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CHARACTERIZING JORDAN AUTOMORPHISMS OF MATRIX

ALGEBRAS THROUGH PRESERVING PROPERTIES
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Abstract. Let Mn be the algebra of all n × n complex matrices, n � 3 . We prove that a
map φ : Mn → Mn is a Jordan automorphism if and only if φ is a continuous spectrum and
commutativity preserving map (no linearity is assumed). Examples are given showing that this
characterization is optimal

1. Introduction and statement of the main result

Let Mn be the algebra of all n × n complex matrices. By Dn we will denote the
subalgebra of all diagonal matrices. If X is an arbitrary complex matrix (not necessarily
a square matrix), then Xt stands for the transpose of X .

It is well-known that every automorphism of the algebra Mn is inner. More
precisely, if φ : Mn → Mn is a bijective linear multiplicative map, then there exists an
invertible matrix A ∈ Mn such that φ(X) = AXA−1 for all X ∈ Mn . If φ : Mn →
Mn is an anti-automorphism (a bijective linear map satisfying φ(XY) = φ(Y)φ(X) ,
X, Y ∈ Mn ), then the map X �→ φ(X)t is obviously an automorphism. Hence, every
such φ is of the form φ(X) = AXtA−1 for some invertible A ∈ Mn . Automorphisms
and anti-automorphisms of algebras are special cases of Jordan automorphisms. Recall
that a map φ defined on an algebra A is a Jordan automorphism if it is a bijective
linear map satisfying φ(a2) = φ(a)2 for every a ∈ A . It is well-known that every
Jordan automorphism of the matrix algebra Mn is either an automorphism, or an
anti-automorphism. In other words, every Jordan automorphism of Mn is an inner
automorphism possibly composed with the transposition.

Jordan automorphisms of Mn havemany preserving properties. For example, every
Jordan automorphism of Mn preserves rank, spectrum, commutativity, and nilpotents,
that is, if φ : Mn → Mn is a Jordan automorphism, then for every pair X, Y ∈ Mn

we have rank φ(X) = rankX , σ(φ(X)) = σ(X) , φ(X)φ(Y) = φ(Y)φ(X) whenever
XY = YX , and φ(X) is nilpotent providing that X is nilpotent. Here, σ(X) denotes
the spectrum of X , that is, the set of all eigenvalues of X .
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There is a vast literature on linear preserver problems (see the survey paper [4]).
A linear preserver φ : Mn → Mn is a linear map having a certain preserving property.
It often turns out that such a map must be an automorphism or an anti-automorphism.
Hence, linear preserver results can be considered as characterizations of Jordan auto-
morphisms. Among the most studied linear preserver problems are the one dealing with
linear maps preserving spectrum (or more generally, preserving invertibility) and the
one treating commutativity preserving maps. Both of them were studied on much more
general algebras and rings than matrix algebras. The study of linear maps preserving
spectrum was initiated by Kaplansky. One of the reasons to study commutativity pre-
serving maps is that the assumption of preserving commutativity can be equivalently
reformulated as a property of preserving zero Lie products.

Only very recently the first results on non-linear preservers appeared in the literature
[1, 5, 7, 9, 10]. It turns out that non-linear preservers of spectrum or commutativity
may have a rather wild form. So, if we want to characterize Jordan automorphisms
of matrix algebras using only preserving properties (without assuming linearity or
multiplicativity), then we have to impose more than one preserving property on the
maps under consideration. The first attempt in this direction was made in [6]. The
result there was not optimal. It was only conjectured that one can characterize Jordan
automorphisms of Mn as continuous maps preserving spectrum and commutativity.
We will confirm this conjecture and show by examples that this is an optimal result.
Moreover, the proof of theweaker result given in [6] (in that paper Jordan automorphisms
were characterized as continuous maps preserving spectrum and commutativity in both
directions, or as continuous maps preserving spectrum, commutativity, and rank one)
was rather long and computational. The approach here is simpler and is based on a
recent simple result from projective geometry.

A map φ : Mn → Mn preserves commutativity if for every pair of matrices
X, Y ∈ Mn we have

XY = YX ⇒ φ(Y)φ(X) = φ(X)φ(Y).

It preserves spectrum if σ(φ(X)) = σ(X) for every X ∈ Mn . It should be mentioned
that instead of spectrum preserving property we could also consider the assumption
of preserving eigenvalues, that is, the property that e.v.(φ(X)) = e.v.(X) for every
X ∈ Mn . Here, σ(X) denotes the set of eigenvalues (the set with at least one element
and at most n elements), while e.v.(X) denotes the unordered n -tuple of eigenvalues
where each eigenvalue λ appears m(λ , A) times. Here, m(λ , A) denotes the algebraic
multiplicity of λ as an eigenvalue of A . As we will consider only continuous maps,
these two preserving properties are equivalent. Clearly, if φ preserves eigenvalues,
then it preserves spectrum. If we assume that φ preserves spectrum, then obviously,
e.v.(φ(X)) = e.v.(X) for every X ∈ Mn with n distinct eigenvalues. The set of such
matrices is dense in Mn and φ is continuous. Thus, [2, Theorem 20.4] yields that
e.v.(φ(X)) = e.v.(X) for every X ∈ Mn .

THEOREM 1.1. Let φ : Mn → Mn , n � 3 , be a map. Then the following
conditions are equivalent:

1. φ is a Jordan automorphism.
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2. φ is a continuous commutativity and spectrum preserving map.
3. There exists an invertible matrix A ∈ Mn such that either φ(X) = AXA−1 for all

X ∈ Mn , or φ(X) = AXtA−1 for all X ∈ Mn .

All we need to do to prove this theorem is to show that the second condition
implies the last one. The proof combines linear algebra techniques with some tools
from analysis and geometry.

Let us conclude with some notation. We will identify vectors in Cn with n × 1
matrices. Hence, if u, v ∈ Cn are nonzero vectors, then uvt ∈ Mn is a rank one matrix.
Note that every rank one matrix can be written in this form. The rank one matrix uvt is
an idempotent if and only if vtu = 1 , and uvt is square-zero if and only if vtu = 0 . If
X = uvt and Y = wzt are two rank one matrices, then we will write X ∼ Y if u and
w are linearly dependent or v and z are linearly dependent. Note that this relation is
well-defined, because uvt = u1vt

1 �= 0 yields that u and u1 as well as v and v1 are
linearly dependent. We further denote by Eij ∈ Mn , 1 � i, j � n , the elements of the
standard basis of Mn , that is, Eij is the n × n matrix whose entries are all zero except
the (i, j) -entry which is equal to 1 .

2. Preliminary results

Throughout this section we will assume that φ : Mn → Mn , n � 3 , is a continuous
commutativity and spectrum preserving map.

LEMMA 2.1. Let T ∈ Mn be an invertible matrix. Then there exists an invertible
matrix S such that

φ(TDT−1) = SDS−1, D ∈ Dn. (1)
In particular, if X and Y are simultaneously diagonalizable matrices, then φ(XY) =
φ(X)φ(Y) .

Proof. Because the map φ preserves spectrum, the matrix

φ(T diag(1, 2, . . . , n)T−1)

has n different eigenvalues, and is therefore diagonalizable. It follows that there exists
an invertible S ∈ Mn such that

φ(T diag(1, 2, . . . , n)T−1) = S diag(1, 2, . . . , n)S−1.

It is straightforward to verify that X ∈ Mn commutes with T diag(1, 2, . . . , n)T−1

if and only if X = TDT−1 for some diagonal matrix D . It follows that φ maps
every TDT−1 , D ∈ Dn , into a matrix of the form SD′S−1 , where D′ is a diagonal
matrix. Moreover, as φ preserves spectrum, D and D′ have the same (possibly
permuted) diagonal entries. Observe that in order to prove (1), it is enough to verify
this equation only for diagonal matrices with distinct diagonal entries. Choose such
a matrix diag(λ1, λ2, . . . , λn) . We can find disjoint Jordan curves μk : [0, 1] → C ,
k = 1, . . . , n , such that μk(0) = k and μk(1) = λk . We define t0 ∈ [0, 1] to be the
supremum of the set of all real numbers t ∈ [0, 1] satisfying

φ(T diag(μ1(t), . . . ,μn(t))T−1) = S diag(μ1(t), . . . ,μn(t))S−1.
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It is clear that the set of all real numbers t ∈ [0, 1] with the above property is open and
closed in [0, 1] , and hence, t0 = 1 . This completes the proof. �

COROLLARY 2.2. Let p be an arbitrary polynomial. Then

φ(p(X)) = p(φ(X)), X ∈ Mn.

Proof. Define a continuous map ψ : Mn → Mn by

ψ(X) = φ(p(X)) − p(φ(X)), X ∈ Mn.

Then, by the previous lemma, ψ(X) = 0 for every diagonalizable matrix. The set of
all diagonalizable matrices is dense in Mn , and thus, ψ(X) = 0 for every X ∈ Mn , as
desired. �

COROLLARY 2.3. If X, Y ∈ Mn are diagonalizable matrices and XY = YX = 0 ,
then φ(X)φ(Y) = φ(Y)φ(X) = 0 .

Proof. All we have to do is to observe that if X, Y is a commuting pair of diagonal-
izable matrices, then X and Y are simultaneously diagonalizable, that is, there exists
an invertible T ∈ Mn such that both T−1XT and T−1YT are diagonal. �

Let us now specialize to the 3 × 3 -case.

LEMMA 2.4. Let φ : M3 → M3 be a continuous commutativity and spectrum
preserving map. Then for every pair of rank one idempotents P, Q ∈ M3 the relation
P ∼ Q implies that φ(P) ∼ φ(Q) .

Proof. Assume on the contrary that there exist rank one idempotents P, Q ∈ M3

such that P ∼ Q and φ(P) �∼ φ(Q) . After replacing φ by the map X �→ φ(SXS−1) ,
where S is an appropriate invertible matrix, we may assume that either P = E33 and
Q = E32 + E33 , or P = E33 and Q = E23 + E33 . The second case can be reduced to
the first one if we compose φ with the transposition. So, we may, and will assume that
P = E33 , Q = E32 + E33 , and φ(P) �∼ φ(Q) .

Further, Lemma 2.1 tells us that after replacing φ by the map X �→ Tφ(X)T−1 ,
where T is an appropriate invertible matrix, we may and will assume that φ(Eii) = Eii ,
i = 1, 2, 3 . Since E11(E32 + E33) = (E32 + E33)E11 = 0 , Corollary 2.3 yields that

φ(E32 + E33) =

⎡
⎣ 0 0 0

0 ∗ ∗
0 ∗ ∗

⎤
⎦ ,

where the ∗ ’s stand for some complex numbers. We also know that the (2, 2) -entry of
this matrix is nonzero, since otherwise φ(E32 + E33) would be an idempotent of rank
one satisfying φ(E32 + E33) ∼ φ(E33) , a contradiction.

Now, for every complex number λ the idempotent E11 + λE12 is orthogonal to
both idempotents E33 and E32 + E33 , that is,

E33(E11 + λE12) = (E11 + λE12)E33 = 0
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and
(E32 + E33)(E11 + λE12) = (E11 + λE12)(E32 + E33) = 0

(from now on we will denote the fact that X and Y are simultaneously diagonalizable
matrices satisfying XY = YX = 0 by X ⊥ Y ). Hence, by Corollary 2.3, we have
φ(E32 + E33), φ(E33) ⊥ φ(E11 + λE12) for every complex number λ . It follows that

φ(E11 + λE12) = E11

for every λ ∈ C .
Consider now any nonzero matrix of the form

⎡
⎣ 0 λ μ

0 αλ αμ
0 βλ βμ

⎤
⎦

with αλ +βμ �= 0 and α �= 0 . Observe that the set of all such matrices is dense in the
set of all rank one matrices with the first column equal to zero and that every such matrix
is diagonalizable and orthogonal to the diagonalizable matrix E11 − α−1E12 which is
mapped by φ into E11 . We conclude that if X is any rank one matrix of the form

⎡
⎣ 0 ∗ ∗

0 ∗ ∗
0 ∗ ∗

⎤
⎦ ,

then φ(X) is of the form

φ(X) =

⎡
⎣ 0 0 0

0 ∗ ∗
0 ∗ ∗

⎤
⎦ .

We continue by showing that any idempotent P of rank one of the form

P =

⎡
⎣ 1 ∗ ∗

0 0 0
0 0 0

⎤
⎦

is mapped into E11 . We can write P as

P =
[

1 x
0 0

]
,

where x is a 1 × 2 matrix. We take any pair of rank one idempotents T, S ∈ M2 with
T ⊥ S . Then [

1 x
0 0

]
,

[
0 −xT
0 T

]
, and

[
0 −xS
0 S

]

are pairwise orthogonal rank one idempotents and we know that they are mapped into
pairwise orthogonal rank one idempotents. But the last two are mapped into matrices
having nonzero entries only in the bottom-right 2 × 2 corner, and consequently, P is
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mapped into E11 , as desired. Using Corollary 2.2 and the continuity of the map φ we
conclude that any matrix X of the form

X =

⎡
⎣λ ∗ ∗

0 0 0
0 0 0

⎤
⎦

is mapped into λE11 . Here, λ is any complex number.
In the next step we will show that if X is any matrix of the form⎡

⎣λ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎤
⎦ ,

then φ(X) is of the form

φ(X) =

⎡
⎣λ 0 0

0 ∗ ∗
0 ∗ ∗

⎤
⎦ .

By the continuity, it is enough to show that this is true for every such X with three
different eigenvalues. But every such X can be written as X = λP1 + μP2 + ηP3 ,
where pairwise orthogonal rank one idempotents P1 , P2 , and P3 are of the form⎡

⎣ 1 ∗ ∗
0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 ∗ ∗

0 ∗ ∗
0 ∗ ∗

⎤
⎦ , and

⎡
⎣ 0 ∗ ∗

0 ∗ ∗
0 ∗ ∗

⎤
⎦ ,

respectively. Indeed, each of the Pi ’s is equal to q(X) for some polynomial q ,
and consequently, each of the Pi ’s is of the same upper block triangular form as
X . We conclude this step of the proof by observing that Lemma 2.1 yields that
φ(X) = λφ(P1) + μφ(P2) + ηφ(P3) .

We define a map ϕ : M2 → M2 by

φ
([

0 0
0 Z

])
=

[
0 0
0 ϕ(Z)

]
.

Here, Z is any 2×2 matrix and the zeroes represent zero matrices of appropriate sizes.
It is our aim now to show that for every λ ∈ C , every 1×2 matrix x and every Z ∈ M2

the matrix

X =
[
λ x
0 Z

]

is mapped by φ into [
λ 0
0 ϕ(Z)

]
.

Once again, it is enough to show this only formatrices X with three different eigenvalues,
that is, for matrices X of the form

X = λ
[

1 y
0 0

]
+ μ

[
0 z
0 P

]
+ η

[
0 w
0 Q

]
,
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where the matrices in the above expression are pairwise orthogonal rank one idempo-
tents. In particular, P ⊥ Q and therefore, ϕ(μP + ηQ) = μϕ(P) + ηϕ(Q) . By what
we already know we only need to show that every rank one idempotent of the form

R =
[

0 z
0 P

]

is mapped by φ into [
0 0
0 ϕ(P)

]
.

As R is an idempotent, we have zP = z . Thus, φ(R) is orthogonal to

φ
([

0 0
0 I − P

])
=

[
0 0
0 ϕ(I − P)

]
=

[
0 0
0 I − ϕ(P)

]
.

Moreover, φ(R) is a rank one idempotent having nonzero entries only in the 2 × 2
bottom-right corner, and hence,

φ(R) =
[

0 0
0 ϕ(P)

]
,

as desired.
Because φ(E22−E32) = φ(E22 +E33)−φ(E32 +E33) = E22 +E33−φ(E32 +E33)

and because φ(E32 + E33) �∼ φ(E33) = E33 , the (3, 3) -entry of rank one idempotent
φ(E22 −E32) is non-zero. It follows that the (3, 3) -entry of every rank one idempotent
φ(λE12 + E22 − E32) , where λ is any complex number, is nonzero.

Consider any rank one idempotent R of the form⎡
⎣ ∗ 0 ∗

0 0 0
∗ 0 ∗

⎤
⎦ ,

where the ∗ ’s are all nonzero scalars. Each such idempotent is orthogonal to E22 as
well as to some rank one idempotent of the form λE12 + E22 − E32 . As φ(E22) = E22

and φ(λE12 +E22−E32) has a nonzero (3, 3) -entry, we conclude that φ(R) = E11 for
every R as above. But we can find two such idempotents R1 and R2 with the additional
property that R1 ⊥ R2 . It follows that E11 = φ(R1) ⊥ φ(R2) = E11 , a contradiction.
This completes the proof. �

3. Proof of the main result

Assume that φ : Mn → Mn , n � 3 , is a continuous commutativity and spectrum
preservingmap. In the first step we will prove that for every pair of rank one idempotents
P, Q ∈ Mn the relation P ∼ Q implies that φ(P) ∼ φ(Q) . Indeed, if n = 3 , then
we are done by Lemma 2.4. So, assume that n > 3 and let P, Q ∈ Mn be rank one
idempotents such that P ∼ Q . We can find pairwise orthogonal rank one idempotents
P4, . . . , Pn such that P ⊥ Pj and Q ⊥ Pj , j = 4, . . . , n . Set R = I − P4 − . . . − Pn .
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After composing φ with a similarity transformation we may, and will assume that
φ(R) = R and φ(Pj) = Pj , j = 4, . . . , n . Obviously, R is an idempotent of rank
three, P, Q ∈ RMnR , and RMnR can be identified with M3 . So, if we show that
φ(RMnR) ⊂ RMnR , then we can apply Lemma 2.4 to conclude that φ(P) ∼ φ(Q) . If
T ∈ RMnR is any idempotent of rank one, then T is orthogonal to Pj , j = 4, . . . , n , and
consequently, φ(T) ∈ RMnR . It follows that φ(X) ∈ RMnR for every diagonalizable
X ∈ RMnR , and by the continuity of φ , we have φ(X) ∈ RMnR whenever X ∈ RMnR .

For nonzero vectors x, y ∈ Cn we define

Lx = {xut : u ∈ C
n, utx = 1}

and
Ry = {wyt : w ∈ C

n, ytw = 1}.
These are both subsets of Mn consisting of rank one idempotents. Clearly, P ∼ Q
whenever P, Q ∈ Lx (P, Q ∈ Ry ).

In the next step we will prove that either for every nonzero x ∈ Cn there exists
a nonzero u ∈ C

n such that φ(Lx) ⊂ Lu , or for every nonzero x ∈ C
n there exists

a nonzero y ∈ Cn such that φ(Lx) ⊂ Ry . Assume for a moment that we have
already proved this. Then we can assume with no loss of generality that we have
the first possibility, since in the second case we can replace the map φ by the map
X �→ (φ(X))t , X ∈ Mn .

Assume first that for every nonzero x ∈ Cn there exists an idempotent Px of rank
one such that φ(Q) = Px for every Q ∈ Lx . If x, y ∈ Cn are linearly independent,
then we can find u, v ∈ Cn such that utx = 1 , uty = 0 , vtx = 0 , and vty = 1 .
Thus, xut ⊥ yvt , and consequently, