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Abstract. We answer two questions raised by I. M. Singer concerning free products. We prove
that in a free product of separable unital C*-algebras, states on each algebra can be simultaneously
extended to a pure state on the free product. We also show that the second dual of the free product
of unital C*-algebras is the von Neumann algebra free product of their second duals. We give a
proof that the extreme points of the set of tracial states of a C*-algebra is the set of factor tracial
states.

1. Introduction

Free products appear in many different branches of mathematics, as do a number
of other constructions of objects characterized by certain defining properties. In this
paper we give a simple way to mentally verify that such objects exist. Later we focus
on free products in the category of unital C*-algebras and free products in the category
of von Neumann algebras. In particular, we affirmatively answer two questions asked
informally by I. M. Singer concerning free products. The first asks whether the second
dual of a free product of a family of unital C*-algebras is the von Neumann algebra free
product of their second duals. We prove that this is true for amalgamated free products.
The second asks if {Ai : i ∈ I} is a family of separable unital C*-algebras and if ϕi is
a state on Ai for each i ∈ I, then does there exist a pure state ϕ on the free product
∗i∈IAi such that, for each i ∈ I, we have ϕ|Ai = ϕi. (Here we assume that dimAi > 1
for each i ∈ I and Card (I) > 1. )

For basic facts about C*-algebras and von Neumann algebras we use [1], [5] and
[6].

This work began in a seminar on free probability run by Liming Ge and the first
author at M.I.T. in 1995-96.
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2. Constructing Objects with Defining properties

In many areas of mathematics there are objects that are characterized by certain
defining properties, e.g., group algebras, free products, Stone-Cech compactifications.
We present here a very simple way to visualize these constructions. However, there are
set-theoretic difficulties with this visualization, and we give a simple recipe for showing
how these difficulties can be overcome. The desired result is that the reader can obtain
an intuitive feeling for such constructions and mentally verify their existence with little
difficulty.

In category theory these ideas are essentially contained in the adjoint functor
theorem [7]. However, these ideas do not seem to appear in the operator theory literature;
moreover, verifying the hypotheses of the adjoint functor theorem is no easier than
applying the ideas below.

We use the example of group C ∗ -algebras. Suppose (G, ·) is a (discrete) group.
The group C*-algebra C ∗ [G] is defined by the universal property that C ∗ [G] is a
unital C∗ -algebra and there is a homomorphism τ from G to the unitary group
U (C∗ [G]) of C ∗ [G] such that, for any unital C ∗ -algebra A and any homomorphism
σ : G → U (A ) there is a unique unital algebra homomorphism π : C ∗ [G] → A
such that σ = π ◦ τ . A direct construction of C∗ [G] is not difficult, but we want to
look at a more general idea.

Let {(σλ , A1) : λ ∈ Λ} denote the set of all pairs (σ, A ) such that A is a unital

C∗ -algebra and σ : G → U (A ) is a group homomorphism. Let B =
∏
λ∈Λ

Aλ (the

�∞ -product), and define τ : G → U

(∏
λ∈Λ

Aλ

)
by

τ (g) (λ ) = σλ (g) .

We let C ∗ [G] be the unital algebra generated by τ (G) . If A is a unital C ∗ -
algebra and σ : G → U (A ) is a group homomorphism, then (σ, A ) = (σλ , Aλ )
for some λ ∈ Λ, so σ = πλ ◦ τ, where πλ : B → Aλ is the λ th coordinate
homomorphism. The uniqueness of the morphism π is ensured by the fact that C ∗ [G]
is generated by the union of the ranges of the τi ’s.

The trouble with this construction is that

{(σ, A ) : A is a unital C∗-algebra, σ : G → U (A ) a homomorphism}

is not really a set, because the union of the second coordinates (i.e., the A ’s) would
have cardinality larger than any cardinal. However, the above construction still works
if we restrict ourselves to one algebra in each isomorphism class. More important is
the fact that if we are given σ : G → U (A ) , we can replace A with the unital
C ∗ -subalgebra A0 of A generated by σ (G) . Thus we can restrict ourselves to one
algebra in each isomorphism class of an A0 . However, there is dense subset D of A0

consisting of the elements of the the form a1σ (g1) + · · · + anσ (gn) where n ∈ N,
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ak ∈ C, and gk ∈ G for 1 � k � n. Thus the cardinality of D is no more than

∞∑
n=1

(Card C)n Card (G)n � 2ℵ0 Card (G) .

