−1 = 2IH, (6.16)

Clearly, (6.16) has a solution W = IH . Let W be any solution of (6.16) such that
(1 − α)IH < W � IH, i.e., σ(W) ⊂ [1 − α, 1] . Since L is a unitary operator, from
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(6.16) it follows that σ(2IH − W−1) = σ(W). Let λ0 ∈ σ(W) then 2 − λ−1
0 ∈

σ(2IH −W−1) = σ(W) . Since 2− λ−1
0 > 0 , we get

1
2

< λ0 � 1.

Because μ0 = 2− λ−1
0 ∈ σ(W) and 1/2 < μ0 � 1 , we get

2
3

< λ0 � 1.

Thus
2
3

< 2− λ−1
0 � 1.

It follows that
3
4

< λ0 � 1.

Continuing these reasonings, we get

n
n + 1

< λ0 � 1, n = 1, 2, . . . .

It follows that λ0 = 1 , i.e. σ(W) = {1}. Because W is a selfadjoint operator we have
W = IH . Thus, X = IH is the unique solution of (6.15).

Let

ν∗ =
{(

(1 − α)L∗ G∗

F∗ 0

)
; H, M, N

}
.

be the adjoint system. Then the Riccati equation is of the form

Z = αIH + (1− α)2LZ(IH − αZ)−1L∗, 0 < Z � IH.

Hence, Z = IH is its unique solution. It follows that the system ν is the optimal and
(∗) -optimal realization of the Schur class function Θ(λ ) = λG(IH− λ (1−α)L)−1F .

7. Properties of solutions of the KYP inequality and the Riccati equation

PROPOSITION 7.1. Let T =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
be a contraction.

Suppose that the passive system τ = {T; H, M, N} is observable. If a nonnegative
contraction X in H is a solution of the inequality

(IH − X)PH �
(
D2

T + T∗(IH − X)P′
HT
)
H

(7.1)

then kerX = {0} .
Proof. Suppose that X satisfies (7.1) and kerX �= {0} . Then there is a nonzero

vector x in H such that (IH− X)x = x . Since D2
T + T∗(IH− X)P′

HT is a contraction,
we obtain

(
D2

T + T∗(IH − X)P′
HT
)

H
x = x and hence D2

Tx + T∗(IH − X)P′
HTx = x .

It follows that
PNTx = 0, XP′

HTx = 0.
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This means that Cx = 0 and XAx = 0 . Replacing x by Ax we get CAx = 0 and
XA2x = 0 . By induction CAnx = 0 for all n = 0, 1, . . . . Since the system τ is
observable, we get x = 0 . �

THEOREM 7.2. Let T =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
be a contraction. The

following statements are valid:
(1) each X from the operator interval

[IH −
(
D2

T

)
H

�H, IH] (7.2)

is a solution of (7.1)and even a solution of (6.2)when the system τ = {T; H, M, N}
is observable;

(2) each solution X of the inequality (7.1) satisfies the estimate

X � IH −
(
D2

PNT

)
H

�H,

hence, in the case (
D2

T

)
H

=
(
D2

PNT

)
H

,

the operator X = IH −
(
D2

PNT

)
H

� H is the minimal solution of (7.1);

(3) if the system τ = {T; H, M, N} is minimal and
(
D2

T∗
)
H
�= 0 , then each positive

selfadjoint X possessing properties IH � X � (IH −
(
D2

T∗
)
H

�H)−1 (in the
sense of quadratic forms) is a solution of the generalized KYP inequality (1.3).

Proof. Let X be a solution of (7.1) then Y = IH−X is a solution of the inequality

YPH �
(
D2

T + T∗YP′
HT
)
H

.

In view of
D2

T + T∗YP′
HT � D2

T + T∗P′
HT = I − T∗PNT = D2

PNT

we get

Y �
(
D2

PNT

)
H

�H. (7.3)

Hence X � IH −
(
D2

PNT

)
H

�H.

By Proposition 2.1 we have(
D2

T + T∗ (D2
T

)
H

P′
HT
)

H
�
(
D2

T

)
H

PH.

If Y ∈ [0,
(
D2

T

)
H

� H] then

YPH �
(
D2

T

)
H

PH �
(
D2

T + T∗YP′
HT
)
H

.

