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MARCHENKO EQUATIONS AND NORMING CONSTANTS

OF THE MATRIX ZAKHAROV–SHABAT SYSTEM
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(communicated by A. Ran)

Abstract. In this article we derive the Marchenko integral equations for solving the inverse
scattering problem for the matrix Zakharov-Shabat system with a potential without symmetry
properties and having L1 entries under a technical hypothesis preventing the accumulation of
discrete eigenvalues on the continuous spectrum. Wederive additional symmetry properties in the
focusing case. The norming constant matrices appearing as parameter matrices in the Marchenko
integral kernels are defined and studied without making any assumptions on the Jordan structure
of the matrix Zakharov-Shabat Hamiltonian at the discrete eigenvalues.

1. Introduction

It is well-known that the inverse scattering problem for the Schrödinger equation on
the line has a unique solution if the bound state energies,one of the reflection coefficients,
and as many so-called norming constants as there are bound states are given [8, 10, 12].
These norming constants are positive numbers appearing as the products of the constant
ratio of the Jost solutions at the bound states (called the dependency constants) and
the imaginary parts of the residues of the transmission coefficients at the bound states.
They appear as parameters in the integral kernel of the Marchenko integral equation
whose solution yields the potential. A similar result is true for the focusing (matrix)
Zakharov-Shabat system [18, 15]. The theory of dependency and norming constants
and their appearance in the integral kernels of the Marchenko integral equations solving
the inverse scattering problem is particularly straightforward if the discrete eigenvalues
of the underlying Hamiltonian are geometrically and algebraically simple.

Generalizations of dependencyand norming constants require a careful study of the
Jordan structure of the discrete eigenvalues. This was done for the zero eigenvalue of the
matrix Schrödinger equation with a selfadjoint potential [7] and the matrix Zakharov-
Shabat system [2, 3] when the geometric multiplicity may exceed one but the Jordan
structure is trivial. The Schrödinger equation with energy dependent potential [5]
provides an example of a treatment of dependency and norming constants when the
geometric multiplicity is one but the algebraic multiplicity is arbitrary. The Jordan
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structure of eigenvalues of the (scalar) Zakharov-Shabat system has been analyzed by
Tanaka [16], though with less detail than in the present article.

In this article we present a comprehensive treatment of norming constants and their
appearance as parameters in the Marchenko integral kernels, where we base ourselves
in part on results obtained in a recent PhD thesis [11]. We actually overcome two
serious limitations of the existing treatments of this problem. One limitation, to cases
where the geometric and algebraic multiplicities of the discrete eigenvalues coincide,
has been discussed above. The other limitation concerns the construction, when the
geometric and algebraic multiplicities equal one, of the norming constants from residues
of analytic continuations of (matrix) functions involving a reflection coefficient [2, 3],
which is only correct if the potential has compact support or has sufficient exponential
decay for the required analytic continuations to exist. Such a construction of the norming
constants is not an option for general potentials with L1 entries. In the present work we
present an alternative approach reminiscent of the construction prevailing in the case of
the Schrödinger equation and sufficiently general to cover the case of general potentials
with L1 entries.

As in [3, 11], we deal with the matrix Zakharov-Shabat system, where the potential
has L1 entries but does not necessarily have any symmetry properties. At the same
time we derive the symmetry properties of Marchenko integral kernels and norming
constants valid in the focusing case, thus generalizing symmetry properties derived
when the algebraic and geometric multiplicities coincide [3, 11]. We avoid introducing
any dependency constants (as done, e.g., in [3, 11]). The appearance of matrices in the
matrix Zakharov-Shabat system leads to the additional complication of having to study
the dual matrix Zakharov-Shabat system along with the matrix Zakharov-Shabat system
itself. This complication does not occurwhen dealingwith the (scalar) Zakharov-Shabat
system. Contrary to [11] where the dual matrix Zakharov-Shabat system was introduced
as an afterthought in Appendix B, we now study the dual system alongside the matrix
Zakharov-Shabat system from the start.

Let us discuss the contents of the various sections. In Section 2 we define the
Jost function matrices and transition matrices and present their analyticity properties.
In Section 3 the Jordan structure of the discrete eigenvalues is studied in detail. The
reflection and transmission coefficients are introduced in Section 4 and their Fourier
transformproperties are given. We then go on to derive theMarchenko integral equations
in Section 5, first if there are no discrete eigenvalues, then if the geometric and algebraic
multiplicities of the eigenvalues coincide, and finally in general. Here we follow
the outline of [11], where an analogous sequential presentation of Marchenko integral
equations occurs. In general, eight seemingly different Marchenko integral kernels
appear. In Section 6 we reduce their number to four, which is rather trivial in the
absence of bound states or in the (scalar) Zakharov-Shabat case but requires extensive
analysis in the general matrix Zakharov-Shabat case. This reduction does not require
any symmetry assumptions on the potentials. In Section 7 we reduce their number to
two in the focusing case by deriving some symmetry relations on taking adjoints.

Throughout we drop the notational system of [6, 11, 17]. Instead, we compromise
between using Jost solutions as column vectors (as in [2, 3, 15, 18]) and Jost solutions
as square matrices (as in [6, 11, 17]), since either notation is advantageous in different
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circumstances. We distinguish between different related entities by using overlines for
those functions analytic on the upper half complex plane. Wedges are used for entities
involving the dual matrix Zakharov-Shabat system and tildes for entities associated with
the eigenvalues in the lower half-plane. Compared to [3], we have changed the sign of
the spectral parameter from k to λ = −k .

By C+ and C− we denote the open upper and lower complex half-planes, while
C+ and C− denote the closed upper and lower complex half-planes.

2. Jost Matrices

We consider the matrix Zakharov-Shabat system

− iJX′(λ , x) − V(x)X(λ , x) = λX(λ , x), x ∈ R, (2.1)

where prime denotes the x -derivative, λ is the complex-valued spectral parameter, the
solution X(λ , x) may be either a column vector of length n + m or a square matrix of
order n + m , and

J =
[

In 0n×m

0m×n −Im

]
, V(x) = i

[
0n×n q(x)
r(x) 0m×m

]
. (2.2)

Here Ip stands for the identity matrix of order p and 0p1×p2 for the p1 × p2 matrix
with zero entries. Further, the potentials q(x) and r(x) are complex n × m and
m × n matrices with entries in L1(R) . Writing a dagger for the conjugate transpose
of a matrix, we have r(x) = q(x)† in the focusing case and r(x) = −q(x)† in the
defocusing case. To subsequently derive symmetry relations we also deal with the dual
matrix Zakharov-Shabat system

iY ′(λ , x)J + Y(λ , x)V(x) = λY(λ , x), (2.3)

where Y(λ , x) is a row vector of length n+m or a square matrix of order n+m and J
and V(x) are given by (2.2). Here we note the sign change in the left-hand side when
passing from (2.1) to (2.3).

By the Jost matrix from the left Ψ(λ , x) and the Jost matrix from the right Φ(λ , x)
we mean the unique (n+m)×(n+m) matrix solutions of (2.1) satisfying the asymptotic
conditions

Ψ(λ , x) = [ψ(λ , x) ψ(λ , x) ] =
[

eiλxIn 0n×m

0m×n e−iλxIm

]
+ o(1)

= eiλJx + o(1), x → +∞, (2.4a)

Φ(λ , x) = [ φ(λ , x) φ(λ , x) ] =
[

eiλxIn 0n×m

0m×n e−iλxIm

]
+ o(1)

= eiλJx + o(1), x → −∞, (2.4b)

where λ ∈ R and ψ(λ , x) , ψ(λ , x) , φ(λ , x) , and φ(λ , x) are the submatrices with
n + m rows and n , m , n , and m columns, respectively, which are usually called
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Jost solutions [1, 2, 3, 4, 18]. Observing that (2.1) implies (∂/∂x) detX(λ , x) =
iλ (n − m) detX(λ , x) (cf. [9, Theorem I 7.3]), we get

detΨ(λ , x) = detΦ(λ , x) = eiλ (n−m)x, λ ∈ R, (2.5)

which guarantees the nonsingularity of the Jost matrices for λ ∈ R . Using the identities

JV(x) = −V(x)J,
∂

∂x
X(λ , x)−1 = −X(λ , x)−1X′(λ , x)X(λ , x)−1,

(2.6)

we easily see that the inverses Ψ(λ , x)−1 and Φ(λ , x)−1 of the Jost matrices are the
unique solutions of the dual matrix Zakharov-Shabat system (2.3) satisfying

Ψ̌(λ , x) =
[
ψ̌(λ , x)
ψ̌(λ , x)

]
def= Ψ(λ , x)−1 = e−iλJx + o(1), x → +∞,

(2.7a)

Φ̌(λ , x) =
[
φ̌(λ , x)
φ̌(λ , x)

]
def= Φ(λ , x)−1 = e−iλJx + o(1), x → −∞.

(2.7b)

where ψ̌(λ , x) and φ̌(λ , x) are n × (n + m) matrices and ψ̌(λ , x) and φ̌(λ , x) are
m× (n+m) matrices called the dual Jost solutions. The matrices Ψ̌(λ , x) and Φ̌(λ , x)
are called the dual Jost matrices.

Since (2.1) is a first order system and (2.5) is true, there exist, for λ ∈ R , square
matrices Al(λ ) and Ar(λ ) of order n + m such that

Ψ(λ , x) = Φ(λ , x)Al(λ ), Φ(λ , x) = Ψ(λ , x)Ar(λ ).

These so-called transition matrices Al(λ ) and Ar(λ ) are each others inverses and have
unit determinant. Moreover, we have the asymptotic conditions

Ψ(λ , x) = [ψ(λ , x) ψ(λ , x) ] = eiλJxAl(λ ) + o(1), x → −∞,
(2.8a)

Φ(λ , x) = [ φ(λ , x) φ(λ , x) ] = eiλJxAr(λ ) + o(1), x → +∞.
(2.8b)

Analogously, we derive from (2.8) the asymptotic conditions

Ψ̌(λ , x) =
[
ψ̌(λ , x)
ψ̌(λ , x)

]
= Ψ(λ , x)−1 = Ar(λ )e−iλJx + o(1), x → −∞,

(2.9a)

Φ̌(λ , x) =
[
φ̌(λ , x)
φ̌(λ , x)

]
= Φ(λ , x)−1 = Al(λ )e−iλJx + o(1), x → +∞,

(2.9b)

where we have used that Al(λ )−1 = Ar(λ ) .
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PROPOSITION 2.1. Let X(λ , x) and Y(λ , x) be solutions of (2.1) and (2.3),
respectively. Then for each λ ∈ C we have

∂

∂x
(Y(λ , x)X(λ , x)) = 0.

Proof. Using (2.5) and (2.6) we compute

∂

∂x
(Y(λ , x)X(λ , x)) = Y(λ , x)

∂X
∂x

(λ , x) +
∂Y
∂x

(λ , x)X(λ , x)

= Y(λ , x)[iJ(λ+V(x))X(λ , x)]+[−iY(λ , x)(λ−V(x))J]X(λ , x)
= i Y(λ , x)[JV(x) + V(x)J]X(λ , x) = 0,

as claimed. �
In the focusing case (V(x)† = −V(x) ) any solution X(λ , x) of (2.1) induces a

solution Y(λ , x) = X(λ , x)† of (2.3). In the defocusing case (V(x)† = V(x) ) any
solution X(λ , x) of (2.1) induces a solution Y(λ , x) = JX(λ , x)†J of (2.3). Further,

[e−iλJx]† = e−iλJx commutes with J and J2 = In+m . As a result, we have for λ ∈ R{ Ψ(λ , x)−1 = Ψ(λ , x)† and Φ(λ , x)−1 = Φ(λ , x)†, focusing case,

Ψ(λ , x)−1 = JΨ(λ , x)†J and Φ(λ , x)−1 = JΦ(λ , x)†J, defocusing case.

Thus in the focusing case we have for λ ∈ R{
ψ(λ , x)† = ψ̌(λ , x), ψ(λ , x)† = ψ̌(λ , x),

φ(λ , x)† = φ̌(λ , x), φ(λ , x)† = φ̌(λ , x).
(2.10)

Moreover, we have for λ ∈ R{
Al(λ )−1 = Al(λ )† and Ar(λ )−1 = Ar(λ )†, focusing case,

Al(λ )−1 = JAl(λ )†J and Ar(λ )−1 = JAr(λ )†J, defocusing case.

In other words, the Jost matrices and the transition matrices are unitary in the focusing
case and J -unitary in the defocusing case.

Writing (2.1) in the form

∂

∂y

(
eiλJ(x−y)X(λ , y)

)
= iJeiλJ(x−y)V(y)X(λ , y)

and integrating with respect to y we derive the Volterra integral equations

Ψ(λ , x) = eiλJx − iJ
∫ ∞

x
dy eiλJ(x−y)V(y)Ψ(λ , y), (2.11a)

Φ(λ , x) = eiλJx − iJ
∫ x

−∞
dy eiλJ(x−y)V(y)Φ(λ , x). (2.11b)

For λ ∈ R Eqs. (2.11) imply the existence of unique solutions of (2.1) which satisfy
(2.4), and hence justify introducing the Jost matrices a posteriori. Analogously, writing
(2.3) in the form

∂

∂x

(
Y(λ , y)e−iλJ(x−y)

)
= iY(λ , y)V(y)e−iλJ(x−y)J
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and integrating with respect to y we derive the alternative Volterra integral equations

Ψ(λ , x)−1 = e−iλJx − i
∫ ∞

x
dyΨ(λ , y)−1V(y)e−iλJ(x−y)J,

(2.12a)

Φ(λ , x)−1 = e−iλJx + i
∫ x

−∞
dyΦ(λ , y)−1V(y)e−iλJ(x−y)J.

(2.12b)

For λ ∈ R Eqs. (2.12) imply the existence of unique solutions of (2.3) which satisfy
(2.7).

The following proposition can be proved as its counterpart in [6, 17, 11]. Contrary
to the practice in [6, 17, 11], it is stated in terms of Jost functions instead of Faddeev
matrices.

PROPOSITION 2.2. Suppose the entries of q(x) and r(x) belong to L1(R) . Then
the following statements are true:

(i) For each x ∈ R , e−iλxψ(λ , x) , eiλxφ(λ , x) , eiλxψ̌(λ , x) , and e−iλxφ̌(λ , x) can
be extended to matrix functions that are continuous in λ ∈ C+ and analytic in
λ ∈ C+ . Moreover, these functions tend to[

In
0m×n

]
,

[
0n×m

Im

]
, [ 0m×n Im ] , [ In 0n×m ] ,

respectively, as |λ | → ∞ within C+ .
(ii) For each x ∈ R , eiλxψ(λ , x) , e−iλxφ(λ , x) , eiλxψ̌(λ , x) , and e−iλxφ̌(λ , x) can

be extended to matrix functions that are continuous in λ ∈ C− and analytic in
λ ∈ C− . Moreover, these functions tend to[

0n×m

Im

]
,

[
In

0m×n

]
, [ In 0n×m ] , [ 0m×n Im ] ,

respectively, as |λ | → ∞ within C− .

Before stating the next proposition (cf. [6, 17, 11]) we introduce a partitioning
of square matrices of order n + m into four submatrices which have the subscripts
1, 2, 3, 4 :

Z =
[

Z1 Z2

Z3 Z4

]
,

where Z1 is n × n , Z2 is n × m , Z3 is m × n , and Z4 is m × m .

PROPOSITION 2.3. Suppose the entries of q(x) and r(x) belong to L1(R) . Then
the following statements are true:

(i) The matrix functions Al1(λ ) and Ar4(λ ) are continuous in λ ∈ C+ , are analytic
in λ ∈ C+ , and tend to the identity matrix as |λ | → ∞ in C+ .

(ii) The matrix functions Ar1(λ ) and Al4(λ ) are continuous in λ ∈ C− , are analytic
in λ ∈ C− , and tend to the identity matrix as |λ | → ∞ in C− .

(iii) The matrix functions Al2(λ ) , Ar3(λ ) , Al3(λ ) , and Ar2(λ ) are continuous in
λ ∈ R and vanish as λ → ±∞ .
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3. Jordan Chains of the Hamiltonian

In this section we prove that for λ ∈ C+ the matrix Zakharov-Shabat system
(2.1) and the matrix functions Al1(λ ) and Ar4(λ ) have the same eigenvalues, the same
geometric and algebraic multiplicities, and hence the same Jordan structure. A similar
statement is proved for λ ∈ C− .

a. Jordan structure of matrix and operator functions. Let Ω be an open subset
of the complex plane, X and Y complex Banach spaces, and L (X , Y ) the Banach
space of all bounded linear operators from X into Y . Then F is called analytic if the
scalar function 〈F(·)x, y∗〉 is analytic for any vector x ∈ X and any bounded linear
functional y∗ on Y . For matrix functions (i.e., for X = Cp1 and Y = Cp2 ) this
is equivalent to the analyticity of each matrix entry of F . Given λ0 ∈ Ω , we denote
by H (L (X , Y ), λ0) the set of all germs of L (X ) -valued analytic functions in a
neighborhood of λ0 , i.e., identifying analytic functions when they coincide on some
neighborhood of λ0 . Given F ∈ H (L (X , Y ), λ0) and writing

F(λ ) =
∞∑
j=0

(λ − λ0)jFj, |λ − λ0| � ε,

we define the linear operator Ξs(F; λ0) from X s into Y s by

Ξs(F; λ0) =

⎡
⎢⎢⎢⎢⎢⎣

F0 0 · · · · · · · · ·
F1 F0 0 · · · · · ·
...

. . . 0
...

. . .
Fs−1 Fs−2 · · · · · · F0

⎤
⎥⎥⎥⎥⎥⎦ ,

where s = 1, 2, . . . and X s and Y s are the direct sums of s copies of X and
Y . Obviously, if F ∈ H (L (Y , Z ), λ0) , G ∈ H (L (X , Y ), λ0) , and H ∈
H (L (X , Z ), λ0) , then

Ξs(F; λ0)Ξs(G; λ0) = Ξs(H; λ0), s = 1, 2, . . . ,

whenever F(λ )G(λ ) = H(λ ) in some neighborhood of λ0 .
If F ∈ H (L (X , Y ), λ0) has invertible values in a deleted neighborhood of λ0

and F(λ0) is a Fredholm operator, then the numbers

αs(F, λ0) = dimKerΞs+1(F; λ0)

are nonnegative integers and for some positive integer Q we have

α0(F, λ0) � α1(F, λ0) � · · · � αQ−1(F, λ0)
< αQ(F, λ0) = αQ+1(F, λ0) = . . . < +∞.

Then Q is the order of the pole F(·)−1 in λ0 and the integers {αs(F,λ0)}∞s=0 are
called the Jordan characteristics of F in λ0 . We then call αQ(F, λ0) the algebraic
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multiplicity and α0(F, λ0) the geometric multiplicity of F at λ0 . A vector function

x(λ ) =
∞∑
j=0

(λ − λ0)jxj

with coefficients xj ∈ X and positive radius of convergence is called a root function
of F of order s in λ0 if x0 �= 0 and

F(λ )x(λ ) = O((λ − λ0)s), λ → λ0.

Then it is easily verified that

Ξs(F; λ0)

⎡
⎢⎢⎣

x0

x1
...

xs−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎦ , (3.1)

where s = 1, 2, . . . . Thus the root functions of F of order s in λ0 correspond to the
nontrivial elements of the null space of Ξs(F; λ0) for any s � 1 . Further, αs(F, λ0)
coincides with the number of linearly independent root functions of F in λ0 that are
polynomials of degree at most s − 1 . By a Jordan chain of F in λ0 of length s we
mean vectors x0, x1, . . . , xs−1 such that x0 �= 0 and (3.1) holds.

At this point we compare the present definition of Jordan chain with that valid for
p × p matrices A . Taking X = Y = Cp we define

F(λ ) = λ Ip − A.

Then

Ξs(F; λ0) =

⎡
⎢⎢⎢⎢⎢⎣

λ0Ip − A 0p×p · · · · · · · · ·
Ip λ0Ip − A 0 · · · · · ·
...

. . . 0
...

. . .
0 0 · · · Ip λ0Ip − A

⎤
⎥⎥⎥⎥⎥⎦

and
αs(F, λ0) = dimKer (λ0Ip − A)s+1,

where s = 0, 1, 2, . . . . The number Q is the length of the longest Jordan chain of A
corresponding to the eigenvalue λ0 . Thus we have indeed generalized the classical
definition of Jordan chain to analytic operator-valued functions.

We now consider the effect of complex conjugation on Jordan structure. Let

F(λ ) =
∞∑
j=0

(λ − λ0)jFj

be a p×p matrix function that is analytic in a neighborhoodof λ0 , and let detF(λ ) �= 0
in a deleted neighborhoodof λ0 . Then it is easily verified that the p×p matrix function
F† defined by

F†(λ ) =
∞∑
j=0

(λ − λ0)j(Fj)†
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has the property that for s = 1, 2, 3, . . .

Ξs(F†; λ0) = Ss,p [Ξs(F; λ0)]
† Ss,p, (3.2)

where
Ss,p = [ δj+k,s+1Ip ]sj,k=1 .

In fact, taking the conjugate transpose of Ξs(F; λ0) amounts to taking the conjugate
transpose of each p× p block matrix entry and reversing the order of p× p block rows
and p × p columns, as a result of the p × p block Toeplitz structure of Ξs(F; λ0) .

b. Jordan structure of the Hamiltonian. We now apply the above definitions to
the matrix Zakharov-Shabat system. It can be shown (e.g. [11]) that the Hamiltonian

H = −iJ
d
dx

− V(x)

is closed and densely defined on the orthogonal direct sum of n + m copies of L2(R)
if the potentials q(x) and r(x) have their entries in L1(R) . When these entries belong
to L1(R) ∩ L2(R) , the domain of H coincides with that of the free Hamiltonian

H0 = −iJ
d
dx

.

The Hamiltonian H is J -selfadjoint (i.e., JH is selfadjoint) in the focusing case
and selfadjoint in the defocusing case. Moreover, the spectrum of H consists of the
whole real line plus an at most countably infinite set of eigenvalues of finite algebraic
multiplicity which can only accumulate on the real line or at infinity. In the defocusing
case the spectrum of H consists of the real line only, whereas in the focusing case it is
merely symmetric upon reflection with respect to the real line.

Prior to determining the Jordan structure of the Hamiltonian H at its nonreal
eigenvalues, we observe that repeated differentiation of (2.1) with respect to λ leads
to the system of differential equations

−iJX′(λ , x) − V(x)X(λ , x) = λX(λ , x),

−iJ

(
∂X
∂λ

)′
(λ , x) − V(x)

∂X
∂λ

(λ , x) = λ
∂X
∂λ

(λ , x) + X(λ , x),

−iJ

(
1
2!

∂2X
∂λ 2

)′
(λ , x)−V(x)

1
2!

∂2X
∂λ 2 (λ , x) = λ

1
2!

∂2X
∂λ 2 (λ , x) +

∂X
∂λ

(λ , x),

...
...

...
...

...
...

...
...

...
...

...
...

−iJ

(
1
s!

∂sX
∂λ s

)′
(λ , x)−V(x)

1
s!

∂sX
∂λ s

(λ , x) = λ
1
s!

∂sX
∂λ s

(λ , x) +
1

(s−1)!
∂s−1X
∂λ s−1

,

where the prime denotes differentiation with respect to x .
For n = m = 1 , similar (though less detailed) results as in the following Theorem

3.1 have been obtained by Tanaka [16].
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THEOREM 3.1. Let λ0 ∈ C+ be an eigenvalue of H . Then the Hamiltonian H
and the matrix functions Al1(λ ) and Ar4(λ ) have the same Jordan structure at λ0 :

dimKerΞs(λ − H; λ0) = dimKerΞs(Al1; λ0) = dimKerΞs(Ar4; λ0),

where s = 1, 2, . . . . Instead, if λ0 ∈ C− is an eigenvalue of H , then the Hamiltonian
H and the matrix functions Ar1(λ ) and Al4(λ ) have the same Jordan structure at λ0 :

dimKerΞs(λ − H; λ0) = dimKerΞs(Ar1; λ0) = dimKerΞs(Al4; λ0),

where s = 1, 2, . . . .

Proof. Every column vector solution of (2.1) for λ = λ0 ∈ C+ has one of the
following equivalent forms:

u(x) = ψ(λ , x)ε = φ(λ , x)η, x ∈ R, (3.3)

where 0 �= ε ∈ Cn and 0 �= η ∈ Cm . Then (2.4) and (2.8) imply

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

eiλ0Jx

[ ε
0m×1

]
+ o(1) = eiλ0JxAr(λ0)

[
0n×1

η

]
+ o(1), x → +∞,

eiλ0Jx

[
0n×1

η

]
+ o(1) = eiλ0JxAl(λ0)

[ ε
0m×1

]
+ o(1), x → −∞.

In order for the entries of u(x) to belong to L2(R) it is necessary and sufficient that

Al1(λ0)ε = 0n×1, Ar4(λ0)η = 0m×1. (3.4)

Thus the eigenvalues of (2.1) in C
+ are the zeros of detAl1(λ ) or det Ar4(λ ) .

Putting

Ψs(λ , x) = [ψ s(λ , x) ψ s(λ , x) ] =
1
s!

∂sΨ
∂λ s

(λ , x), (3.5)

we depart from ε0 ∈ Cn satisfying Al1(λ0)ε0 = 0 with λ0 ∈ C+ and define
ε1, . . . , εs−1 to satisfy

u0(x) = ψ 0(λ0, x)ε0,

u1(x) = ψ 1(λ0, x)ε0 + ψ0(λ0, x)ε1,

u2(x) = ψ 2(λ0, x)ε0 + ψ1(λ0, x)ε1 + ψ0(λ0, x)ε2,

...
...

...
...

...
...

...
...

...
...

us−1(x) =
s−1∑
σ=0

ψσ(λ0, x)εs−σ−1.

Then {u0, u1, . . . , us−1} is a Jordan chain of length s of H at the eigenvalue λ0 if and
only if 0 �= ε0 ∈ Cn and u0(−∞) = u1(−∞) = . . . = us−1(−∞) = 0 . Computing
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the asymptotic behavior of each of the vectors u0(x), u1(x), . . . , us−1(x) we obtain for
t = 1, . . . , s − 1

[ 0m×n Im ] ut(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eiλ0x
t∑

σ=0

(ix)σ

σ!
εt−σ + o(1), x → +∞,

t∑
σ=0

1
σ!

(
d

dλ0

)σ

eiλ0xAl1(λ0)εt−σ + o(1), x → −∞.

Writing the second line as

eiλ0x
t∑

r=0

(ix)r

r!

t−r∑
ρ=0

1
ρ!

(
d

dλ0

)ρ

Al1(λ0)εt−r−ρ,

we obtain the identity

Ξs(Al1; λ0)

⎡
⎣ ε0

...
εs−1

⎤
⎦ = 0, (3.6)

where 0 �= ε0 ∈ Cn .
Analogously, putting

Φs(λ , x) =
[
φ s(λ , x) φ s

(λ , x)
]

=
1
s!

∂sΦ
∂λ s

(λ , x), (3.7)

we depart from η0 ∈ Cm satisfying Ar4(λ0)η0 = 0 with λ0 ∈ C+ and define
η1, . . . ,ηs−1 to satisfy

u0(x) = φ0
(λ0, x)η0,

u1(x) = φ1
(λ0, x)η0 + φ0

(λ0, x)η1,

u2(x) = φ2
(λ0, x)η0 + φ1

(λ0, x)η1 + φ0
(λ0, x)η2,

...
...

...
...

...
...

...
...

...
...

us−1(x) =
s−1∑
σ=0

φσ(λ0, x)ηs−σ−1.

Then {u0, u1, . . . , us−1} is a Jordan chain of length s of H at the eigenvalue λ0 if and
only if 0 �= η0 ∈ Cm and u0(+∞) = u1(+∞) = . . . = us−1(+∞) = 0 . Computing
the asymptotic behavior of each of the vectors u0(x), u1(x), . . . , us−1(x) we obtain for
t = 1, . . . , s − 1

[ In 0n×m ] ut(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−iλ0x
t∑

σ=0

(−ix)σ

σ!
ηt−σ + o(1), x → −∞,

t∑
σ=0

1
σ!

(
d

dλ0

)σ

e−iλ0xAr4(λ0)ηt−σ + o(1), x → +∞.
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Writing the second line as

e−iλ0x
t∑

r=0

(−ix)r

r!

t−r∑
ρ=0

1
ρ!

(
d

dλ0

)ρ

Ar4(λ0)ηt−r−ρ,

we obtain the identity

Ξs(Ar4; λ0)

⎡
⎢⎣

η0
...

ηs−1

⎤
⎥⎦ = 0, (3.8)

where 0 �= η0 ∈ Cm .
We have derived the Jordan structure of the Hamiltonian H for eigenvalues λ0 ∈

C+ in two different ways, leading to (3.6) and (3.8), where the corresponding Jordan
chains can be written in the respective forms{

t−1∑
σ=0

ψσ(λ0, x)εt−σ−1

}s

t=1

,

{
t−1∑
σ=0

φσ(λ0, x)ηt−σ−1

}s

t=1

.

Since these two constructions are equivalent, we necessarily have

dimKerΞs(Al1; λ0) = dimKerΞs(Ar4; λ0), s = 1, 2, . . . ,

as claimed.
In the same way we can write the Jordan chains corresponding to an eigenvalue

λ̃0 ∈ C− of H in the form{
t−1∑
σ=0

φσ(λ̃0, x)ε̃t−σ−1

}s

t=1

,

{
t−1∑
σ=0

ψσ(λ̃0, x)η̃t−σ−1

}s

t=1

, (3.9)

where 0 �= ε̃0 ∈ KerAr1(λ̃0) and 0 �= η̃0 ∈ KerAl4(λ̃0) . We thus derive

dimKerΞs(Ar1; λ̃0) = dimKerΞs(Al4; λ̃0), s = 1, 2, . . . , (3.10)

which completes the proof. �

COROLLARY 3.2. Let λ0 ∈ C \ R . Then the geometric multiplicity of λ0 as an
eigenvalue of the Hamiltonian H does not exceed min(n, m) .

Proof. The geometric multiplicity of λ0 ∈ C+ as an eigenvalue of H is equal to

dimKer Al1(λ0) = dimKerAr4(λ0).

The left-hand side is at most n and the right-hand side is at most m . The same argument
applies to λ0 ∈ C− . �

c. Jordan structure of the dual Hamiltonian. Instead of the eigenfunctions
and generalized eigenfunctions of the matrix Zakharov-Shabat system (2.1), we now
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consider the Jordan structure of the dualmatrixZakharov-Shabat system (2.3). Repeated
differentiation of (2.3) with respect to λ leads to the system of differential equations

iY ′(λ , x)J + Y(λ , x)V(x) = λY(λ , x),

i

(
∂Y
∂λ

)′
(λ , x)J +

∂Y
∂λ

(λ , x)V(x) = λ
∂Y
∂λ

(λ , x) + Y(λ , x),

i

(
1
2!

∂2Y
∂λ 2

)′
(λ , x)J+

1
2!

∂2Y
∂λ 2

(λ , x)V(x) = λ
1
2!

∂2Y
∂λ 2

(λ , x) +
∂Y
∂λ

(λ , x),

...
...

...
...

...
...

...
...

...
...

...
...

i

(
1
s!

∂sY
∂λ s

)′
(λ , x)J+

1
s!

∂sY
∂λ s

(λ , x)V(x) = λ
1
s!

∂sY
∂λ s

(λ , x)+
1

(s−1)!
∂s−1Y
∂λ s−1

,

where the prime denotes differentiation with respect to x .
Every row vector solution of (2.3) for λ = λ0 ∈ C+ has one of the following

equivalent forms:

v(x) = θ φ̌(λ0, x) = ζ ψ̌(λ0, x), x ∈ R, (3.11)

where 0 �= θ ∈ C1×n and 0 �= ζ ∈ C1×m are complex row vectors. Then (2.7) and
(2.9) imply

v(x) =
{

[ 01×n ζ ] e−iλ0Jx+o(1) = [ θ 01×m ]Al(λ0)e−iλ0Jx+o(1), x → +∞,

[ θ 01×m ] e−iλ0Jx+o(1) = [ 01×n ζ ]Ar(λ0)e−iλ0Jx+o(1), x → −∞.

In order for the entries of v(x) to belong to L2(R) it is necessary and sufficient that

θAl1(λ0) = 01×n, ζAr4(λ0) = 01×m. (3.12)

Putting, in analogy with (3.5) and (3.7),

Ψ̌s(λ , x) =
[
ψ̌ s(λ , x)
ψ̌(λ , x)

]
=

1
s!

∂sΨ̌
∂λ s

(λ , x), Φ̌s(λ , x) =
[
φ̌(λ , x)
φ̌(λ , x)

]
=

1
s!

∂sΦ̌
∂λ s

(λ , x),

we depart from θ0 ∈ C1×n and ζ ∈ C1×m such that θ0Al1(λ ) = 01×n and ζ0Ar4(λ ) =
01×m , and define ζ1, . . . , ζs−1 and θ1, . . . , θs−1 to satisfy

v0(x) = θ0φ̌
0
(λ0, x) = ζ0ψ̌

0
(λ0, x),

v1(x) = θ0φ̌
1
(λ0, x) + θ1φ̌

0
(λ0, x) = ζ0ψ̌

1
(λ0, x) + ζ1ψ̌

0
(λ0, x),

...
...

...
...

...
...

...
...

...
...

vs−1(x) =
s−1∑
σ=0

θs−σ−1φ̌
σ
(λ0, x) =

s−1∑
σ=0

ζs−σ−1ψ̌
σ
(λ0, x).

Then {v0, v1, . . . , vs−1} is a dual Jordan chain of length s at the eigenvalue λ0 ∈ C+

if and only if 0 �= θ0 ∈ C1×n , 0 �= ζ0 ∈ C1×m , and v0(±∞) = v1(±∞) = . . . =
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vs−1(±∞) = 0 . This is the case if and only if 0 �= θ0 ∈ C1×n , 0 �= ζ0 ∈ C1×m , and
for t = 0, 1, . . . , s − 1

t∑
σ=0

θt−σ
1
σ!

(
d

dλ0

)σ

eiλ0xAl1(λ0) =
t∑

σ=0

ζt−σ
1
σ!

(
d

dλ0

)σ

e−iλ0xAr4(λ0) = 0.

The latter identity can be written as

eiλ0x
t∑

r=0

(ix)r

r!

t−r∑
ρ=0

θt−r−ρ
1
ρ!

(
d

dλ0

)ρ

Al1(λ0)

= e−iλ0x
t∑

r=0

(−ix)r

r!

t−r∑
ρ=0

ζt−r−ρ
1
ρ!

(
d

dλ0

)ρ

Ar4(λ0) = 0.

Consequently, {v0, v1, . . . , vs−1} is a dual Jordan chain at the eigenvalue λ ∈ C
+ if

and only if 0 �= θ0 ∈ C1×n , 0 �= ζ0 ∈ C1×m , and

[θs−1 θs−2 . . . θ0 ]Ξs(Al1; λ0) = 01×ns,

[ ζs−1 ζs−2 . . . ζ0 ]Ξs(Ar4; λ0) = 01×ms.

We have therefore written the dual Jordan chains corresponding to the eigenvalue
λ0 ∈ C+ in either of the equivalent forms{

t−1∑
σ=0

θt−σ−1φ̌
σ
(λ0, x)

}s

t=1

,

{
t−1∑
σ=0

ζt−σ−1ψ̌
σ
(λ0, x)

}s

t=1

.

