
Operators
and

Matrices
Volume 2, Number 1 (2008), 115–124

THE ASYMPTOTIC BEHAVIOR OF FREE ADDITIVE CONVOLUTION

HARI BERCOVICI AND JIUN-CHAU WANG

(communicated by L. Rodman)

Abstract. We provide a new proof of the limit theorem for sums of free random variables in a
general infinitesimal triangular array. This result was proved by Chistyakov and Götze using
subordination functions. Our proof does not depend on subordination, and is close to the approach
used in the case of arrays with identically distributed rows [5].

1. Introduction

Given two probability measures μ , ν on the real line R , we will denote by μ ∗ ν
their classical convolution, and by μ � ν their free additive convolution. Thus, μ ∗ ν
is the distribution of the sum X + Y , where X and Y are classically independent
random variables with distributions μ and ν , respectively. Analogously, μ � ν is the
distribution of X + Y , where X and Y are freely independent random variables with
distributions μ and ν .

A triangular array {μnk : n � 1, 1 � k � kn} of probability measures on R is
said to be infinitesimal if

lim
n→∞ max

1�k�kn
μnk({t ∈ R : |t| � ε}) = 0,

for every ε > 0 . The classical limit distribution theory for sums of independent random
variables is concerned with the study of the asymptotic behavior of the measures

μn = μn1 ∗ μn2 ∗ . . . ∗ μnkn ∗ δcn , n � 1,

where δcn is the point mass at cn ∈ R . Hinčin [12] proved that any weak limit of
such a sequence {μn}∞n=1 is an infinitely divisible measure. Later Gnedenko (see [11]
and [15]) found necessary and sufficient conditions for the convergence of the sequence
{μn}∞n=1 to a given infinitely divisible measure.

The analogous free convolutions

νn = μn1 �μn2 � . . . �μnkn � δcn

Mathematics subject classification (2000): 46L54, 60F05.
Key words and phrases: Free additive convolution; Limit theorems; Infinitesimal arrays.
The first author was supported in part by a grant from the National Science Foundation.

c© � � , Zagreb
Paper OAM-02-06

115



116 HARI BERCOVICI AND JIUN-CHAU WANG

have been also the subject of several investigations. The first result in this direction was
an analogue of the central limit theorem proved by Voiculescu [16]. Later, Pata [14]
proved that the free central limit theorem holds precisely under the same conditions as
the classical central limit theorem. The analogue of Hinčin’s theorem, i.e. the fact that
the possible weak limits of νn are � -infinitely divisible, was proved in [6]. Then it
was shown in [5] that, in case cn = 0 and μn1 = μn2 = . . . = μnkn , the measures μn

have a weak limit if and only if the measures νn do. The correspondence between the
limit of μn and the limit of νn was thoroughly studied in [1, 2].

The result of [5] was extended in [10] to arbitrary arrays and centering constants
cn . The argument in [10] depends on two ingredients. The first is the fact that the
classical centering of the measures in an infinitesimal array balances the real and the
imaginary parts of the Cauchy transforms of the measures. The second is the existence
of subordination functions as in [18, 9, 3].

We will provide a proof of the main result of [10] which makes no use of subor-
dination functions, and is close to the argument of [5]. This approach also works for
multiplicative free convolutions, as shown in [8].

The remainder of this paper is organized as follows. In Section 2 we describe
the calculation of free convolution via Cauchy transform, and we provide some useful
approximation results. The proof of the main result is in Section 3.

2. Preliminaries

Let M be the collection of all Borel probabilitymeasures on R . The free analogue
of the Fourier transform was discovered by Voiculescu [17] (see also [13] and [7]). The
details are as follows. Denote by C+ = {z ∈ C : �z > 0} the upper half-plane,
and set C− = −C+ . For a measure μ ∈ M , one defines its Cauchy transform
Gμ : C+ → C− by

Gμ(z) =
∫ ∞

−∞

1
z − t

dμ(t), z ∈ C
+.

Define the analytic function Fμ : C+ → C+ by Fμ(z) = 1/Gμ(z) . Given α, β > 0 ,
set Γα = {z = x + iy ∈ C+ : |x| < αy} and Γα,β = {z = x + iy ∈ Γα : y > β} . In
[7] it is shown that Fμ(z)/z tends to 1 as z → ∞ nontangentially to R (i.e., |z| → ∞
but �z/�z stays bounded; in other words, z ∈ Γα for some α > 0 ), and this implies
that for every α > 0 , there exists a β = β(α,μ) > 0 such that Fμ has a left inverse
F−1
μ defined on Γα,β . The Voiculescu transform of the measure μ is then defined as

φμ(z) = F−1
μ (z) − z, z ∈ Γα,β .

We have �φμ(z) � 0 for z ∈ Γα,β , and φμ(z) = o(|z|) as z → ∞ nontangentially.
The most important property of the Voiculescu transform is that it linearizes the

free convolution. More precisely, if μ, ν ∈ M then

φμ �ν(z) = φμ(z) + φν(z),

for all z in any truncated cone Γα,β where all three functions involved are defined.
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It was first noted in [6] that for any given cone Γα,β , φμ is defined on Γα,β as
long as the measure μ puts most of its mass around the origin.

LEMMA 2.1. For every α, β > 0 , there exists ε > 0 with the property that if
μ ∈ M is such that μ({t ∈ R : |t| � ε}) < ε , then φμ is defined in Γα,β .

The following theorem from [4] translates weak convergence of probability measures in
terms of convergence properties of their Voiculescu transforms.

THEOREM 2.2. Given a sequence {μn}∞n=1 ⊂ M . The following statements are
equivalent:

(1) μn converges weakly to a measure μ ∈ M as n → ∞ ;
(2) there exists a truncated cone Γα,β such that functions φμn and φμ are defined

in Γα,β , limn→∞ φμn(iy) = φμ(iy) for all y > β , and φμn(iy) = o(y)
uniformly in n as y → ∞ .

The following result is a reformulation of Propositions 2.6 and 2.7 in [5] which is more
appropriate for our purposes.

PROPOSITION 2.3. Given an infinitesimal array {μnk : n � 1, 1 � k � kn} ⊂ M ,
and α, β > 0 , the functions φμnk are defined in Γα,β for sufficiently large n , and

φμnk (z) = z2

[
Gμnk (z) −

1
z

]
(1 + vnk(z)),

where the sequence
vn(z) = max

1�k�kn
|vnk(z)|

satisfies limn→∞ vn(z) = 0 for all z ∈ Γα,β , and vn(z) = o(1) uniformly in n as
z → ∞ , z ∈ Γα,β .

Recall that a measure ν ∈ M is said to be � -infinitely divisible if for each n ∈ N ,
there exists a measure μn ∈ M such that

ν = μn �μn � . . . �μn︸ ︷︷ ︸
n times

.

The notion of ∗ - infinite divisibility is defined similarly. The well-known Lévy-Hinčin
formula characterizes the ∗ -infinitely divisible measures in terms of their Fourier trans-
form as follows: a measure ν is ∗ -infinitely divisible if and only if there exist γ ∈ R

and a finite positive Borel measure σ on R such that the Fourier transform ν̂ is given
by

ν̂(t) = exp

[
iγ t +

∫ ∞

−∞

(
eitx − 1 − itx

1 + x2

)
1 + x2

x2
dσ(x)

]
, t ∈ R.

Here
(
eitx − 1 − itx

1+x2

)
1+x2

x2 is interpreted as −t2/2 for x = 0 . We will denote by νγ ,σ
∗

the ∗ -infinitely divisible measure determined by γ and σ . The free analogue of the
Lévy-Hinčin formula is proved in [7]. A measure ν ∈ M is � -infinitely divisible if
and only if there exist γ ∈ R and a finite positive Borel measure σ on R such that

φν(z) = γ +
∫ ∞

−∞

1 + tz
z − t

dσ(t), z ∈ C
+. (2.1)
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We will denote the above measure ν by νγ ,σ
� . The following result is from [8]. We

reproduce the short proof here because we actually require inequalities (2.2) and (2.3).

LEMMA 2.4. Consider a sequence {rn}∞n=1 ⊂ R and two triangular arrays {znk :
n � 1, 1 � k � kn} , {wnk : n � 1, 1 � k � kn} of complex numbers. Assume that

(1) �wnk � 0 , for n � 1 and 1 � k � kn .
(2)

znk = wnk(1 + εnk),
where

εn = max
1�k�kn

|εnk|
converges to zero as n → ∞ .

(3) There exists a positive constant M such that for sufficiently large n ,

|�wnk| � M�wnk.

Then the sequence {rn +
∑kn

k=1 znk}∞n=1 converges if and only if the sequence

{rn +
∑kn

k=1 wnk}∞n=1 converges. Moreover, the two sequences have the same limit.

Proof. The assumptions on {znk}n,k and {wnk}n,k imply∣∣∣∣∣
(

rn +
kn∑

k=1

znk

)
−
(

rn +
kn∑

k=1

wnk

)∣∣∣∣∣ � 2(1 + M)εn

(
kn∑

k=1

�wnk

)
, (2.2)

and

(1 − εn − Mεn)

(
kn∑

k=1

�wnk

)
�
∣∣∣∣∣

kn∑
k=1

�znk

∣∣∣∣∣ , (2.3)

for sufficiently large n . If the sequence {rn +
∑kn

k=1 znk}∞n=1 converges to a complex
number z , (2.3) implies that {∑kn

k=1 �wnk}∞n=1 is bounded, and then (2.2) shows that the
sequence {rn +

∑kn
k=1 wnk}∞n=1 also converges to z . Conversely, if {rn +

∑kn
k=1 wnk}∞n=1

converges to z , then the sequence {∑kn
k=1 �wnk}∞n=1 is bounded and hence by (2.2) the

sequence {rn +
∑kn

k=1 znk}∞n=1 converges to z as well. �

3. Proof of the Main Result

Given an infinitesimal triangular array {μnk : n � 1, 1 � k � kn} ⊂ M , define
constants

ank =
∫
|t|<1

t dμnk(t),

and measures μnk by
dμnk(t) = dμnk(t + ank).

Note that max1�k�kn |ank| → 0 as n → ∞ , and this implies that {μnk}n,k is also an
infinitesimal array. Define the analytic function

f nk(z) = z2

[
Gμnk

(z) − 1
z

]
, z ∈ C

+,
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and the real-valued function

bnk(y) =
∫
|t|�1

ank dμnk(t) +
∫
|t|�1

(t − ank)y2

y2 + (t − ank)2
dμnk(t), y � 1.

Observe that �f nk(z) � 0 if �z > 0 , and f nk(z) = o(|z|) as z → ∞ nontangentially.
The following lemma is related with a calculation in Section 4 of [10].

LEMMA 3.1. For y � 1 , we have for all n ∈ N ,

|� [f nk(iy) − bnk(y)]| � 2 |�f nk(iy)| ,
and for sufficiently large n ,

|�f nk(iy)| � (3 + 6y) |�f nk(iy)| ,
where 1 � k � kn .

Proof. Note that for y � 1 , and n ∈ N ,

f nk(iy) =
∫ ∞

−∞

(t − ank)y2

y2 + (t − ank)2
dμnk(t) − i

∫ ∞

−∞

(t − ank)2y
(t − ank)2 + y2

dμnk(t).

Moreover, since
∫
|t|<1(t − ank) dμnk(t) =

∫
|t|�1 ank dμnk(t) , we have

|� [f nk(iy) − bnk(y)]| =

∣∣∣∣∣
∫
|t|<1

[
(t − ank)y2

y2 + (t − ank)2
dμnk(t) − (t − ank)

]
dμnk(t)

∣∣∣∣∣
=

∣∣∣∣∣
∫
|t|<1

−(t − ank)3

y2 + (t − ank)2
dμnk(t)

∣∣∣∣∣ � 2 |�f nk(iy)| .

Note that the infinitesimality of the family {μnk}n,k , implies that there exists N ∈ N

such that |ank| � 1/2 , for all n � N , 1 � k � kn . Therefore, for n � N ,∣∣∣∣∣
∫
|t|�1

ank dμnk(t)

∣∣∣∣∣ � |ank| (1 + 4y2)
∫
|t|�1

(t − ank)2

y2 + (t − ank)2
dμnk(t)

� 1 + 4y2

y
|�f nk(iy)| � (1 + 4y) |�f nk(iy)| ,

and since 2x2 � |x| when |x| � 1
2 , we have∣∣∣∣∣

∫
|t|�1

(t − ank)y2

y2 + (t − ank)2
dμnk(t)

∣∣∣∣∣ � 2y |�f nk(iy)| .

Hence the second inequality follows. �

LEMMA 3.2. Given β � 1 , let Γα,β be a truncated cone where all the functions
φμnk are defined, and let {cn}∞n=1 be a sequence of real numbers.
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(1) For any y > β , the sequence {cn +
∑kn

k=1 φμnk (iy)}∞n=1 converges if and only

the sequence {cn +
∑kn

k=1 [ank + f nk(iy)]}∞n=1 converges. Moreover, the two
sequences have the same limit.

(2) If

L = sup
n�1

kn∑
k=1

∫ ∞

−∞

t2

1 + t2
dμnk(t) < ∞,

then cn +
∑kn

k=1 φμnk (iy) = o(y) uniformly in n as y → ∞ if and only if

cn +
∑kn

k=1 [ank + f nk(iy)] = o(y) uniformly in n as y → ∞ .

Proof. Fix y > β . Applying Proposition 2.3 to {μnk}n,k , we have

− φμnk(iy) + ank = −φμnk
(iy) = −f nk(iy) · (1 + vnk(iy)), (3.1)

where functions
vn(iy) = max

1�k�kn
|vnk(iy)|

converge to zero as n → ∞ . Then (1) follows from Lemma 3.1 and Lemma 2.4 by
choosing znk = −φμnk(iy) + ank , wnk = −f nk(iy) and rn = −cn −

∑kn
k=1 ank .

We next prove (2). From (3.1), we have

z′nk(iy) = w′
nk(iy) · (1 + vnk(iy)),

where z′nk(iy) = −φμnk (iy) + ank + bnk(y) + bnk(y)vnk(iy) , and w′
nk(iy) = −f nk(iy) +

bnk(y) . Lemma 3.1 implies that for all n ∈ N , and 1 � k � kn ,

|�w′
nk(iy)| � 2 |�f nk(iy)| , y > β .

Since max1�k�kn |ank| → 0 as n → ∞ , there exists N ∈ N such that |ank| � 1/2 , for
all n � N , 1 � k � kn . Therefore, for n � N , and y > β � 1 ,

kn∑
k=1

|bnk(y)| �
kn∑

k=1

∫
|t|�1

1
2

dμnk(t) + y
kn∑

k=1

∫
|t|�1

∣∣∣∣ (t − ank)y
y2 + (t − ank)2

∣∣∣∣ dμnk(t)

� (1 + y)
kn∑

k=1

∫
|t|�1

1
2

dμnk(t) � 5y
kn∑

k=1

∫
|t|�1

1
5

dμnk(t)

� 5y
kn∑

k=1

∫
|t|�1

(t − ank)2

1 + (t − ank)2
dμnk(t) � 5yL.

Since vn(iy) = o(1) uniformly in n as y → ∞ , by decreasing the cone we may assume
that vn(iy) < 1/6 , for all y > β , and n ∈ N . Define r′n(y) = −cn −

∑kn
k=1 ank −∑kn

k=1 bnk(y) . Replacing rn , znk , wnk by r′n , z′nk , and w′
nk respectively in inequalities

(2.2) and (2.3), we deduce that∣∣∣∣∣
(

kn∑
k=1

φμnk (iy)

)
−
(

kn∑
k=1

[ank + f nk(iy)]

)∣∣∣∣∣ �
∣∣∣∣∣

kn∑
k=1

�f nk(iy)

∣∣∣∣∣+ 5yLvn(iy),
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and
1
2

∣∣∣∣∣
kn∑

k=1

�f nk(iy)

∣∣∣∣∣ �
∣∣∣∣∣

kn∑
k=1

�φμnk(iy)

∣∣∣∣∣+ 5yLvn(iy),

for all n � N , and y > β . Hence the result follows from the facts that vn(iy) = o(1)
uniformly in n as y → ∞ , and that (2) holds uniformly for n in a finite subset of N .

�
Fix a real number γ and a finite positive Borel measure σ on R . Recall that the

measure νγ ,σ
� (resp., νγ ,σ

∗ ) is the � -infinitely divisible (resp., ∗ -infinitely divisible)
probability distribution discussed in Section 2.

THEOREM3.3. Foran infinitesimal array {μnk}n,k ⊂ M and a sequence {cn}∞n=1 ⊂
R , the following statements are equivalent:

(1) The sequence μn1 �μn2 � . . . �μnkn � δcn converges weakly to νγ ,σ
� ;

(2) The sequence μn1 ∗ μn2 ∗ . . . ∗ μnkn ∗ δcn converges weakly to νγ ,σ
∗ ;

(3) The sequence of measures

dσn(t) =
kn∑

k=1

t2

1 + t2
dμnk(t)

converges weakly on R to σ , and the sequence of numbers

γn = cn +
kn∑

k=1

[
ank +

∫ ∞

−∞

t
1 + t2

dμnk(t)
]

converges to γ as n → ∞ .

Proof. The equivalence of (2) and (3) is classical (see [11, 15]). We will prove the
equivalence of (1) and (3). Assume that (1) holds. By Theorem 2.2, there exist α > 0
and β � 1 such that φμnk are defined on Γα,β , and we have

lim
n→∞ φμn1 �μn2 �... �μnkn �δcn

(iy) = φνγ ,σ
�

(iy), y > β .

Since

φμn1 �μn2 �... �μnkn �δcn
(z) = cn +

kn∑
k=1

φμnk(z), z ∈ Γα,β ,

we have

lim
n→∞

(
cn +

kn∑
k=1

φμnk(iy)

)
= φνγ ,σ

�
(iy),

for all y > β , and cn +
∑kn

k=1 φμnk(iy) = o(y) uniformly in n as y → ∞ . By Lemma
3.2,

lim
n→∞

(
cn +

kn∑
k=1

[ank + f nk(iy)]

)
= φνγ ,σ

�
(iy), y > β . (3.2)
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Note that for z ∈ C+ , n ∈ N ,

z2

[
Gμnk

(z) − 1
z

]
=
∫ ∞

−∞

tz
z − t

dμnk(t)

=
∫ ∞

−∞

t
1 + t2

dμnk(t) +
∫ ∞

−∞

[
tz

z − t
− t

1 + t2

]
dμnk(t)

=
∫ ∞

−∞

t
1 + t2

dμnk(t) +
∫ ∞

−∞

[
1 + tz
z − t

]
t2

1 + t2
dμnk(t).

We conclude that

cn +
kn∑

k=1

[ank + f nk(z)] = γn +
∫ ∞

−∞

1 + tz
z − t

dσn(t). (3.3)

Since �f nk(z) � 0 for z ∈ C+ , {cn +
∑kn

k=1 [ank + f nk(z)]}∞n=1 is a normal family of
analytic functions in C+ , and from (3.2) the sequence has pointwise limit φνγ ,σ

�
(z) for

all z = iy , y > β . It is an easy application of the Montel Theorem that (3.2) holds
uniformly on compact subsets of C+ . Hence (3.3) and (2.1) imply, at z = i , that

lim
n→∞σn(R) = lim

n→∞

∫ ∞

−∞

1 + t2

1 + t2
dσn(t)

= lim
n→∞−�

(
cn +

kn∑
k=1

[ank + f nk(i)]

)

= −�φνγ ,σ
�

(i)

= σ(R).

Thus,

L = sup
n�1

σn(R) = sup
n�1

kn∑
k=1

∫ ∞

−∞

t2

1 + t2
dμnk(t) < ∞.

By Lemma 3.2, this implies that cn +
∑kn

k=1 [ank + f nk(iy)] = o(y) uniformly in n as
y → ∞ . For y > β , n ∈ N , note that

1
2
σn({|t| � y}) �

∫ ∞

−∞

1 + t2

y2 + t2
dσn(t) = −1

y
�
(

cn +
kn∑

k=1

[ank + f nk(iy)]

)
.

Since cn +
∑kn

k=1 [ank + f nk(iy)] = o(y) uniformly in n as y → ∞ , we conclude that
{σn}∞n=1 is a tight family. Let σ ′ be a weak cluster point of {σn}∞n=1 and consider a
subsequence {σnj}∞j=1 that converges weakly to σ ′ . Hence, for any z = x + iy ∈ Γα,β ,
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we have∫ ∞

−∞

y
(x − t)2 + y2

(1 + t2) dσ ′(t) = − lim
j→∞

�
⎛
⎝cnj +

knj∑
k=1

[
anjk + f njk(x + iy)

]⎞⎠
= −�φνγ ,σ

�
(x + iy)

=
∫ ∞

−∞

y
(x − t)2 + y2

(1 + t2) dσ(t).

Therefore, the Poisson integrals of the measures (1 + t2) dσ ′(t) and (1 + t2) dσ(t)
are identical since they coincide on an open subset of C+ . Thus, σ ′ = σ . Since the
tight family {σn}∞n=1 has a unique weak cluster point, they must converge weakly to
σ . Moreover, we deduce that limn→∞ γn = γ from (3.2) and (3.3).

To prove the converse, assume the sequence of measures {σn}∞n=1 converges
weakly to σ and the sequence {γn}∞n=1 converges to γ as n → ∞ . Then, {σn}∞n=1 is
a tight family and in particular

L = sup
n
σn(R) < ∞.

From Lemma 2.1 and the infinitesimality of the array {μnk}n,k , there exists a truncated
cone Γα′,β′ with β ′ � 1 such that all φμnk are defined in Γα′,β′ . Combine the
inequality ∣∣∣∣1 + ity

iy − t

∣∣∣∣ � y, t ∈ R, y � 1.

with (3.3) to obtain

lim
n→∞

(
cn +

kn∑
k=1

[ank + f nk(iy)]

)
= φνγ ,σ

�
(iy), y > β ′.

Hence by Lemma 3.2,

lim
n→∞

(
cn +

kn∑
k=1

φμnk (iy)

)
= φνγ ,σ

�
(iy), y > β ′.

Also, note that for any M > 0 and y > β ′ � 1 , we have

1
y

∣∣∣∣∣cn +
kn∑

k=1

[ank + f nk(iy)]

∣∣∣∣∣ � |γn|
y

+
1
y

∫ ∞

−∞

∣∣∣∣1 + ity
iy − t

∣∣∣∣ dσn(t)

� |γn|
y

+
1
y

∫
|t|<M

1 + |t| y√
y2 + t2

dσn(t) + σn({|t| � M})

� |γn|
y

+
L(1 + My)

y2
+ σn({|t| � M}).

Therefore, it follows from the convergence of {γn}∞n=1 and the tightness of the family
{σn}∞n=1 that cn +

∑kn
k=1 [ank + f nk(iy)] = o(y) uniformly in n as y → ∞ . By Lemma



124 HARI BERCOVICI AND JIUN-CHAU WANG

3.2 again, cn +
∑kn

k=1 φμnk(iy) = o(y) uniformly in n as y → ∞ . Statement (1) now
follows from Theorem 2.2. �
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[6] ———, A free analogue of Hinčin’s characterization of infinite divisibility, Proc. Amer. Math. Soc. 128
(2000), no. 4, 1011-1015.

[7] H. BERCOVICI AND D.V. VOICULESCU, Free convolution of measures with unbounded support, Indiana
Univ. Math. J. 42 (1993), no. 3, 733-773.

[8] H. BERCOVICI AND JIUN-CHAU WANG, Limit theorems for free multiplicative convolutions, (2006), to
appear in Trans. Amer. Math. Soc..

[9] PH. BIANE, Processes with free increments, Math. Z. 227 (1998), no. 1, 143-174.
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