It follows that each X from the operator interval (7.2) is a solution of (7.1). If, in
addition, the system τ is observable, then by Proposition 7.1 any X from (7.2) is
positive.
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Statement (3) follows from Statement (1) and from the fact that if Z is a solution
of the KYP inequality for T∗ then X = Z−1 is the solution of the KYP inequality for
T . �

COROLLARY 7.3. Let Θ(λ ) ∈ S(M, N) and let

τ =
{(

A B
C D

)
; H, M, N

}
be a passive and minimal realization of Θ . The following statements are valid:

(1) if the system τ is optimal then

(D2
T)H = 0; (7.4)

(2) if (D2
PNT)H = 0 then the system τ is optimal.

Proof. If τ is optimal realization of Θ(λ ) then Xmin = IH . By Theorem 7.2 the
operator X = IH − (D2

T)H � H is a solution of (6.2). Since X � Xmin , by Proposition
5.1 X = Xmin , i.e., X = IH . Hence, (D2

T)H = 0.
Suppose (D2

PNT)H = 0 . Since D2
T � D2

PNT and (D2
PNT)H = 0 , we obtain

(D2
T)H = 0. By Theorem 7.2 in this case the minimal solution of (1.4) is Xmin = IH .

This means that τ is the optimal realization of Θ . �

PROPOSITION 7.4. Let τ =
{(

A B
C D

)
; H, M, N

}
be a passive minimal system.

Then the minimal solution of the KYP inequality (6.1) satisfies the Riccati equations
(6.10) – (6.14).

Proof. Since the system τ is passive and minimal, the minimal solution Xmin of
(1.3) satisfies 0 < Xmin � IH . Let the operator

.
T be defined by (1.5), i.e.,

.
T :=

(
X1/2

min 0
0 IN

)
T

(
X−1/2

min 0
0 IM

)
, dom

.
T = ranX1/2

min ⊕M.

The operator
.
T is a densely defined contraction. We preserve the notation

.
T for

its continuation. The system
.τ = { .

T; H, M, N} is the passive minimal and optimal
realization of the transfer function Θ(λ ) = D+λC(I−λA)−1B , |λ | < 1 for the system
τ . According to Corollary 7.3 the operator

.
T satisfies the condition (D2.

T
)H = 0. It

follows that

inf
u∈M

{∥∥∥∥D .
T

(
g
u

)∥∥∥∥2
}

= 0

for all g ∈ H . In particular

inf
u∈M

{∥∥∥∥D .
T

(
X1/2

min 0
0 IM

)(
g
u

)∥∥∥∥2
}

= 0, g ∈ H.
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Since (
Xmin 0
0 IM

)
− T∗

(
Xmin 0
0 IN

)
T =

(
X1/2

min 0
0 IM

)
D2.

T

(
X1/2

min 0
0 IM

)
,

we get ((
Xmin 0
0 IM

)
− T∗

(
Xmin 0
0 IN

)
T

)
H

= 0.

Hence, if Y0 = IH − Xmin then(
IH − Y0 0

0 IM

)
− T∗

(
IH − Y0 0

0 IN

)
T =

= D2
T + T∗Y0P′

HT − Y0PH.

Since ((
IH − Y0 0

0 IM

)
− T∗

(
IH − Y0 0

0 IN

)
T

)
H

= 0,

we get

0 = (D2
T + T∗Y0P

′
HT − Y0PH)H = (D2

T + T∗Y0P
′
HT)H − Y0PH.

Thus, Y0 satisfies the equation YPH = (D2
T +T∗YP′

HT)H and Xmin = IH−Y0 satisfies
the equation (6.11). �

REMARK 7.5. Let τ = {T; H, M, N} be a minimal passive system and let

T =
(−FD∗G + DF∗LDG FDD

DD∗G D

)
.

Then the statements of Theorem 7.2 and Corollary 7.3 can be reformulated as follows:
(1) each X from the operator interval [G∗G + DGL∗LDG, IH] is a solution of (6.3)

and every solution of (6.3) satisfies the estimate X � G∗G ;
(2) if L = 0 then X0 = G∗G is the minimal solution of (6.3) (cf. [9]);
(3) if DL∗DF∗ �= 0 then each selfadjoint X in H possessing the properties

IH � X � (FF∗ + DF∗LL∗DF∗)−1 is a solution of the generalized KYP inequal-
ity (1.3);

(4) if the system τ is minimal and optimal realization of the function Θ(λ ) ∈
S(M, N) then DLDG = 0 ;

(5) if the system τ is minimal realization of the function Θ(λ ) ∈ S(M, N) and if
G is isometry then the system τ is optimal.