The elements of A0 are limits of sequences in D , the the cardinality of A0 is no larger
that the number of sequences in D , which is no larger than (2 Card (G))ℵ0 .

If we choose a set X with Card (X) = (2 Card (G))ℵ0 , then, given any (σ, A ) ,
we can always find an algebra B ⊂ X with B isomorphic to A0 . Therefore we can
fix our construction by letting {(σλ , Aλ ) : λ ∈ Λ} denote the set of all (σ, A ) such
that A ⊂ X , A is a unital C ∗ -algebra and σ : G → U (A ) is a homomorphism.

Thus once we check the required cardinality restrictions, the "incorrect" construc-
tion is always correct, and we can freely use the "incorrect" construction as our mental
image of the construction, because it is so easy to visualize.

In cases where we are dealing with purely algebraic objects the �∞ -product is
replaced with the Cartesian product, and when we are dealing with closures in non-
metrizable spaces,we use the fact that if Y is a Hausdorff topological space, and E ⊂ Y,
then

Card
(
E
)

� 22Card(E)
.

This is because each element of E is the limit of some ultrafilter in E, and, since Y is
Hausdorff, different points in Y cannot be limits of the same ultrafilter.

3. Free Products

In general a free product ∗
i∈I

Gi of objects {Gi : i ∈I} in a category C is an object

G in the category along with a family {πi : i ∈I} of morphisms with πi : Gi→G for
each i in I , such that, given any object G in C and a family {ρi : i ∈I} of morphisms,
ρi : Gi→H , there is a uniquemorphism ρ : G→H such that, for every i ∈I , ρi = ρ◦πi.
In category theory free products are called coproducts [7].

Free products can often be constructed using the techniques of the preceding
section; we call this the direct product construction. Sometimes there is an "internal"
construction that comes closer to describing the elements of the free product.

In the example of groups, if each Gi is generated by Ei with a set Ri of relations,
then the free product is isomorphic to the group generated by the disjoint union of
the Ei ’s with the set R = ∪

i∈I
Ri of relations. In the category of unital C*-algebras it

was shown [4] that each unital C*-algebra can be defined with generators and relations
(defined as equations with noncommutative continuous functions). The free product is
again the unital C*-algebra generated by the disjoint union of the generators with the
union of the relations.

In the category of von Neumann algebras with morphisms defined as unital normal
∗ -homomorphisms free products also exist. This is because the �∞ -product of dual
Banach spaces is the dual of the �1 -product of their preduals. The following is an
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answer to a question of I. Singer, and the simple proof is obtained by showing that either
object satisfies the defining property of the other.

THEOREM 1. Suppose {Ai : i ∈I} is a family of unital C∗ -algebras. Then the
natural inclusion map from the free product ∗

i∈I
Ai of C∗ -algebras into the free product

∗
i∈I

A ##
i of von Neumann algebras extends uniquely to a normal isomorphism between(

∗
i∈I

Ai

)##

and ∗
i∈I

A ##
i .

It is well-known that the second dual of a C*-algebra is a von Neumann algebra. If
D and A are unital C*-algebras and ρ : D → A is a unital ∗ -homomorphism, then
ρ## : A ## → B## is a normal ∗ -homomorphism. More generally, if D is a unital C*-
algebra M is a von Neumann algebra, and ρ : D → M is a unital ∗ -homomorphism,
then ρ extends uniquely to a normal ∗ -homomorphism ρ̂ : D## → M . The same
ideas used to prove Theorem 1 apply to prove the following result, which was suggested
to us by Liguang Wang.