A similar result holds if λ0 is an eigenvalue of (2.3) in C− . Indeed, the corre-
sponding Jordan chains have either of the equivalent forms{

t−1∑
σ=0

θ̃t−σ−1ψ̌σ(λ0, x)

}s

t=1

,

{
t−1∑
σ=0

ζ̃t−σ−1φ̌σ(λ0, x)

}s

t=1

, (3.13)

where

[ θ̃s−1 θ̃s−2 . . . θ̃0 ]Ξs(Ar1; λ0) = 01×ns, (3.14a)
[ ζ̃s−1 ζ̃s−2 . . . ζ̃0 ]Ξs(Al4; λ0) = 01×ms. (3.14b)

4. Reflection and Transmission Coefficients

In this section we introduce the reflection and transmission coefficients and study
their meromorphicity and symmetry properties.

a. Principal parts of transmission coefficients. Recalling that Al1(λ ) and
Ar4(λ ) are analytic in λ ∈ C+ and approach the identity matrix as |λ | → +∞ , we
define the transmission coefficients

Tl(λ ) = Al1(λ )−1, Tr(λ ) = Ar4(λ )−1, (4.1)
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as meromorphic matrix functions in λ ∈ C+ . Similarly, we define

T̃l(λ ) = Ar1(λ )−1, T̃r(λ ) = Al4(λ )−1, (4.2)

as meromorphic matrix functions in λ ∈ C− . Then the poles of Tl(λ ) and Tr(λ ) in
C+ coincide with the eigenvalues λj of H in C+ and the pole order Qj coincides with
the length of the longest Jordan chain corresponding to the eigenvalue λj . We now
write the principal parts of Tl(λ ) and Tr(λ ) at λj as follows:

Qj−1∑
s=0

is+1τljs

(λ − λj)s+1
,

Qj−1∑
s=0

is+1τrjs

(λ − λj)s+1
. (4.3)

By the same token, the poles of T̃l(λ ) and T̃r(λ ) in C
− coincide with the eigenvalues

λ̃j of H in C− and the pole order Q̃j coincides with the length of the longest Jordan
chain corresponding to the eigenvalue λ̃j . We write the principal parts of T̃l(λ ) and
T̃r(λ ) at λ̃j as follows:

Q̃j−1∑
s=0

(−i)s+1τ̃ljs

(λ − λ̃j)s+1
,

Q̃j−1∑
s=0

(−i)s+1τ̃rjs

(λ − λ̃j)s+1
. (4.4)

Let us now represent the transmission coefficients in the following form:

Tl(λ ) = T+
l (λ ) −

∑
j

Qj−1∑
s=0

∫ ∞

0
dα

αs

s!
e−iλαeiλjατljs, (4.5a)

Tr(λ ) = T+
r (λ ) −

∑
j

Qj−1∑
s=0

∫ ∞

0
dα

αs

s!
e−iλαeiλjατrjs, (4.5b)

T̃l(λ ) = T̃−
l (λ ) −

∑
j

Q̃j−1∑
s=0

∫ ∞

0
dα

αs

s!
eiλαe−iλ̃jα τ̃ljs, (4.5c)

T̃r(λ ) = T̃−
r (λ ) −

∑
j

Q̃j−1∑
s=0

∫ ∞

0
dα

αs

s!
eiλαe−iλ̃jα τ̃rjs, (4.5d)

where T+
l (λ ) and T+

r (λ ) are continuous in λ ∈ C+ , are analytic in λ ∈ C+ , and
tend to the identity matrix as λ → ∞ in C+ and T̃−

l (λ ) and T̃−
r (λ ) are continuous in

λ ∈ C− , are analytic in λ ∈ C− , and tend to the identity matrix as λ → ∞ in C− .

b. Modified Jost matrices and the scattering matrix. The first n columns of the
Jost matrices Ψ(λ , x) and Φ(λ , x) have other analyticity properties than their last m
columns. This is also the case for the rows of Ψ̌(λ , x) and Φ̌(λ , x) . As in [6, 17, 11],
we therefore introduce modified Jost matrices by interchanging their columns in such
a way that we obtain matrices that are analytic in λ ∈ C+ and λ ∈ C− , respectively.
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We also define modified dual Jost matrices by suitable row interchange. More precisely,
we define the modified Jost matrices and modified Jost functions by

F+(λ , x) = [ψ(λ , x) φ(λ , x) ] , F−(λ , x) = [ φ(λ , x) ψ(λ , x) ] ,

and the modified dual Jost matrices and modified dual Jost functions by

F̌+(λ , x) =
[
φ̌(λ , x)
ψ̌(λ , x)

]
, F̌−(λ , x) =

[
ψ̌(λ , x)
φ̌(λ , x)

]
.

PROPOSITION 4.1. Suppose the entries of q(x) and r(x) belong to L1(R) .
Then for each x ∈ R , F±(λ , x)e−iλJx and eiλJxF̌±(λ , x) can be extended to matrix
functions that are continuous in λ ∈ C± and analytic in λ ∈ C

± . Moreover, we have
the asymptotic relations

F+(λ , x) = [ψ(λ , x) φ(λ , x) ] 	

⎧⎪⎪⎨
⎪⎪⎩

eiλJx

[
In Ar2(λ )

0m×n Ar4(λ )

]
, x → +∞,

eiλJx

[
Al1(λ ) 0n×m

Al3 (λ )Im

]
, x → −∞, (4.6a)

F−(λ , x) = [φ(λ , x) ψ(λ , x) ] 	

⎧⎪⎪⎨
⎪⎪⎩

eiλJx

[
Ar1(λ ) 0n×m

Ar3(λ ) Im

]
, x → +∞,

eiλJx

[
In Al2(λ )

0m×n Al4(λ )

]
, x → −∞, (4.6b)

F̌+(λ , x) =
[
φ̌(λ , x)
ψ̌(λ , x)

]
	

⎧⎪⎪⎨
⎪⎪⎩

[
Al1(λ ) Al2(λ )
0m×n Im

]
e−iλJx, x → +∞,[

In 0n×m

Ar3(λ ) Ar4(λ )

]
e−iλJx, x → −∞,

(4.6c)

F̌−(λ , x) =
[
ψ̌(λ , x)
φ̌(λ , x)

]
	

⎧⎪⎪⎨
⎪⎪⎩

[
In 0n×m

Al3(λ ) Al4(λ )

]
e−iλJx, x → +∞,[

Ar1(λ ) Ar2(λ )
0m×n Im

]
e−iλJx, x → −∞.

(4.6d)

In the remainder of this article we make the usual technical hypothesis that the
matrices Al1(λ ) , Al4(λ ) , Ar1(λ ) , and Ar4(λ ) are invertible for all λ ∈ R . Un-
der this hypothesis it can easily be shown using (4.6a), (4.6b), and Al(λ )Ar(λ ) =
Ar(λ )Al(λ ) = In+m that

F+(λ , x)−1F−(λ , x) → JS(λ )J, x → ±∞,

where

S(λ ) =
[

Tl(λ ) R(λ )
L(λ ) Tr(λ )

]
is called the scattering matrix and

L(λ ) = Al3(λ )Al1(λ )−1 = −Ar4(λ )−1Ar3(λ ), (4.7a)

R(λ ) = Ar2(λ )Ar4(λ )−1 = −Al1(λ )−1Al2(λ ), (4.7b)
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are called reflection coefficient from the right and reflection coefficient from the left,
respectively. Since F+(λ , x)e−iλJx and F−(λ , x)e−iλJx satisfy the same first order
linear system of differential equations, we obtain the Riemann-Hilbert problem

F−(λ , x) = F+(λ , x)JS(λ )J. (4.8)

Analogously, we have

F−(λ , x)−1F+(λ , x) → JS̃(λ )J, x → ±∞,

where

S̃(λ ) =
[

T̃l(λ ) L̃(λ )
R̃(λ ) T̃r(λ )

]
is also called scattering matrix and

L̃(λ ) = Al2(λ )Al4(λ )−1 = −Ar1(λ )−1Ar2(λ ), (4.9a)

R̃(λ ) = Ar3(λ )Ar1(λ )−1 = −Al4(λ )−1Al3(λ ), (4.9b)

are called reflection coefficient from the right and reflection coefficient from the left,
respectively. Moreover, we have the Riemann-Hilbert problem

F+(λ , x) = F−(λ , x)JS̃(λ )J. (4.10)

In the same way we derive the Riemann-Hilbert problems

F̌−(λ , x) = S(λ )F̌+(λ , x), (4.11)

F̌+(λ , x) = S̃(λ )F̌−(λ , x). (4.12)

Obviously, S(λ ) and S̃(λ ) are each others inverses. In the focusing case the scattering
matrices are J -unitary:

S̃(λ ) = S(λ )−1 = JS(λ )†J, λ ∈ R.

In the defocusing case, where the technical hypothesis is always satisfied [6, 11], the
scattering matrices are unitary for λ ∈ R .

c. Fourier integral representations of reflection coefficients. Under the techni-
cal hypothesis it can easily be shown ([11]; also [6, 17] in the defocusing and focusing

cases) that there exist matrix functions L̂(α) , ˆ̃L(α) , R̂(α) , and ˆ̃R(α) having their
entries in L1(R) such that

R(λ ) =
∫ ∞

−∞
dα e−iλα R̂(α), R̃(λ ) =

∫ ∞

−∞
dα eiλα ˆ̃R(α),

(4.13a)

L(λ ) =
∫ ∞

−∞
dα eiλα L̂(α), L̃(λ ) =

∫ ∞

−∞
dα e−iλα ˆ̃L(α).

(4.13b)

With respect to [6, 11, 17] we have replaced e±iλα by e∓iλα in the definitions of L̂(α)
and ˆ̃L(α) .
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5. Derivation of Marchenko Integral Equations

Before deriving theMarchenko integral equationswe state the following refinement
of Proposition 2.2. Although we have catered to the notations of [3], its proof can be
given as in [11] (see [6] in the defocusing case and [17] in the focusing case).

PROPOSITION 5.1. Suppose the entries of q(x) and r(x) belong to L1(R) . Then
there exist matrix functions K(x, y) , G(x, y) , G(x, y) , and K(x, y) such that

ψ(λ , x) = eiλx

[
In

0m×n

]
+

∫ ∞

x
dy K(x, y)eiλy, (5.1a)

φ(λ , x) = e−iλx

[
0n×m

Im

]
+

∫ x

−∞
dy G(x, y)e−iλy, (5.1b)

φ(λ , x) = eiλx

[
In

0m×n

]
+

∫ x

−∞
dy G(x, y)eiλy, (5.1c)

ψ(λ , x) = e−iλx

[
0n×m

Im

]
+

∫ ∞

x
dy K(x, y)e−iλy. (5.1d)

Moreover, for each x ∈ R the entries of K(x, y) and K(x, y) belong to L1(x, +∞) and
those of G(x, y) and G(x, y) belong to L1(−∞, x) . Analogously, there exist matrix

functions Ǧ(y, x) , Ǩ(y, x) , Ǩ(y, x) , and Ǧ(y, x) such that

φ̌(λ , x) = e−iλx [ In 0n×m ] +
∫ x

−∞
dy Ǧ(y, x)e−iλy, (5.1e)

ψ̌(λ , x) = eiλx [ 0m×n Im ] +
∫ ∞

x
dy Ǩ(y, x)eiλy, (5.1f)

ψ̌(λ , x) = e−iλx [ In 0n×m ] +
∫ ∞

x
dy Ǩ(y, x)e−iλy, (5.1g)

φ̌(λ , x) = eiλx [ 0m×n Im ] +
∫ x

−∞
dy Ǧ(y, x)eiλy. (5.1h)

In addition, for each x ∈ R the entries of Ǩ(y, x) and Ǩ(y, x) belong to L1(x, +∞)
and those of Ǧ(y, x) and Ǧ(y, x) belong to L1(−∞, x) .