REMARK 7.6. Let τ =
{(

A B
C D

)
; H, M, N

}
be a minimal system with the

transfer function Θ(λ ) ∈ S(M, N) . Suppose that the bounded positive selfadjoint
operator X is such that the operator

δ(X) = IM − D∗D− B∗XB
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is positive definite. Then the KYP inequality

L(X) =
(

X − A∗XA− C∗C −A∗XB− C∗D
−B∗XA− D∗C I − B∗XB− D∗D

)
� 0

is equivalent to the inequality R(X) � 0 , where

R(X) = X − A∗XA− C∗C − (B∗XA + D∗C)(IM − D∗D− B∗XB)−1(A∗XB + C∗D)

is the corresponding Schur complement. Then for the minimal solution Xmin of the
KYP inequality we have δ(Xmin) � δ(X) and R(Xmin) � 0 . For a finite dimensional
H it was shown in [26] that the minimal solution Xmin satisfies the algebraic Riccati
equation R(Xmin) = 0 . Thus, the statement of Proposition 7.4 is the generalization of
the result in [26].

PROPOSITION 7.7. Let Θ(λ ) ∈ S(M, N) and let the Möbius parameter Z(λ ) of Θ be
of the form Z(λ ) = λK , K ∈ L(DΘ(0), DΘ∗(0)) , K �= 0 . Then

(1) the minimal passive and optimal realization τ of Θ is unitarily equivalent to the
system

τ =
{(−KΘ∗(0) KDΘ(0)

DΘ∗(0) Θ(0)

)
; ranK, M, N

}
;

(2) the minimal passive and (∗) - optimal realization τ of Θ is unitarily equivalent
to the system

η =
{(−Pran K∗Θ∗(0)K � ranK∗ Pran K∗DΘ(0)

DΘ∗(0)K � ranK∗ Θ(0)

)
; ranK∗, M, N

}
;

Proof. Let j be the embedding of ranK into DΘ∗(0) . Then the system

ν =
{(

0 K
j 0

)
; ranK, DΘ(0), DΘ∗(0)

}
.

is a passive and minimal realization of the function Z(λ ) = λK (see Proposition 4.5).
The corresponding Riccati equation (6.13) takes the form X = Iran K . By Remark 7.5,
the system ν is the optimal realization of Z(λ ) = λK . From Proposition 6.2 it follows
that the system

τ =
{(−KΘ∗(0) KDΘ(0)

DΘ∗(0) Θ(0)

)
; ranK, M, N

}
is the minimal passive and optimal realization of Θ .

The system

σ =
{(

0 Pran K∗
K � ranK∗ 0

)
; ranK∗, DΘ(0), DΘ∗(0)

}
is the passive and minimal realization of the function λK . The KYP inequality (6.4)
for the adjoint system σ∗ takes the form{

X � Iran K∗ ,
0 � X � Iran K∗

.
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So, X = Iran K∗ is the minimal solution. It is the minimal solution of the generalized
KYP inequality for σ∗ . Hence, X = Iran K∗ is the maximal solution of the generalized
KYP inequality for σ . It follows that σ is a (∗) -optimal realization of Z(λ ) = λK
and by Proposition 6.2 the system η is a (∗) -optimal realization of Θ(λ ). �

The next theorems provide the sufficient uniqueness conditions for the solutions
of the Riccati equation.

THEOREM 7.8. Assume that a contraction T =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
possesses the properties⎧⎨⎩

(
D2

T

)
H

= 0,

ran
((

D2
PNT

)
H

)1/2⋂
ran

((
D2

PMT∗
)

H

)1/2
⊂ ran

((
D2

T∗
)
H

)1/2
.

(7.5)

Then the passive system τ = {T; H, M, N} is observable and X = IH is the unique
solution of the Riccati equation (6.11).

Proof. The operator T takes the form

T =
(−FD∗G + DF∗LDG FDD

DD∗G D

)
with contractions D, F, G , and L . By (3.5) the conditions (7.5) are equivalent to the
following {

DLDG = 0
ranDG ∩ ranDF∗ ⊂ ran (DF∗DL∗) . (7.6)

If
(
D2

PNT

)
H

= 0 then DG = 0 and X = IH is a unique solution of (6.11). Moreover,

because G is an isometry, the system τ is observable.

Assume
(
D2

PNT

)
H
�= 0 . Since (D2

T)H = 0 , from the equivalences (3.6) it follows

that (
D2

PMT∗
)

H
�= 0.

From (7.5) and (3.5) we have DG �= 0, DF∗ �= 0 , DL = 0.
Let

Q =
(

DF∗LDG F
G 0

)
:

(
H

DD

)
→
(

H
DD∗

)
and let ν = {Q, H, DD, DD∗} be the corresponding passive system. Let us show that

ν is observable. Suppose f ∈
∞⋂

n=0
ker (G(DF∗LDG)n) . Then

Gf = 0⇒ DGf = f , G(DF∗LDG)f = 0⇒ DGDF∗Lf = DF∗Lf .

From (7.6)
DF∗Lf ∈ ranDF∗DL∗ ⇒ Lf ∈ ranDL∗ .

Since L is an isometry, ran L ⊥ DL∗ . Now we get Lf = 0 ⇒ f = 0 . Thus, the
system ν is observable and by Theorem 4.4 the system τ is observable too.
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According to Proposition 6.3 the equation (6.11) is equivalent to the equation
(6.14). We will prove that (6.14) has the unique solution X = IH. Suppose X is a
solution. Define Ψ := IH − X1/2FF∗X1/2 . Since Ψ = IH − X + X1/2D2

F∗X1/2 , we
have Ψ � IH − X and Ψ � X1/2D2

F∗X1/2 . Therefore

(IH − X)1/2 = UΨ1/2, DF∗X1/2 = VΨ1/2,

where U : ranΨ1/2 → ran (IH−X)1/2 , V : ranΨ1/2 → ranDF∗ = ran (DF∗X1/2) , and
U∗U + V∗V = IranΨ1/2 . Hence U∗U = D2

V . Since X1/2DF∗ = Ψ1/2V∗ , we get

X1/2DF∗DV∗ = Ψ1/2V∗DV∗ = Ψ1/2DVV∗.

From
IH − X = Ψ1/2U∗UΨ1/2 = Ψ1/2D2

VΨ
1/2

we get that ran (IH − X)1/2 = Ψ1/2ranDV . Therefore,

ran (X1/2DF∗DV∗) ⊂ ran (IH − X)1/2. (7.7)

Using the well known relation

ranX1/2 ∩ ran (IH − X)1/2 = ran (X1/2(IH − X)1/2)

for every X ∈ [0, IH] , from (7.7) we get

DF∗ranDV∗ ⊂ ran (IH − X)1/2.

The equation (6.14) can be rewritten as follows

X = G∗G + DGL∗VV∗LDG.

Since L∗L = IDG , we get IH − X = DGL∗D2
V∗LDG. It follows that

ran (IH − X)1/2 = DGL∗ranDV∗ ⊂ ranDG.

Now we obtain

DF∗ranDV∗ ⊂ ranDG ∩ ranDF∗ ⊂ DF∗ranDL∗ .

Hence ranDV∗ ⊂ ranDL∗ . Since L : DG → DF∗ is isometry, we get kerL∗ =
ranDL∗ . Therefore L∗ � ranDV∗ = 0 . It follows ran (IH − X)1/2 = {0} , i.e., X =
IH . �

Observe, Example 6.6 shows that conditions (7.5) are not necessary for the unique-
ness of the solutions of the KYP inequality (6.2).

THEOREM 7.9. Assume that a contraction T =
(

A B
C D

)
:

(
H
M

)
→
(

H
N

)
possesses the properties⎧⎨⎩

(
D2

T

)
H

= 0,
(
D2

T∗
)
H

= 0,

ran
((

D2
PNT

)
H

)1/2⋂
ran

((
D2

PMT∗
)

H

)1/2
= {0} . (7.8)

Let Θ(λ ) be the transfer function of the passive system τ = {T; H, M, N} . Then every
minimal and passive realization of Θ is the unitarily equivalent to the system τ .
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Proof. Using Theorem 7.8 we see that under the conditions (7.8) the systems τ
and τ∗ = {T∗, H, N, M} are observable. So, τ is minimal.