COROLLARY 1. Suppose {Ai : i ∈I} is a family of unital C∗ -algebras. Then the
natural inclusionmap from the amalgamated free product ∗i∈I,DAi of C∗ -algebras into
the amalgamated free product ∗i∈I,D##A ##

i of von Neumann algebras extends uniquely
to a normal isomorphism between (∗i∈I,DAi)## and ∗i∈I,D##A ##

i .

4. Pure States on Free Products

We next look at states on free products of C∗ -algebras. If we are given a family
{Ai : i ∈I} of unital C∗ -algebras and a family {ϕi : i ∈I} of states (each ϕi is a state
on Ai ), there are many states on ∗

i∈I
Ai such that, for every i ∈I , ϕ|Ai = ϕi. It was

asked by I. M. Singer whether ϕ can always be chosen to be a pure state. We will
provide an affirmative answer if each Ai is separable with dimension greater than 1
and if I contains more than one element.

We first note a simple reduction of the problem.

LEMMA 1. Suppose ϕ is a pure state on ∗
i∈I

Ai and ϕi = ϕ|Ai for each i ∈ I.

Suppose also, for each i ∈ I, that αi : Ai → Ai is a ∗ -automorphism, and the state
τi is defined on Ai by τi (x) = ϕi (α (x)) . Then there is a pure state τ on ∗

i∈I
Ai such

that τi = τ|Ai for every i ∈ I.

Another reduction involves unital separable C*-algebras whose second duals do
not contain 3 nonzero mutually orthogonal projections.

LEMMA 2. Suppose A is a separable unital C*-algebra, 0 �= P �= 1 is a
projection inA ## such that P and 1−P are minimal projections in A ## . Then A is
isomorphic to exactly one of C ⊕ C, or M2 (C) .

Proof. We know A ## is a von Neumann algebra. If A ## is not a factor, then A ##

contains a minimal projection Q. Hence QP , Q (1 − P) , (1 − Q) P, (1 − Q) (1 − P)
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are pairwise orthogonal projections, which, by the minimality assumption, implies that
P = Q or P = 1 − Q. Thus A ## = C ⊕ C. If A ## is a factor, then the hypothesis
implies that A ## is isomorphic to M2 (C) . �

LEMMA 3. Suppose M is a von Neumann algebra contained in B (H) , e is a
unit vector in H and ϕ : M → C is defined by ϕ (T) = (Te, e) . The following are
equivalent.

(1) ϕ is multiplicative
(2) ‖Qe‖ = 0 or ‖Qe‖ = 1 for every projection Q in M .

Proof. (1) ⇒ (2) . If ϕ is multiplicative and Q ∈ M is a projection, then
ϕ (Q) = 0 or ϕ (1 − Q) = 0. If ϕ (Q) = 0, then

0 = (Qe, e) = (Qe, Qe) = ‖Qe‖2
.

On the other hand ϕ (1 − Q) = 0 implies (1 − Q) e = 0, which implies ‖Qe‖ =
‖e‖ = 1.

(2) ⇒ (1) . Let R denote the set of all operators T in B (H) such that T and T∗

both leave Ce invariant. It is clear that R is a von Neumann algebra, and, (2) implies
that R contains every projection in M . Since a von Neumann algebra is generated by
its projections, R contains M . It is now easy to see that ϕ is multiplicative. �

We begin with the case of A1 ∗A2 where each Ai is either M2 (C) or the algebra
D = C ⊕ C of all diagonal 2 × 2 matrices. Suppose 0 � t � 1

2 . We define states
ϕt : M2 (C) → C and ψt : D → C by

ϕt

((
a b
c d

))
= ta + (1 − t) b,

and
ψt = ϕ|D .

The following lemma is well-known [6].

LEMMA 4. Every state on D has the form ψt ◦ α for some automorphism α of
D and some t ∈ [0, 1

2

]
, and every state on M2 (C) has the form ϕt ◦ β for some

automorphism β of M2 (C) and some t ∈ [0, 1] .
We first consider the case of D ∗ D .

LEMMA 5. If 0 � s, t � 1
2 , then there is a pure state ϕ on D1 ∗ D2 (where

D1 = D2 = D ) such that, ϕ|D1 = ψs, and ϕ|D2 = ψt.

Proof. Case 1.Assume both ψs and ψt are not multiplicative, i.e., 0 < s, t � 1
2 .

Let P1 =
(

1 0
0 0

)
∈ D1, and P2 =

(
1 0
0 0

)
∈ D2. We define unital representa-

tions π1, π2 : D → M2 (C) by

π1 (P1) =
(

s
√

s − s2√
s − s2 1 − s

)
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and

π2 (P2) =
(

t i
√

t − t2

−i
√

t − t2 1 − t

)
.

From the definition of free product there is a representation π : D1 ∗ D2 → M2 (C)

such that π|Di = πi for i = 1, 2 . We let e =
(

1
0

)
and define a state ψ on D1 ∗D2

by
ψ (A) = (π (A) e, e) .

It is clear that ψ |D1 = ψs and ψ |D2 = ψt. Since the the only proper C*-subalgebras of
M2 (C) are commutative and π (P1) and π (P2) do not commute, then π (D1 ∗ D2) =
M2 (C) , which means that π is irreducible. This, in turn, implies that ψ is a pure
state.

Case 2. Consider the case where exactly one of ψs or ψt is multiplicative. Without
loss of generality, we can assume that 0 < s � 1

2 and t = 0. If, as in Case 1, we take

π1 (P1) =
(

s
√

s − s2√
s − s2 1 − s

)
and π2 (P2) =

(
0 0
0 1

)
, and e =

(
1
0

)
, and

let
ψ (A) = (π (A) e, e) .

Arguing as in the preceding case, we see that ψ is the required state.
Case 3. Now consider the case where both ψs and ψt are multiplicative. This

means that ψs,ψt : D → C are unital ∗ - homomorphisms. It follows from the
definition of free product that there is a unital ∗ - homomorphism ψ : D1 ∗ D2 → C

such that ψ |D1 = ψs and ψ |D2 = ψt . Clearly, ψ is a pure state. �
We now consider the case of D ∗ M2 (C) .

LEMMA 6. Suppose 0 � s � 1
2 , 0 � t � 1

2 . Then there is a pure state ϕ on
D ∗ M2 (C) such that ϕ|D = ψs and ϕ|M2 (C) = ϕt.

Proof. Case 1. Suppose s > 0. Define π2 : M2 (C) → M4 (C) by

π2

((
a b
c d

))
=
(

aI2 bI2
cI2 dI2

)
,

and let e =

⎛⎜⎜⎝
√

t
0
0√
1 − t

⎞⎟⎟⎠ . Let P =
(

1 0
0 0

)
∈ D , and define π1 : D → M4 (C) by

π1 (P) =
(

P1 0
0 P2

)
,

where P1 =
(

s
√

s − s2√
s − s2 1 − s

)
and P2 =

(
1 − s i

√
s − s2

−i
√

s − s2 s

)
. It is easy

to show that the range of π, which must be the C*-algebra generated by the union of
the ranges of π1 and π2, is M2 (A ) where A is the unital C*-algebra generated by
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P1 and P2 . Since P1 and P2 do not commute, and the only proper C*-subalgebras of
M2 (C) are commutative, we know that A = M2 (C) and, therefore, that the range of
π is all of M4 (C) . Hence π is irreducible and ϕ is a pure state.

Case 2. Suppose s = 0 and 0 < t � 1
2 . Define π2 and e as in Case 1, and define

π1 (P) =
(

A B
C D

)
,

where A =
(

1 − t 0
0 0

)
, B =

(
0 −√

t − t2

0 0

)
, C =

(
0 0

−√
t − t2 0

)
, and

D =
(

1 0
0 t

)
.

If π : D ∗M2 (C) → M2 (C) is the unique extension of π1 and π2, then the state
ϕ : D ∗ M2 (C) → C defined by

ϕ (A) = (π (A) e, e)

is and extension of both ψs and ϕt. As in Case 1, the range of π is M2 (A ) , where
A is the unital C*-algebra generated by A, B, C, D. However, C∗ (B) = M2 (C) , so
ϕ is a pure state.