We now derive the Marchenko integral equations from the Riemann-Hilbert prob-
lems (4.8), (4.10), (4.11), and (4.12), two equations for each Riemann-Hilbert problem
in the absence of symmetries. We first deal with the elementary situation in which
the transmission coefficients Tl(λ ) and Tr(λ ) are analytic in λ ∈ C

+ and the trans-
mission coefficients T̃l(λ ) and T̃r(λ ) are analytic in λ ∈ C− . Next we consider
the case where the poles of the four transmission coefficients all have order one and
the technical hypothesis is satisfied. Finally, we treat the most general case under the
technical hypothesis. Contrary to [2, 3], we then assume arbitrary Jordan structure.

a. Marchenko equations if there are no bound states. We now derive the
Marchenko integral equation in the absence of bound states.
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THEOREM 5.2. Under the technical hypothesis, suppose the entries of q(x) and
r(x) belong to L1(R) and the Hamiltonian does not have any nonreal eigenvalues.
Then the following Marchenko integral equations are true:

K(x, y) +
[

0n×m

Im

]
ˆ̃R(x + y) +

∫ ∞

x
dz K(x, z) ˆ̃R(z + y) = 0,

(5.2a)

G(x, y) +
[

In
0m×n

]
ˆ̃L(x + y) +

∫ x

−∞
dz G(x, z) ˆ̃L(z + y) = 0,

(5.2b)

G(x, y) +
[

0n×m

Im

]
L̂(x + y) +

∫ x

−∞
dz G(x, z)L̂(z + y) = 0,

(5.2c)

K(x, y) +
[

In
0m×n

]
R̂(x + y) +

∫ ∞

x
dz K(x, z)R̂(z + y) = 0,

(5.2d)

Ǧ(y, x) − ˆ̃L(y + x) [ 0m×n Im ] −
∫ x

−∞
dz ˆ̃L(y + z)Ǧ(z, x) = 0,

(5.2e)

Ǩ(y, x) − ˆ̃R(y + x) [ In 0n×m ] −
∫ ∞

x
dz ˆ̃R(y + z)Ǩ(z, x) = 0,

(5.2f)

Ǩ(y, x) − R̂(y + x) [ 0m×n Im ] −
∫ ∞

x
dz R̂(y + z)Ǩ(z, x) = 0,

(5.2g)

Ǧ(y, x) − L̂(y + x) [ In 0n×m ] −
∫ x

−∞
dz L̂(y + z)Ǧ(z, x) = 0.

(5.2h)

Proof. Let us sketch the proof of (5.2a). The left n columns of (4.10) can be
written as

e−iλxψ(λ , x) − e−iλxφ(λ , x)T̃l(λ ) + eiλxψ(λ , x)e−2iλxR̃(λ ) = 0, (5.3a)

where the first term is continuous in C+ and analytic in C+ , the second is continuous
in C− and analytic in C− (because T̃l(λ ) is assumed to have no poles in C− ), and
the third is continuous in λ ∈ R and vanishes as λ → ±∞ . Similarly we have the
Riemann-Hilbert problems

eiλxφ(λ , x) − eiλxψ(λ , x)T̃r(λ ) + e−iλxφ(λ , x)e2iλxL̃(λ ) = 0,
(5.3b)

e−iλxφ(λ , x) − e−iλxψ(λ , x)Tl(λ ) + eiλxφ(λ , x)e−2iλxL(λ ) = 0,
(5.3c)

eiλxψ(λ , x) − eiλxφ(λ , x)Tr(λ ) + e−iλxψ(λ , x)e2iλxR(λ ) = 0,
(5.3d)

eiλxφ̌(λ , x) − T̃l(λ )eiλxψ̌(λ , x) − e2iλxL̃(λ )e−iλxφ̌(λ , x) = 0,
(5.3e)
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e−iλxψ̌(λ , x) − T̃r(λ )e−iλxφ̌(λ , x) − e−2iλxR̃(λ )eiλxψ̌(λ , x) = 0,
(5.3f)

eiλxψ̌(λ , x) − Tl(λ )eiλxφ̌(λ , x) − e2iλxR(λ )e−iλxψ̌(λ , x) = 0,
(5.3g)

e−iλxφ̌(λ , x) − Tr(λ )e−iλxψ̌(λ , x) − e−2iλxL(λ )eiλxφ̌(λ , x) = 0,
(5.3h)

where we have used the last m columns of (4.10), the first n and last m columns of
(4.8), the first n and the last m rows of (4.12), and the first n and the last m rows
of (4.11), respectively. By inverting the Fourier transforms in (5.1) we now obtain the
respective identities

K(x, y) =
1
2π

∫ ∞

−∞
dλ

{
e−iλxψ(λ , x) −

[
In

0m×n

]}
eiλ (x−y). (5.4a)

G(x, y) =
1
2π

∫ ∞

−∞
dλ

{
eiλxφ(λ , x) −

[
0n×m

Im

]}
eiλ (y−x). (5.4b)

G(x, y) =
1
2π

∫ ∞

−∞
dλ

{
e−iλxφ(λ , x) −

[
In

0m×n

]}
eiλ (x−y). (5.4c)

K(x, y) =
1
2π

∫ ∞

−∞
dλ

{
eiλxψ(λ , x) −

[
0n×m

Im

]}
eiλ (y−x). (5.4d)

Ǧ(y, x) =
1
2π

∫ ∞

−∞
dλ

{
eiλxφ̌(λ , x) − [ In 0n×m ]

}
eiλ (y−x). (5.4e)

Ǩ(y, x) =
1
2π

∫ ∞

−∞
dλ

{
e−iλxψ̌(λ , x) − [ 0m×n Im ]

}
eiλ (x−y).

(5.4f)

Ǩ(y, x) =
1
2π

∫ ∞

−∞
dλ

{
eiλxψ̌(λ , x) − [ In 0n×m ]

}
eiλ (y−x). (5.4g)

Ǧ(y, x) =
1
2π

∫ ∞

−∞
dλ

{
e−iλxφ̌(λ , x) − [ 0m×n Im ]

}
eiλ (x−y).

(5.4h)

Applying the Fourier transformation in (5.4a) we obtain for the third term in (5.3a)

1
2π

∫ ∞

−∞
dλ eiλ (x−y)

∫ ∞

x
dz K(x, z)eiλ (x−z)

∫ ∞

−∞
dα R̂(α)eiλ (α−2x)

=
∫ ∞

x
dz K(x, z)

∫ ∞

−∞
dα R̂(α)

1
2π

∫ ∞

−∞
dλ eiλ (α−y−z)

=
∫ ∞

x
dz K(x, z)

∫ ∞

−∞
dα R̂(α)δ(α − y − z) =

∫ ∞

x
dz K(x, z)R̂(z + y),

which implies (5.2a). Equations (5.2b)–(5.2h) are proved likewise. �
b. Marchenko equations when the geometric and algebraic multiplicities

of the eigenvalues coincide. We first describe the eigenspaces of the Hamiltonian
H in terms of the residues of the transmission coefficients when their algebraic and
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geometric multiplicity coincide (i.e., if the transmission coefficients have only simple
poles: Qj = 1 ). We then go on to derive the eight Marchenko integral equations.

LEMMA 5.3. If λj ∈ C+ and Qj = 1 , then

KerAl1(λj) = {τlj0ξ : ξ ∈ C
n}, KerAr4(λj) = {τrj0ζ : ζ ∈ C

m}. (5.5)

Analogously, if λ̃j ∈ C− and Q̃j = 1 , then

KerAr1(λ̃j) = {τ̃rj0ξ : ξ ∈ C
n}, KerAl4(λ̃j) = {τ̃lj0ζ : ζ ∈ C

m}. (5.6)

Proof. Let Al1(λj)εj = 0 for some 0 �= εj ∈ Cn . Then

Al1(λ )εj = (λ − λj)f (λ )

for some vector function f (λ ) that is analytic in a neighborhood of λ . Using (4.1) to
write εj = (λ − λj)Tl(λ )f (λ ) and taking the limit as λ → λj , we obtain from (4.3)
that εj = iτlj0f (λj) , which proves that εj belongs to the range of τlj0 . Conversely,
if ε = τlj0ξ for some ξ ∈ Cn , then for some matrix function Tlj(λ ) analytic in a
neighborhood of λj and vanishing at λj we have

Al1(λ )εj = −iAl1(λ )[(λ − λj)Tl(λ )ξ − Tlj(λ )ξ ] = −i(λ − λj)ξ + iTlj(λ )ξ → 0n×1

as λ → λj , so that Al1(λj)εj = 0n×1 . Consequently, we obtain the first of (5.5). The
second of (5.5) and both of (5.6) are proved in the same way. �

Recall the two representations of the eigenfunctions and dual eigenfunctions for
eigenvalues λj ∈ C

+ and λ̃j ∈ C
− [cf. (3.3)–(3.4), (3.9)–(3.10), (3.11)–(3.12), and

(3.13)–(3.14)]. We then introduce the norming constant matrices Γlj0 , Γrj0 , Γ̃lj0 , Γ̃rj0 ,

Γ̌lj0 , Γ̌rj0 , ˜̌Γlj0 , and ˜̌Γrj0 as follows:

ψ(λj, x)τlj0 = φ(λj, x)Γrj0, φ(λj, x)τrj0 = ψ(λj, x)Γlj0, (5.7a)

φ(λ̃j, x)τ̃lj0 = ψ(λ̃j, x)Γ̃lj0, ψ(λ̃j, x)τ̃rj0 = φ(λ̃j, x)Γ̃rj0, (5.7b)

τlj0φ̌(λj, x) = Γ̌lj0ψ̌(λj, x), τrj0ψ̌(λj, x) = Γ̌rj0φ̌(λj, x), (5.7c)

τ̃lj0ψ̌(λ̃j, x) = ˜̌Γrj0φ̌(λ̃j, x), τ̃rj0φ̌(λ̃j, x) = ˜̌Γlj0ψ̌(λ̃j, x), (5.7d)

where the ranges of Γlj0 , Γrj0 , Γ̃lj0 , and Γ̃rj0 coincide with those of τlj0 , τrj0 , τ̃rj0 ,

and τ̃lj0 , respectively, and the kernels of Γ̌lj0 , Γ̌rj0 , ˜̌Γlj0 , and ˜̌Γrj0 with those of τ̌lj0 ,
τ̌rj0 , ˜̌τrj0 , and ˜̌τ lj0 , respectively.

By the above constructions (5.7) we avoid introducing dependency constant matri-
ces which relate vectors as ε and η in (3.1). In the matrix Zakharov-Shabat case, such
relations are partially defined matrices which then have to be extended to full matrices
by defining them as zero on the orthogonal complements of their original domains. This
has in fact been accomplished in [11]. By defining norming constant matrices directly
we avoid the major hassle of having to introduce matrices that do not even appear in the
Marchenko integral kernels.

Let us now proceed to deriving the Marchenko integral equations.



100 FRANCESCO DEMONTIS AND CORNELIS VAN DER MEE

THEOREM 5.4. Under the technical hypothesis, suppose the entries of q(x) and
r(x) belong to L1(R) and the resolvent of the Hamiltonian only has simple poles. Then
the following Marchenko integral equations are true:

K(x, y) +
[

0n×m

Im

]
Ω̃l(x + y) +

∫ ∞

x
dz K(x, z)Ω̃l(z + y) = 0,

(5.8a)

G(x, y) +
[

In
0m×n

]
Ω̃r(x + y) +

∫ x

−∞
dz G(x, z)Ω̃r(z + y) = 0,

(5.8b)

G(x, y) +
[

0n×m

Im

]
Ωr(x + y) +

∫ x

−∞
dz G(x, z)Ωr(z + y) = 0,

(5.8c)

K(x, y) +
[

In
0m×n

]
Ωl(x + y) +

∫ ∞

x
dz K(x, z)Ωl(z + y) = 0,

(5.8d)

Ǧ(y, x) − ˜̌Ωr(y + x) [ 0m×n Im ] −
∫ x

−∞
dz ˜̌Ωr(y + z)Ǧ(z, x) = 0,

(5.8e)

Ǩ(y, x) − ˜̌Ωl(y + x) [ In 0n×m ] −
∫ ∞

x
dz ˜̌Ωl(y + z)Ǩ(z, x) = 0,

(5.8f)

Ǩ(y, x) − Ω̌l(y + x) [ 0m×n Im ] −
∫ ∞

x
dz Ω̌l(y + z)Ǩ(z, x) = 0,

(5.8g)

Ǧ(y, x) − Ω̌r(y + x) [ In 0n×m ] −
∫ x

−∞
dz Ω̌r(y + z)Ǧ(z, x) = 0,

(5.8h)

where

Ω̃l(w) = ˆ̃R(w) +
∑

j

e−iλ̃jwΓ̃lj0, Ω̃r(w) = ˆ̃L(w) +
∑

j

eiλ̃jwΓ̃rj0,
(5.9ab)

Ωr(w) = L̂(w) +
∑

j

e−iλjwΓrj0, Ωl(w) = R̂(w) +
∑

j

eiλjwΓlj0,
(5.9cd)

˜̌Ωr(w) = ˆ̃L(w) +
∑

j

eiλ̃jw ˜̌Γrj0,
˜̌Ωl(w) = ˆ̃R(w) +

∑
j

e−iλ̃jw ˜̌Γlj0,
(5.9ef)

Ω̌l(w) = R̂(w) +
∑

j

eiλjwΓ̌lj0, Ω̌r(w) = L̂(w) +
∑

j

e−iλjwΓ̌rj0.
(5.9gh)

Proof. To prove (5.8a), we apply the Fourier transform in (5.4a) to the second
term in (5.3a), use the first of (5.7b), employ (5.1d) for λ = λ̃j , and get

− 1
2π

∫ ∞

−∞
dλ e−iλyφ(λ , x)

−iτ̃lj0

λ − λ̃j
= −e−iλ̃jyφ(λ̃j, x)τ̃lj0 = −e−iλ̃jyψ(λ̃j, x)Γ̃lj0

= −e−iλ̃j(x+y)
[

0n×m

Im

]
Γ̃lj0 −

∫ ∞

x
dz e−iλ̃j(z+y)K(x, z)Γ̃lj0,
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which implies (5.8a). Similarly, applying the Fourier transform in (5.4b) to the second
term in (5.3b), using the second of (5.7b), and (5.1b), we get

− 1
2π

∫ ∞

−∞
dλ eiλyψ(λ , x)

−iτ̃rj0

λ − λ̃j
= −eiλ̃jyψ(λ̃j, x)τ̃rj0 = −eiλ̃jyφ(λ̃j, x)Γ̃rj0

= −eiλ̃j(x+y)
[

In
0m×n

]
Γ̃rj0 −

∫ x

−∞
dz eiλ̃j(z+y)G(x, z)Γ̃rj0,

which implies (5.8b). To prove (5.8c), we apply the inverse Fourier transform in (5.4c)
to the second term in (5.3c), use the first of (5.7a), substitute (5.1b) for λ = λj , and
get

− 1
2π

∫ ∞

−∞
dλ e−iλyψ(λ , x)

iτlj0

λ − λj
= e−iλjyψ(λj, x)τlj0 = e−iλjyφ(λj, x)Γrj0

= e−iλj(x+y)
[

0n×m

Im

]
Γrj0 +

∫ x

−∞
dz G(x, z)e−iλj(z+y)Γrj0,

which implies (5.8c). Applying the inverse Fourier transform in (5.4d) to the second
term in (5.3d), use the second of (5.7a), substitute (5.1a) for λ = λj , we get

− 1
2π

∫ ∞

−∞
dλ eiλyφ(λ , x)

iτrj0

λ − λj
= eiλjyφ(λj, x)τrj0 = eiλjyψ(λj, x)Γlj0

= eiλj(x+y)
[

In
0m×n

]
Γlj0 +

∫ ∞

x
dz K(x, z)eiλj(z+y)Γlj0,

which implies (5.8d). Applying the inverse Fourier transform in (5.4e) to the second
term in (5.3e), use the first of (5.7d), substitute (5.1h) for λ = λ̃j , we get

− 1
2π

∫ ∞

−∞
dλ eiλy −iτ̃lj0

λ − λ̃j
ψ̌(λ , x) = −eiλ̃jyτ̃lj0ψ̌(λ̃j, x) = −eiλ̃jy ˜̌Γrj0φ̌(λ̃j, x)

= −eiλ̃j(x+y) ˜̌Γrj0 [ 0m×n Im ] −
∫ x

−∞
dz eiλ̃j(z+y) ˜̌Γrj0G̃(z, x),

which implies (5.8e). Applying the inverse Fourier transform in (5.4f) to the second
term in (5.3f), use the second of (5.7d), substitute (5.1g) for λ = λ̃j , we get

− 1
2π

∫ ∞

−∞
dλ e−iλy −iτ̃rj0

λ − λ̃j
φ̌(λ , x) = −e−iλ̃jyτ̃rj0φ̌(λ̃j, x)=−e−iλ̃jy ˜̌Γlj0ψ̌(λ̃j, x)

= −e−iλ̃j(x+y) ˜̌Γlj0 [ In 0n×m ] −
∫ ∞

x
dz e−iλ̃j(z+y) ˜̌Γlj0K̃(z, x),

which implies (5.8f). Applying the inverse Fourier transform in (5.4g) to the second
term in (5.3g), use the first of (5.7c) and (5.1f), we get

− 1
2π

∫ ∞

−∞
dλ eiλy iτlj0

λ − λj
φ̌(λ , x) = eiλjyτlj0φ̌(λj, x) = eiλjyΓ̌lj0ψ̌(λj, x)

= eiλj(x+y)Γ̌lj0 [ 0m×n Im ] +
∫ ∞

x
dz eiλj(z+y)Γ̌lj0Ǩ(z, x),
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which implies (5.8g). Finally, applying the inverse Fourier transform in (5.4h) to the
second term in (5.3h), use the second of (5.7c) and (5.1e), we get

− 1
2π

∫ ∞

−∞
dλ e−iλy iτrj0

λ − λj
ψ̌(λ , x) = e−iλjyτrj0ψ̌(λj, x) = e−iλjyΓ̌rj0φ̌(λj, x)

= e−iλj(x+y)Γ̌rj0 [ In 0n×m ] +
∫ x

−∞
dz e−iλj(z+y)Γ̌rj0Ǧ(z, x),

which implies (5.8h). �
c. Marchenko equations for general Jordan structure. To generalize Lemma5.3

to the case of an eigenvaluewith nontrivial Jordan structure, we convert the transmission
functions to locally analytic functions as follows:

T#
lj(λ ) = (λ − λj)QjTl(λ ) =

Qj−1∑
s=0

(λ − λj)siQj−sτlj,Qj−s−1 + O((λ − λj)Qj),

T#
rj(λ ) = (λ − λj)QjTr(λ ) =

Qj−1∑
s=0

(λ − λj)siQj−sτrj,Qj−s−1 + O((λ − λj)Qj),

where Qj is the pole order of the transmission coefficients Tl(λ ) and Tr(λ ) at the
eigenvalue λj ∈ C

+ . Analogously,

T̃#
lj(λ )=(λ − λ̃j)Q̃j T̃l(λ ) =

Q̃j−1∑
s=0

(λ − λ̃j)s(−i)Q̃j−sτ̃lj,Q̃j−s−1+O((λ − λ̃j)Q̃j),

T̃#
rj(λ )=(λ − λ̃j)Q̃j T̃r(λ ) =

Q̃j−1∑
s=0

(λ − λ̃j)s(−i)Q̃j−sτ̃rj,Q̃j−s−1+O((λ − λ̃j)Q̃j),

where Q̃j is the pole order of the transmission coefficients T̃l(λ ) and T̃r(λ ) at the
eigenvalue λ̃j ∈ C− .

THEOREM 5.5. Let λj be an eigenvalue in C+ and let s = 1, . . . , Qj . Then the
vectors {ε0, ε1, . . . , εs−1} generate a Jordan chain of Al1(λ ) at λj if and only if⎡

⎢⎢⎣
0n(Qj−s)×1

ε0
...

εs−1

⎤
⎥⎥⎦ ∈ ImΞQj(T

#
lj ; λj). (5.10)

Similarly, {η0,η1 . . . ,ηs−1} generate a Jordan chain of Ar4(λ ) at λj if and only if⎡
⎢⎢⎣

0m(Qj−s)×1

η0
...

ηs−1

⎤
⎥⎥⎦ ∈ ImΞQj(T

#
rj; λj). (5.11)
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Similar results hold for the eigenvalues in C− .

Proof. Let {ε0, ε1, . . . , εs−1} generate a Jordan chain of Al1(λ ) at the eigenvalue
λj . Then there exists a vector function f (λ ) analytic in a neighborhood of λj such that
for λ near λj

Al1(λ )
s−1∑
σ=0

(λ − λj)σεσ = (λ − λj)sf (λ ). (5.12)

Multiplying by T#
lj(λ ) = (λ − λj)QjAl1(λ )−1 we obtain in some neighborhood of λj

Qj−1∑
σ=Qj−s

(λ − λj)σεσ+s−Qj = T#
lj(λ )f (λ ), (5.13)

which implies (5.10).
Conversely, assume (5.10). Then there exist h0, h1, . . . , hQj−1 ∈ Cn×1 such that

ΞQj(T
#
lj ; λj)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h0

h1
...
...

hQj−2

hQj−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0n×1
...

0n×1

ε0
...

εs−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0n(Qj−s)×1

ε0
...

εs−1

⎤
⎥⎥⎦ .

Writing f (λ ) =
∑Qj−1

σ=0 (λ −λj)σhσ , we get (5.13) and therefore (5.12) in a neighbor-
hood of λj . The part of the theorem involving (5.11) is proved in the same way. �

Let us introduce the norming constant matrices Γrjs , Γljs , Γ̌rjs , and Γ̌ljs ( s =
0, 1, . . . , Qj − 1 ) connected to each discrete eigenvalue λj ∈ C+ as the coefficients of
the respective matrix polynomials γrj(λ ) , γlj(λ ) , γ̌rj(λ ) , and γ̌lj(λ ) :

γrj(λ ) =
Qj−1∑
s=0

(λ − λj)sΓrjs, γlj(λ ) =
Qj−1∑
s=0

(λ − λj)sΓljs,

γ̌rj(λ ) =
Qj−1∑
s=0

(λ − λj)sΓ̌rjs, γ̌lj(λ ) =
Qj−1∑
s=0

(λ − λj)sΓ̌ljs.

Similarly, we have the relations

γ̃rj(λ ) =
Qj−1∑
s=0

(λ − λ̃j)sΓ̃rjs, γ̃lj(λ ) =
Qj−1∑
s=0

(λ − λ̃j)sΓ̃ljs,

˜̌γ rj(λ ) =
Qj−1∑
s=0

(λ − λ̃j)s ˜̌Γrjs, ˜̌γ lj(λ ) =
Qj−1∑
s=0

(λ − λ̃j)s ˜̌Γljs.
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We now define the norming constants by requiring that the functions

ψ(λ , x)Tl(λ ) − i
∑

j

φ(λ , x)
γrj(λ )

(λ − λj)Qj
, (5.14a)

φ(λ , x)Tr(λ ) − i
∑

j

ψ(λ , x)
γlj(λ )

(λ − λj)Qj
, (5.14b)

are analytic in λ ∈ C+ , the functions

φ(λ , x)T̃l(λ ) + i
∑

j

ψ(λ , x)
γ̃lj(λ )

(λ − λ̃j)Q̃j
, (5.14c)

ψ(λ , x)T̃r(λ ) + i
∑

j

φ(λ , x)
γ̃rj(λ )

(λ − λ̃j)Q̃j
, (5.14d)

are analytic in λ ∈ C− , the functions

Tl(λ )φ̌(λ , x) − i
∑

j

γ̌lj(λ )
(λ − λj)Qj

ψ̌(λ , x), (5.14e)

Tr(λ )ψ̌(λ , x) − i
∑

j

γ̌rj(λ )
(λ − λj)Qj

φ̌(λ , x). (5.14f)

are analytic in λ ∈ C+ , and the functions

T̃l(λ )ψ̌(λ , x) + i
∑

j

˜̌γ r(λ )

(λ − λ̃j)Q̃j
φ̌(λ , x), (5.14g)

T̃r(λ )φ̌(λ , x) + i
∑

j

˜̌γ l(λ )

(λ − λ̃j)Q̃j
ψ̌(λ , x), (5.14h)

are analytic in λ ∈ C− . Equations (5.14) are a direct generalization of (5.7). Indeed,
for Qj = 1 the expression (5.14a) is analytic in λ ∈ C+ if and only if

lim
λ→λj

(λ−λj)
(
ψ(λ , x)Tl(λ )−iψ(λ , x)

Γrj0

λ−λj

)
= i

{
ψ(λj, x)τlj0−φ(λj, x)Γrj0

}
= 0,

which corresponds to the first of (5.7a). The same reasoning applies to (5.14b)–(5.14h)
in the case of a simple pole.

Let us multiply (5.14a) and (5.14f) by e−iλx(λ − λj)Qj , (5.14c) and (5.14h) by
e−iλx(λ − λj)Q̃j , (5.14b) and (5.14e) by eiλx(λ − λ̃j)Qj , and (5.14d) and (5.14g) by
eiλx(λ − λ̃j)Q̃j . Then the equations resulting from (5.14a)–(5.14b) and (5.14e)–(5.14f)
are O((λ − λj)Qj) as λ → λj and those resulting from (5.14c)–(5.14d) and (5.14g)–
(5.14h) are O((λ − λ̃j)Q̃j) as λ → λ̃j . We then write the analyticity conditions in
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(5.14) in the respective forms

ΞQj(e
−i(·)xψ(·, x); λj)ΞQj(T

#
lj ; λj) = iΞQj(e

−2i(·)x; λj)ΞQj(e
i(·)xφ(·, x); λj)ΞQj(γrj; λj),

ΞQj(e
i(·)xφ(·, x); λj)ΞQj(T

#
rj; λj) = iΞQj(e

2i(·)x; λj)ΞQj(e
−i(·)xψ(·, x); λj)ΞQj(γlj; λj),

ΞQ̃j
(e−i(·)xφ(·, x); λ̃j)ΞQ̃j

(T̃#
lj ; λ̃j) = −iΞQ̃j

(e−2i(·)x; λ̃j)ΞQ̃j
(ei(·)xψ(·, x); λ̃j)ΞQ̃j

(γ̃lj; λ̃j),

ΞQ̃j
(ei(·)xψ(·, x); λ̃j)ΞQ̃j

(T̃#
rj; λ̃j) = −iΞQ̃j

(e2i(·)x; λ̃j)ΞQ̃j
(e−i(·)xφ(·, x); λ̃j)ΞQ̃j

(γ̃rj; λ̃j),

ΞQj(T
#
l ; λj)ΞQj(e

i(·)xφ̌(·, x); λj) = iΞQj(γ̌lj; λj)ΞQj(e
−i(·)xψ̌(·, x); λj)ΞQj(e

2i(·)x; λj),

ΞQj(T
#
r ; λj)ΞQj(e

−i(·)xψ̌(·, x); λj) = iΞQj(γ̌rj; λj)ΞQj(e
i(·)xφ̌(·, x); λj)ΞQj(e

−2i(·)x; λj),

ΞQ̃j
(T̃#

l ; λ̃j)ΞQ̃j
(ei(·)xψ̌(·, x); λ̃j) = −iΞQ̃j

( ˜̌γ rj; λ̃j)ΞQ̃j
(e−i(·)xφ̌(·, x); λ̃j)ΞQ̃j

(e2i(·)x; λ̃j),

ΞQ̃j
(T̃#

r ; λ̃j)ΞQ̃j
(e−i(·)xφ̌(·, x); λ̃j) = −iΞQ̃j

( ˜̌γ lj; λ̃j)ΞQ̃j
(ei(·)xψ̌(·, x); λ̃j)ΞQ̃j

(e−2i(·)x; λ̃j).

Here the images of ΞQj(γrj; λj) , ΞQj(γlj; λj) , ΞQj(γ̃lj; λ̃j) , and ΞQj(γ̃rj; λ̃j) coincide with

those of ΞQj(T
#
rj; λj) , ΞQj(T

#
lj ; λj) , ΞQ̃j

(T̃#
rj; λ̃j) , and ΞQ̃j

(T̃#
lj ; λ̃j) , respectively. By the

same token, the kernels of ΞQj(γ̌lj; λj) , ΞQj(γ̌rj; λj) , ΞQ̃j
( ˜̌γ rj; λ̃j) , and ΞQ̃j

( ˜̌γ lj; λ̃j) coin-

cide with those of ΞQj(T
#
r ; λj) , ΞQj(T

#
l ; λj) , ΞQ̃j

(T̃#
r ; λ̃j) , and ΞQ̃j

(T̃#
l ; λ̃j) , respectively.

We now derive the Marchenko integral equations in the most general case.

THEOREM 5.6. Under the technical hypothesis, suppose the entries of q(x) and
r(x) belong to L1(R) . Then the Marchenko integral equations (5.8a)–(5.8h) are true,
where

Ω̃l(w) = ˆ̃R(w) +
∑

j

Q̃j−1∑
s=0

ws

s!
e−iλ̃jwΓ̃lj,Q̃j−s−1, (5.15a)

Ω̃r(w) = ˆ̃L(w) +
∑

j

Q̃j−1∑
s=0

ws

s!
eiλ̃jwΓ̃rj,Q̃j−s−1, (5.15b)

Ωr(w) = L̂(w) +
∑

j

Qj−1∑
s=0

e−iλjw
ws

s!
Γrj,Qj−s−1, (5.15c)

Ωl(w) = R̂(w) +
∑

j

Qj−1∑
s=0

eiλjw
ws

s!
Γlj,Qj−s−1, (5.15d)

˜̌Ωr(w) = ˆ̃L(w) +
∑

j

Q̃j−1∑
s=0

ws

s!
eiλ̃jw ˜̌Γrj,Q̃j−s−1, (5.15e)
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˜̌Ωl(w) = ˆ̃R(w) +
∑

j

Q̃j−1∑
s=0

ws

s!
e−iλ̃jw ˜̌Γlj,Q̃j−s−1, (5.15f)

Ω̌l(w) = R̂(w) +
∑

j

Qj−1∑
s=0

ws

s!
eiλjwΓ̌lj,Qj−s−1, (5.15g)

Ω̌r(w) = L̂(w) +
∑

j

Qj−1∑
s=0

ws

s!
e−iλjwΓ̌rj,Qj−s−1. (5.15h)

6. Symmetry Relations for General Potentials

In this section we derive general symmetry relations on the Marchenko integral
kernels and norming constantmatriceswhich allowus to reduce the number of seemingly
different Marchenko kernels from eight to four.

Introducing the partitioning

[K(x, y) K(x, y) ] =
[

K1(x, y) K2(x, y)
K3(x, y) K4(x, y)

]
,

[G(x, y) G(x, y) ] =
[

G1(x, y) G2(x, y)
G3(x, y) G4(x, y)

]
,

[
Ǩ(y, x)
Ǩ(y, x)

]
=

[
Ǩ1(y, x) Ǩ2(y, x)
Ǩ3(y, x) Ǩ4(y, x)

]
,

[
Ǧ(y, x)
Ǧ(y, x)

]
=

[
Ǧ1(y, x) Ǧ2(y, x)
Ǧ3(y, x) Ǧ4(y, x)

]
,

we derive from (5.8) the following integral equations:

K3(x, y) + Ω̃l(x + y) +
∫ ∞

x
dz K4(x, z)Ω̃l(z + y) = 0m×n, (6.1a)

G2(x, y) + Ω̃r(x + y) +
∫ x

−∞
dz G1(x, z)Ω̃r(z + y) = 0n×m, (6.1b)

G3(x, y) + Ωr(x + y) +
∫ x

−∞
dz G4(x, z)Ωr(z + y) = 0m×n, (6.1c)

K2(x, y) + Ωl(x + y) +
∫ ∞

x
dz K1(x, z)Ωl(z + y) = 0n×m, (6.1d)

Ǧ2(y, x) − ˜̌Ωr(y + x) −
∫ x

−∞
dz ˜̌Ωr(y + z)Ǧ4(z, x) = 0n×m, (6.1e)

Ǩ3(y, x) − ˜̌Ωl(y + x) −
∫ ∞

x
dz ˜̌Ωl(y + z)Ǩ1(z, x) = 0m×n, (6.1f)

Ǩ2(y, x) − Ω̌l(y + x) −
∫ ∞

x
dz Ω̌l(y + z)Ǩ4(z, x) = 0n×m, (6.1g)

Ǧ3(y, x) − Ω̌r(y + x) −
∫ x

−∞
dz Ω̌r(y + z)Ǧ1(z, x) = 0m×n. (6.1h)
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We now derive the following proposition on recovering a Marchenko integral kernel
from the matrix functions K , G , K , and G .

PROPOSITION 6.1. For y > x let K(x, y), Ǩ(y, x), K (x, y) , and Ǩ (y, x) be mea-
surable p1 × p2 matrix functions satisfying

max

(∫ ∞

x
dy ‖K(x, y)‖,

∫ ∞

x
dy ‖Ǩ(y, x)‖

)
< 1, (6.2)

∫ ∞

x
dy ‖K (x, y)‖ +

∫ ∞

x
dy ‖Ǩ (y, x)‖ < +∞.

Then the integral equations

Λ(x + y) +
∫ ∞

x
dz K(x, z)Λ(z + y) = −K (x, y), (6.3a)

Λ̌(x + y) +
∫ ∞

x
dz Λ̌(z + y)Ǩ(z, x) = −Ǩ (y, x), (6.3b)

have unique measurable solutions Λ(w) and Λ̌(w) satisfying∫ ∞

2x
dw

(‖Λ(w)‖ + ‖Λ̃(w)‖) < +∞.

A similar result is true for matrix functions depending on (x, y) with y < x and
with integrals with respect to y ∈ (−∞, x) .

Proof. Let us take the norm of the integral term in (6.3a) and integrate with respect
to y ∈ (x,∞) . Denoting the left-hand side of (6.2) by δ ∈ [0, 1) , we obtain∫ ∞

x
dy

∫ ∞

x
dz ‖K(x, z)‖‖Λ(z + y)‖ =

∫ ∞

x
dz

∫ z

x
dy ‖K(x, z)‖‖Λ(z + y)‖

� δ
∫ ∞

2x
dw ‖Λ(w)‖.

The proposition now follows from the contraction mapping principle. �
In the scalar case (n = m = 1 ) the Jost matrices are unitary 2 × 2 matrices

of determinant 1 for λ ∈ R and hence their inverses equal their cofactor matrices.
Passing to the inverse Fourier transforms as in (5.4) we see that

Ǩ1(y, x) = K4(x, y), Ǩ2(y, x) = −K2(x, y),

Ǩ3(y, x) = −K3(x, y), Ǩ4(y, x) = K1(x, y),

Ǧ1(y, x) = G4(x, y), Ǧ2(y, x) = −G2(x, y),

Ǧ3(y, x) = −G3(x, y), Ǧ4(y, x) = G1(x, y).

Applying Proposition 6.1 to convert (6.1e)–(6.1h) to (6.1a)–(6.1d) on multiplication
by a minus sign we obtain the symmetry relations

Ω̌l(α) = Ωl(α), Ω̌r(α) = Ωr(α), ˜̌Ωl(α) = Ω̃l(α), ˜̌Ωr(α) = Ω̃r(α). (6.4)
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This means that we can write all eight Marchenko integral equations in terms of only
two Marchenko kernels Ωl(α) and Ωr(α) . As a result we get

Γ̌ljs = Γljs, Γ̌rjs = Γrjs,
˜̌Γljs = Γ̃ljs,

˜̌Γrjs = Γ̃rjs, (6.5)

where s = 0, 1, . . . , Qj − 1 (in the first two) and s = 0, 1, . . . , Q̃j − 1 (in the last two),
respectively.

Let us now generalize the symmetry relations (6.4) and (6.5) to the general matrix
Zakharov-Shabat system.

THEOREM 6.2. Under the technical hypothesis, suppose the entries of q(x) and
r(x) belong to L1(R) . Then the symmetry relations

Ω̌l(α) = Ωl(α), Ω̌r(α) = Ωr(α), ˜̌Ωl(α) = Ω̃l(α), ˜̌Ωr(α) = Ω̃r(α), (6.6)

are satisfied. Moreover,

Γ̌ljs = Γljs, Γ̌rjs = Γrjs,
˜̌Γljs = Γ̃ljs,

˜̌Γrjs = Γ̃rjs, (6.7)

where s = 0, 1, . . . , Qj − 1 .

Proof. From Ψ(λ , x)Ψ̌(λ , x) = In+m we get

Ψ3(λ , x)Ψ̌1(λ , x) + Ψ4(λ , x)Ψ̌3(λ , x) = 0m×n.

Because of (5.1a), (5.1d), (5.1f), and (5.1g), this identity leads to the equality

K3(x, y) + Ǩ3(y, x)

+
∫ ∞

x
dz

{
K3(x, y + z − x)Ǩ1(z, x) + K4(x, z)Ǩ3(z + y − x, x)

}
= 0m×n,

(6.8)

where y > x (and hence y + z − x > x whenever z > x ). Adding the two integral
equations (6.1a) and (6.1f) and using (6.1a), (6.1f), and (6.8) repeatedly we perform
the following rather straightforward calculations:

0m×n = K3(x, y) + Ǩ3(y, x) + Ω̃l(x + y) − ˜̌Ωl(y + x)

+
∫ ∞

x
dz K4(x, z)Ω̃l(z + y) −

∫ ∞

x
dz ˜̌Ωl(y + z)Ǩ1(z, x)

= −
∫ ∞

x
dz K3(x, y + z − x)Ǩ1(z, x)

−
∫ ∞

x
dz K4(x, z)Ǩ3(z + y − x, x) + Ω̃l(x + y) − ˜̌Ωl(y + x)

+
∫ ∞

x
dz K4(x, z)Ω̃l(z + y) −

∫ ∞

x
dz ˜̌Ωl(y + z)Ǩ1(z, x)

= Ω̃l(x + y) − ˜̌Ωl(y + x) +
∫ ∞

x
dz K4(x, z)

[
Ω̃l(z + y) − ˜̌Ωl(y + z)

]
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+
∫ ∞

x
dz

[
Ω̃l(z + y) − ˜̌Ωl(y + z)

]
Ǩ1(z, x)

−
∫ ∞

x
dz

[
K3(x, y + z − x) + Ω̃l(y + z)

]
Ǩ1(z, x)

−
∫ ∞

x
dz K4(x, z)

[
Ǩ3(z + y − x, x) − ˜̌Ωl(z + y)

]

= Ω̃l(x + y) − ˜̌Ωl(y + x) +
∫ ∞

x
dz K4(x, z)

[
Ω̃l(z + y) − ˜̌Ωl(y + z)

]

+
∫ ∞

x
dz

[
Ω̃l(z + y) − ˜̌Ωl(y + z)

]
Ǩ1(z, x) +

∫ ∞

x
dz

∫ ∞

x
dw K4(x, w)

×
[
Ω̃l(w + y + z − x) − ˜̌Ωl(w + z + y − x)

]
K1(w, x).

Using Proposition 6.1 we easily derive the unique solvability of this homogeneous
integral equation for sufficiently large x , which implies that its solution Ω̃l(x + y) −
˜̌Ωl(y+x) vanishes for sufficiently large x . Since in this solution the reflection coefficient

terms cancel out, it follows with the help of (5.15a) and (5.15f) that Ω̃l(x+y)− ˜̌Ωl(y+x)
is analytic in x for every y and hence vanishes identically. We have thus established
the first of the identities (6.6). The other three identities (6.6) can be proved in a similar
way. �

7. Symmetry Relations in the Focusing Case

In the focusing case the potential V(x) in (2.2) satisfies the symmetry relations

V(x)† = −V(x) or r(x) = q(x)†.

Then the location and Jordan structure of the eigenvalues does not change under complex
conjugation (cf. [14] for n = m = 1 , [13] for n = 1 and m = 2 , and [3, 11] in general),
i.e., if λj is an eigenvalue of H in C

+ , then λj is an eigenvalue of H in C
− and vice

versa, while the Hamiltonian H has the same Jordan normal form associated with these
two eigenvalues.

a. Transition, reflection and transmission matrices. The symmetry picture
greatly simplifies in the focusing Zakharov-Shabat case where n = m = 1 . Then for
λ ∈ R the transition matrices Al(λ ) and Ar(λ ) are unitary 2 × 2 matrices of unit
determinant which are each others inverses. Thus for λ ∈ R we have[

Ar1(λ ) Ar2(λ )
Ar3(λ ) Ar4(λ )

]
=

[
Al4(λ ) −Al2(λ )
−Al3(λ ) Al1(λ )

]

=
[

Al1(λ ) Al3(λ )
Al2(λ ) Al4(λ )

]
=

[
Ar4(λ ) −Ar3(λ )
−Ar2(λ ) Ar1(λ )

]
,

where all of the entries are scalars. In view of (4.1) and (4.2) we then have

T(λ ) def= Tl(λ ) = Tr(λ ) = T̃l(λ ) = T̃r(λ ), λ ∈ C+ not a pole.
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With the help of (4.3) and (4.4) we can then arrange the eigenvalues in C− in such a
way that λ̃j = λj , so that Q̃j = Qj and

τljs = τrjs = τ̃ljs = τ̃rjs, s = 0, 1, . . . , Qj − 1.

According to Corollary 3.2 all eigenvalues have geometric multiplicity 1 , but may have
a nontrivial Jordan structure. Due to the unitarity of the Jost matrices, we have for
λ ∈ R

Ψ1(λ , x) = Ψ4(λ , x), Ψ2(λ , x) = −Ψ3(λ , x),

Φ1(λ , x) = Φ4(λ , x), Φ2(λ , x) = −Φ3(λ , x),

where we have used standard 1, 2, 3, 4 partitioning of Jost matrices.
In the focusing (generalized) Manakov case where n = 1 and m � 2 , the

transition matrices Al(λ ) and Ar(λ ) are unitary (m + 1) × (m + 1) matrices of unit
determinant which are each others inverses. Thus for λ ∈ R we have

Ar1(λ ) = det Al4(λ ) = Al1(λ ) = detAr4(λ ),

so that

Tl(λ ) = det Tr(λ ) = T̃l(λ ) = det T̃r(λ ), λ ∈ C+ not a pole.

Moreover,

Ar4(λ ) = Al4(λ )†, λ ∈ C+,

Tr(λ ) = T̃r(λ )†, λ ∈ C+ not a pole.

In the focusing matrix Zakharov-Shabat case (n, m = 1, 2, 3, . . . ) we obtain for
λ ∈ C+

Al1(λ ) = Ar1(λ )†, Tl(λ ) = T̃l(λ )†, (7.1a)

Ar4(λ ) = Al4(λ )†, Tr(λ ) = T̃r(λ )†, (7.1b)

detAr1(λ ) = det Al4(λ ) = detAl1(λ ) = det Ar4(λ ). (7.1c)

According toCorollary 3.2 all eigenvalues havegeometricmultiplicity atmost min(n, m) .
Moreover,

τljs = τ̃†ljs, τrjs = τ̃†rjs, s = 0, 1, . . . , Qj − 1. (7.2)

Using (5.1) and (2.10) we now derive the symmetry relations

K(x, y) = Ǩ(y, x)†, K(x, y) = Ǩ(y, x)†, y > x, (7.3a)

G(x, y) = Ǧ(y, x)†, G(x, y) = Ǧ(y, x)†, y < x. (7.3b)

In the focusing case the scattering matrix is J -unitary in the sense that

S(λ )† = JS(λ )−1J = JS̃(λ )J, λ ∈ R,



MARCHENKO EQUATIONS AND NORMING CONSTANTS 111

which implies (7.1a) and (7.1b) as well as

R̃(λ ) = −R(λ )†, L̃(λ ) = −L(λ )†. (7.4)

As a result of (7.4) and (4.13) we get

ˆ̃R(α) = −R̂(α)†, ˆ̃L(α) = −L̂(α)†, α ∈ R. (7.5)

Thus, as indicated by (7.3) and (7.5), one converts the Marchenko equations (5.2a),
(5.2b), (5.2c), and (5.2d) into the respective Marchenko equations (5.2g), (5.2h),
(5.2e), and (5.2f) by taking the conjugate transpose.

b. Recovering Marchenko integral kernels from Jost solutions. Our goal is to
generalize the symmetry relations (7.5) as follows:

THEOREM 7.1. Under the technical hypothesis, suppose the entries of q(x) and
r(x) = q(x)† belong to L1(R) . Then the symmetry relations:

Ω̃l(α) = −Ω̌l(α)†, Ω̃r(α) = −Ω̌r(α)†, (7.6a)

Ωl(α) = − ˜̌Ωl(α)†, Ωr(α) = − ˜̌Ωr(α)†, (7.6b)

are satisfied.

Proof. Because of (7.5) it is sufficient to prove the symmetry relations (7.6) for the
bound state contributions to the Marchenko integral equations. But these are analytic
functions of their independent variable. Moreover, choose a sufficiently large x such
that

max
j=1,4

[
max

(∫ ∞

x
dy ‖Kj(x, y)‖,

∫ ∞

x
dy ‖Ǩj(y, x)‖

)]
< 1.

Then Proposition 6.1 implies the unique solvability of (6.1a), (6.1d), (6.1f), and (6.1g)
for large x . Since, apart froma minus sign, the conjugate transposes of (6.1a) and (6.1d)
coincide with (6.1g) and (6.1f), respectively, the symmetry relations (7.6) follow for
large x . In the same way we can prove the symmetry relations right for sufficiently
negative x . Analytic continuation of the bound state contributions will do the rest.
�

If the resolvent of the Hamiltonian has only simple poles, from (5.9) we now derive
the following symmetry relations for the norming constant matrices:

Γlj0 = −
(

˜̌Γlj0

)†
, Γrj0 = −

(
˜̌Γrj0

)†
, (7.7a)

Γ̃lj0 = −
(
Γ̌lj0

)†
, Γ̃rj0 = −

(
Γ̌rj0

)†
. (7.7b)

For general Jordan structure we obtain from (5.15)

Γljs = −
(

˜̌Γljs

)†
, Γrjs = −

(
˜̌Γrjs

)†
, (7.8a)

Γ̃ljs = −
(
Γ̌ljs

)†
, Γ̃rjs = −

(
Γ̌rjs

)†
, (7.8b)

where s = 0, 1, . . . , Qj − 1 .
Summarizing we have proved the following result:
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THEOREM 7.2. Under the technical hypothesis, suppose the entries of q(x) and
r(x) = q(x)† belong to L1(R) . Then the symmetry relations

Ω̃l(α) = ˜̌Ωl(α) = −Ωl(α)† = −Ω̌l(α)†, (7.9a)

Ω̃r(α) = ˜̌Ωr(α) = −Ωr(α)† = −Ω̌r(α)†, (7.9b)

are satisfied. Moreover,

Γljs = Γ̌ljs = − (
Γ̃ljs

)†
= −

(
˜̌Γljs

)†
, (7.10a)

Γrjs = Γ̌rjs = − (
Γ̃rjs

)†
= −

(
˜̌Γrjs

)†
, (7.10b)

where s = 0, 1, . . . , Qj − 1 .
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