By Theorem 7.8 the identity operator IH is the minimal solutions of the KYP
inequality (6.2) for T and the KYP inequality{

(IH − Z)PH �
(
D2

T∗ + T(IH − Z)PHT∗)
H

0 < Z � IH

for T∗ . It follows that Xmin = X−1
max = IH , where Xmin and Xmax are the minimal

and maximal solutions, respectively, of the generalized KYP inequality (1.3) for T .
Therefore, the system τ is the optimal and (∗) -optimal. Hence, any passive and
minimal realization of the transfer function Θ(λ ) of τ is unitarily equivalent to τ . �

REMARK 7.10. The conditions (7.5) are equivalent to the following:{
H ∩ ranDT = {0},(
H ∩ ranDPNT

)⋂ (
H ∩ ranDPMT∗

) ⊂ H ∩ ranDT∗ ,

and

(7.8) ⇐⇒
{

H ∩ ranDT = H ∩ ranDT∗ = {0},(
H ∩ ranDPNT

)⋂ (
H ∩ ranDPMT∗

)
= {0}.

8. Approximation of the minimal solution

The solutions of the Riccati equations (6.10)– (6.14) are fixed points of the cor-
responding maps. We will prove that extremal solutions can be obtained by iteration
procedures with a special initial points.

THEOREM 8.1. Let T =
(

A B
C D

)
be a contraction. Suppose that the pas-

sive system τ = {T; H, M, N} is observable. Define the sequence of nonnegative
contractions in H :

Y(0) := IH, Y(n+1) :=
(
D2

T + T∗Y(n)P′
HT
)

H
� H, n = 0, 1, . . . . (8.1)

Then
(1) the sequence {Y(n)}∞n=0 is nonincreasing,
(2) the operator

Y0 := s− lim
n→∞Y(n)

satisfies the equality
Y0PH =

(
D2

T + T∗Y0P
′
HT
)
H

(8.2)

and ker (IH − Y0) = {0} ,
(3) the operator Y0 is a maximal solution of inequality (6.9).
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Proof. Let us show that the sequence defined by (8.1) is nonincreasing. Since
(D2

PNT)H � PH , we get

Y(1)PH =
(
D2

T + T∗P′
HT
)

H
=
(
D2

PNT

)
H

.

Hence Y(1) � Y(0) . Suppose that Y(n) � Y(n−1) for given n � 1 . Then

Y(n+1)PH =
(
D2

T + T∗Y(n)P′
HT
)

H
�
(
D2

T + T∗Y(n−1)P′
HT
)

H
= Y(n)PH.

Thus, the sequence {Y(n)}∞n=0 is nonincreasing. Because the operators Y(n) are non-
negative, there exists a strong limit

Y0 = s− lim
n→∞Y(n).

Since
Y(n+1) =

(
D2

T + T∗Y(n)P′
HT
)

H
� H, n = 0, 1, . . . ,

applying Proposition 2.1 we get (8.2).
Let us show that any solution Y of (6.9) satisfies the inequality Y � Y0 . Suppose

that Y is a solution of (6.9). Taking into account (7.3) we get Y � Y(1) . If it is proved
that Y � Y(n) for some n � 1 then

Y �
(
D2

T + T∗YP′
HT
)
H

�H �
(
D2

T + T∗Y(n)P′
HT
)

H
� H = Y(n+1).

By the induction it follows that Y � Y0. Using Proposition 7.1 we get ker (I − Y0) =
{0}. �

REMARK 8.2. The nondecreasing sequence

X(0) = IH− Y(0) = 0, X(n+1) = IH− Y(n+1) = IH−
(
D2

T + T∗(IH − X(n))P′
HT
)

H
�H

strongly converges to the minimal solution X0 of the KYP inequalities (6.2) and the
Riccati equations (6.10)– (6.14). From (3.9) and (3.10) we get

X(n+1) = G∗G + DGL∗DF∗(X(n))
1/2 (

IH − (X(n))1/2FF∗(X(n))1/2
)−1

(X(n))1/2DF∗LDG.

If the system τ is minimal then by Proposition 5.1, X0 = Xmin , where Xmin is the
minimal solution of the generalized KYP inequality (1.3) for T . The nondecreasing
sequence

Z(0) = 0,
Z(n+1) = IH −

(
D2

T∗ + T(IH − Z(n))PHT∗)
H

� H

= FF∗ + DF∗LDG(Z(n))
1/2 (

IH − (Z(n))1/2G∗G(Z(n))1/2
)−1

(Z(n))1/2DGL∗DF∗ ,
n = 0, 1, . . .

strongly converges to the inverse Z0 = X−1
max , where Xmax is the maximal solution of

the generalized KYP inequality (1.3) for T .
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EXAMPLE 8.3. Let F ∈ L(M, H) be a strict contraction ( ||Fh||H < ||h||M for
all h ∈M \ {0} ) and kerF∗ = {0} . Then ranDF∗ = H . Let α ∈ (0, 1) and suppose
that the operator G ∈ L(H, N) is chosen such that G∗G = αFF∗ . Then

kerG = {0}, DG = (IH − αFF∗)1/2

and ranDG = H . Therefore ranDF∗ ⊂ ranDG. Let L = IH . By Theorem 3.1 the
operator

Q =
(

DF∗DG F
G 0

)
:

(
H
M

)
→
(

H
N

)
is a contraction and from (3.5) we get that

(
D2

Q

)
H

= 0,
(
D2

PNQ

)
H
�= 0, and

ran
((

D2
PMQ∗

)
H

)1/2
⊂ ran

((
D2

PNQ

)
H

)1/2
.

The system

ν =
{(

DF∗DG F
G 0

)
; H, M, N

}
is passive. The condition ker F∗ = {0} yields that⋂

n�0

ker (F∗(DGDF∗)n) =
⋂
n�0

ker (G(DF∗DG)n) = {0}.

So, the system ν is minimal. Its transfer function Z(λ ) takes the form

Z(λ ) = λG
(
IH − λ (IH − FF∗)1/2(IH − αFF∗)1/2

)−1
F.

The corresponding Riccati equation (6.14) takes the form{
X = αFF∗+(IH−αFF∗)1/2DF∗X1/2(IH−X1/2FF∗X1/2)−1X1/2DF∗(IH−αFF∗)1/2

0 < X � IH
(8.3)

and has the solution X0 = αIH . Because αIH < IH , the system ν is a non-optimal
realization of Z(λ ) . Let us show that X0 = αIH is the minimal solution of (8.3). Note
that Xmin � X0 = αIH . According to Remark 8.2 the sequence of operators

X(0) = 0,
X(n+1) = αFF∗

+(IH−αFF∗)1/2DF∗(X(n))1/2(IH−(X(n))1/2FF∗(X(n))1/2)−1(X(n))1/2DF∗(IH−αFF∗)1/2,
n = 0, 1, . . .

is nondecreasing and strongly converges to the minimal solution Xmin of (8.3). Hence
X(n) � αIH and because X(1) = αFF∗ , one has X(n)FF∗ = FF∗X(n) for all n . It
follows that XminFF∗ = FF∗Xmin and

IH − Xmin = (IH − αFF∗)
(
IH − D2

F∗Xmin(IH − XminFF∗)−1
)

= (I − Xmin)(IH − αFF∗)(IH − XminFF∗)−1.
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Hence
(IH − Xmin)(αIH − Xmin)FF∗ = 0.

Therefore (αIH − Xmin)FF∗ = 0. Taking into account that ker F∗ = {0} , we get
Xmin = αIH .

Note that if the orthogonal projection P in H commutes with FF∗ then the
operator X = P + αP⊥ is a solution of the Riccati equation (8.3).

Consider the adjoint system

ν∗ =
{(

DGDF∗ G∗

F∗ 0

)
; H, N, M

}
.

We will show that X = IH is the minimal solution of the correspondingRiccati equation{
X = FF∗ + DF∗(IH−αFF∗)1/2X1/2(IH−αFF∗)−1X1/2(IH−αX1/2FF∗X1/2)1/2DF∗
0 < X � IH

.

According to Remark 8.2 the sequence of operators

X(0) = 0,
X(n+1) = FF∗

+DF∗(IH−αFF∗)1/2(X(n))1/2(IH−α(X(n))1/2FF∗(X(n))1/2)−1(X(n))1/2(IH−αFF∗)1/2DF∗ ,
n = 0, 1, . . .

is nondecreasing and strongly converges to the minimal solution Xmin . It follows that
X(n)FF∗ = FF∗X(n) for all n , XminFF∗ = FF∗Xmin and

IH − Xmin = (IH − FF∗)
(
IH − (IH − αFF∗)Xmin(IH − αXminFF∗)−1

)
= (IH − Xmin)(IH − FF∗)(IH − αFF∗Xmin)−1.

Hence
(IH − Xmin)(IH − αXmin) = 0.

Because ran (IH − αXmin) = H , we get Xmin = IH. Thus, the minimal passive system
ν is (∗) -optimal realization of the function Z(λ ) .

Observe that this example shows that the condition (7.4) for a passive minimal system
is not sufficient for the optimality.
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