Case 3. Suppose s = t = 0. Let π1 : D → M2 (C) be the inclusion map, let

π2 : M2 (C) → M2 (C) be the identity map, and let e =
(

1
0

)
, and define π and ϕ

as in the preceding cases. Since π2 is surjective, π is irreducible. Hence, ϕ is a pure
state. �

LEMMA 7. Suppose A1 = A2 = M2(C) , and 0 � s, t � 1
2 . Then there is a pure

state ϕ on A1 ∗ A2 such that, ϕ|A1 = ϕs, and ϕ|A2 = ϕt.

Proof. Case 1. Suppose s = t = 0. Let π1 = π2 = idM2(C), and let e =
(

0
1

)
.

Then the induced π and ϕ (as in the preceding lemma) have the required properties.
Case 2. Suppose at least one of s, t is positive. We can assume that s > 0. Define

π2 : M2 (C) → M4 (C) and e as in the the proof of the first case of the preceding

lemma. Choose a unitary U =

⎛⎜⎜⎝
√

st 0 −√
1 − t

√
t (1 − s)

−√
1 − s 0 0

√
s

0 1 0 0√
s (1 − t) 0

√
t

√
(1 − t) (1 − s)

⎞⎟⎟⎠ . Then

for every T ∈ M2 (C) we have

ϕs (T) =
(

U

(
T 0
0 T

)
U∗e, e

)
.

Define a representation π1 on A1 by π1 (T) = U

(
T 0
0 T

)
U∗. If π : A1 ∗ A2 →

M4 (C) induced by π1 and π2 and if ϕ (T) = (π (T) e, e) , then ϕ|A1 = ϕs and
ϕ|A2 = ϕt .
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Since

π1

((
0 1
0 0

))
=
(

A B
C D

)
,

with A =
( −√t (1 − t) (1 − s) −√s (1 − t)

0 0

)
, and the range of π contains

M2 (C∗ (A)) = M2 (M2 (C)) (since −√s (1 − t) �= 0 ), we see that π must be
irreducible and, hence, ϕ is a pure state. �

Recall [6] that the second dual A ## of a separable unital C*-algebra A is a von
Neumann algebra. Moreover, if ϕ is a state on A , then there is a separable Hilbert
space H and a faithful representation π : A ## → B (H) and a unit vector e ∈ H such
that

(1) π (A )′′ = π
(
A ##

)
,

(2) ϕ (a) = (π (a) e, e) for every a ∈ A .

Note that e need not be a cyclic vector for π.

LEMMA 8. Suppose A1 and A2 are separable unital C*-algebras and A ##
2 has

3 orthogonal non-zero projections whose sum is 1 . If ϕi is a state on Ai, for i = 1, 2,
respectively, then there is an irreducible representation π : A1 ∗ A2 → B

(
�2
)

and a
unit vector f such that for any a ∈ Ai , ϕi (a) = (π (a) f , f ) for i = 1, 2.

Proof. Since H = �2 ⊕ �2 is a separable infinite-dimensional Hilbert space, there
is a unit vector e and, for i = 1, 2 , a faithful representation πi : A ##

i → B(H) with
πi (Ai)

′′ = πi
(
A ##

i

)
such that, for each a ∈ Ai,

ϕi(a) = (πi(a)e, e).

We can assume also that, for i = 1, 2, πi is unitarily equivalent to πi ⊕ πi ⊕ · · · ; this
implies that every nontrivial projection in πi(Ai)′′ has infinite rank and nullity. Since
A1 �= C , there is a projection Q ∈ π1(A1)′′ such that 0 �= Q �= 1. Since A ##

2 has 3
orthogonal non-zero projections and π2 is faithful, we can choose an orthogonal family
{P1, P2, P3} of nonzero projections in π2(A2)′′ whose sum is 1. Let t = ‖Qe‖ and
let tj = ‖Pje‖ for j = 1, 2, 3. By replacing Q with 1−Q if necessary, we can assume
that 0 � t � 1/2 .

We begin with a construction on �2 . Suppose

A =

⎛⎜⎜⎜⎜⎜⎝
α0

α1

α2

α4

. . .

⎞⎟⎟⎟⎟⎟⎠
is a diagonal operator on �2 , 0 � A � 1, with distinct eigenvalues, none of which is 0
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or 1 . Let h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
1
9

− 1
9
1
81

− 1
81· · ·
1
9n

− 1
9n

· · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f 1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, f 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and u =

⎛⎜⎜⎜⎝
1
0
0
...

⎞⎟⎟⎟⎠ . Since

h, f 1, f 2, and u −
(
u, h

‖h‖
)

h
‖h‖ are orthogonal, there is a projection P ∈ B

(
�2
)

with

infinite rank and nullity such that h, f 1 ∈ ranP and f 2, u −
(
u, h

‖h‖
)

h
‖h‖ ∈ kerP. It

follows that Pu = h, so the first column of the matrix for P has no zero entries. Then
any operator that commutes with A must be diagonal, and any diagonal operator that
commutes with P must be a scalar. In other words {A, P}′ = C1. Now on �2 ⊕ �2 let

P̄1 =
(

P 0
0 0

)
, P̄2 =

(
1 − P 0

0 0

)
, P̄3 =

(
0 0
0 1

)
and

Q̄ =
(

A
√

A − A2√
A − A2 1 − A

)
.

Suppose T ∈ B
(
�2 ⊕ �2

)
commutes with P̄1 + P̄2 =

(
1 0
0 0

)
. Then T =(

B 0
0 C

)
. If, in addition, TQ̄ = Q̄T and we have BA = AB, CA = AC, and

C
√

A − A2 =
√

A − A2B. However, CA = AC implies C
√

A − A2 =
√

A − A2C,
so

√
A − A2C =

√
A − A2B. Since 0, 1 are not eigenvalues of A,

√
A − A2 is

injective. Thus B = C. If we now assume that T commutes with P̄1, we see
that B ∈ {P, A}′ , which implies B = C ∈ C1. What we have shown is that{
P̄1, P̄2, P̄3, Q̄

}′′ = B
(
�2 ⊕ �2

)
.

Next suppose we construct vectors e1 ∈ ranP , e2 ∈ kerP , e3 ∈ �2 such that

‖ej‖ = tj for 1 � j � 3, and we let f =
(

e1 + e2

e3

)
. Since ‖P̄jf ‖ = ‖Pje‖ for

j = 1, 2, 3, and since all of the projections involved have infinite rank and nullity, there
is unitary operator U1 ∈ B

(
�2 ⊕ �2

)
such that U1e = f and such that U1PjU∗

1 = P̄j

for j = 1, 2, 3 . If in addition we can choose e1, e2, e3 so that
∥∥Q̄f

∥∥ = ‖Qe‖ , then
there is a unitary operator U2 with U2e = f such that U2QU∗

2 = Q̄. If π : A1 ∗A2 →
B
(
�2 ⊕ �2

)
is the unique representation that extends U1π1 () U∗

1 and U2π2 () U∗
2 , then

the state defined by ϕ (A) = (π (A) f , f ) is an extension of ϕ1 and ϕ2. Moreover, since
the double commutant of the range of π contains

{
P̄1, P̄2, P̄3, Q̄

}′′
= B

(
�2 ⊕ �2

)
, π

is irreducible and ϕ is a pure state. Thus in each of the following cases, except the first
one, we need only define α0,α1, . . . and e1, e2, e3 .

Case 1. Both ϕ1 and ϕ2 are multiplicative. In this case we can choose ϕ = π :
A1 ∗A2 → C to be the extension of ϕ1 and ϕ2 guaranteed by the definition of the free
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product.
Case 2. ϕ2 is not multiplicative, and at most one of ‖P1e‖ , ‖P2e‖ , ‖P3e‖ is

0. Without loss of generality, we can assume 0 < ‖P1e‖ = t1, ‖P2e‖ = t2 . Then, by
Lemma 3, we can choose Q ∈ π2 (A )′′ such that

0 < ‖Qe‖ = t � 1/2. Choose 0 < ε1 �= ε2 < t, and let α0 = 1− t, . α1 = t−ε1,
α2 = t+ε1, α3 = t−ε2, and α4 = t+ε2 . Let e1 = t1√

2
f 2 , e2 = t2√

2
f 2 , and e3 = t3u .

Case 3. ϕ2 is not multiplicative, and two of ‖P1e‖ , ‖P2e‖ , ‖P3e‖ are 0. Note
that it is impossible for all three of ‖P1e‖ , ‖P2e‖ , ‖P3e‖ to be 0 . We can assume
that ‖P1e‖ = ‖P2e‖ = 0 , which implies that ‖P3e‖ = 1. Now we let e1 = e2 = 0

and let e3 =

⎛⎜⎜⎜⎝
1
0
0
...

⎞⎟⎟⎟⎠ , and we choose A so that α0 = 1 − t .

Case 4. ϕ2 is multiplicative and ϕ1 is not multiplicative. We know from Lemma
3 that π1 (A1)

′′ contains a projection E so that 0 < ‖Ee‖ < 1, and therefore,
‖(1 − E) e‖ < 1. Since A ##

1 has 3 nonzero orthogonal projections, A ##
1 is not iso-

morphic to M2 (C) . Thus, by Lemma 2, at least one of E or 1 − E is not minimal.
Hence we can choose P1, P2, P3 so that 0 < ‖P1e‖ , ‖P3e‖ . Since ϕ2 is multiplica-
tive, we can also choose Q so that t = ‖Qe‖ = 0. The key here is that if x, y > 0 and
0 < α < 1, the equation

αx =
√
α − α2y

is equivalent to

α =
y2

y2 + x2

is equivalent to √
α − α2x = (1 − α) y.

First suppose t2 = ‖P2e‖ = 0. Then let e2 = 0, e1 = t1√
2
f 1, e3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−t3
√

1
3

−t3
√

2
3

0
0
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and let α1 = ( 1
3 )t23

( 1
3 )t23+( 1

2)t21
, α2 = ( 2

3 )t23

( 2
3 )t23+( 1

2)t21
. If we define f as above, then Q̄f = 0.

Things are slightly more complicated if t2 �= 0. In this case we let ej = tj√
2
f j for

j = 1, 2, and we define strictly negative numbers b1, b2, c1, c2 so that

b2
1 + b2

2 + c2
1 + c2

2 = t23,
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and so that the four numbers α1 = b2
1

b2
1+( 1

2 )t21
, α2 = b2

2

b2
2+( 1

2 )t21
, α3 = 2c2

1

2c2
1+t22

, α4 = 2c2
2

2c2
2+t22

are distinct. We let e3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
b1

b2

b3

b4

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. In this case we get Q̄f = 0. �

THEOREM 2. Suppose {Ai : i ∈I} is a family of separable unital C∗ -algebras
with dimAi > 1 , and, for each i in I , ϕi is a state on Ai. If Card (I) > 1 , then there
is a pure state ϕ on ∗

i∈I
Ai such that, for each i in I , ϕ|Ai = ϕi.

Proof. If one of the ϕi ’s is a pure state whose GNS representation is infinite-
dimensional, then we can represent the other Aj ’s arbitrarily on the same space with
the same vector, and the corresponding π will be irreducible.

Next note that if A and B are separable unital C*-algebras with dimension
greater than 1, then A ## and B## contain nontrivial projections, and it follows from
Theorem 1 that (A ∗ B)## contains 3 nonzero orthogonal projections. This fact
combined with the preceding remark implies that if the cardinality of I is at least 3, the
theorem is true. The cases in which the cardinality of I is 2 are covered in the lemmas
of this section. �

It is well-known that the set of pure states of a unital C*-algebra is the set of
extreme points of the set of all states. Analogously, the set of extreme points of the
set of tracial states is the set of factor tracial states, i.e., tracial states whose GNS
representation generates a factor von Neumann algebra [3]. Since no proof was given
in [3], we provide a proof here.

PROPOSITION 1. The set of extreme points of the set of tracial states of a unital
C*-algebra is the set of factor tracial states.

Proof. Suppose A is a unital C*-algebra. Let T denote the set of tracial states
of A and suppose ϕ is an extreme point of ϕ . Using the GNS construction there is
a Hilbert space H , a unit vector e in H, a unital ∗ - homomorphism π : A → B (H)
with [π (A ) e]− = H, such that

ϕ (a) = (π (a) e, e)

for every a ∈ A . Assume, via contradiction, that 0 �= P �= 1 is a projection in
the center of π (A )′′ . Since π (A ) Pe = Pπ (A ) e, it is clear that e1 = Pe �= 0.
Similarly, e2 = (1 − P) e �= 0. If we define

ϕi (a) =
(
π (a)

ei

‖ei‖ ,
ei

‖ei‖
)

for a ∈ A and i = 1, 2, then ϕ1 and ϕ2 are tracial states on A and ϕ = ‖e1‖2 ϕ1 +
‖e2‖2 ϕ2. Moreover, there is a net {an} in A such that π (an) → P in the weak
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operator topology. Thus ϕ1 (an) → 1 and ϕ2 (an) → 0, which means ϕ1 �= ϕ2, which
contradicts the fact that ϕ is an extreme point of T .

Conversely, suppose ϕ ∈ T is not an extreme point. Then there exist ρ1 �= ρ2

in T such that ϕ = 1
2 (ρ1 + ρ2) . The GNS construction insures the existence of

Hilbert spaces Mi, unit vectors ei , unital representations τi : A → B (Mi) with
[τi (A ) ei]

− = Mi such that

ρi (a) = (τi (a) ei, ei)

for a ∈ A and i = 1, 2 . Let M = M1 ⊕ M2, e = (e1 ⊕ e2) /
√

2, τ = τ1 ⊕ τ2, and
let H = [τ (A ) e]− , and define π : A → B (H) by

π (a) = τ (a) |H .

Clearly (π, e) generates the GNS representation for ϕ . Assume via contradiction that
π (A )′′ is a factor. Write ρi = ρi1⊕ρi2 relative to Mi = Mi1⊕Mi2 with ρi1 << π and
ρi2 disjoint from π . Then there is a net {aλ} with 0 � aλ � 1 such that π (aλ ) → 1
and (ρ12 ⊕ ρ22) (aλ ) → 0 in the strong operator topology. It follows that the projection
Pi of Mi onto Mi1 is a central projection in τi (A )′′ and that

1 = lim
λ
ϕ (aλ ) =

1
2

[(P1e1, e1) + (P2e2, e2)] .

It follows that Mi = Mi1 for i = 1, 2 and that τi << π for i = 1, 2. It follows that the
map

π (A) → (τi (A) ei, ei)

extends to a tracial state on the factor π (A )′′ . However, every such factor has a unique
tracial state, which implies that ρ1 = ρ2 , which is the desired contradiction. Hence ϕ
is not a factor tracial state. �

Note that every state on D = C ⊕ C is tracial, but the only tracial factor state
on D ∗ D (the universal C*-algebra generated by two projections) is a representation
onto M2 (C) followed by the normalized trace on M2 (C) [6], which must send every
projection to 0, 1

2 , or 1 . Hence, not every pair of tracial states on D can be extended
to a factor tracial state on D ∗D . This observation and the preceding proposition leads
us naturally to the following variant of Singer’s question on pure states.

CONJECTURE 1. If {Ai : i ∈ I} is a collection of separable unital C*-algebras of
dimension greater than 2 and, for each i ∈ I, ϕi is a tracial state on Ai , then there
must exist a factor tracial state ϕ on ∗i∈IAi such that ϕ|Ai = ϕi for each i ∈ I .

It was proved by W.-M. Ching [2] that if each of a family of von Neumann algebras
of dimension at least 2 and at least one with dimension greater than 2 along with given
tracial states have an orthonormal basis consisting of unitaries, then the free-product
tracial state is a factor state. This shows that our conjecture is true in many cases.
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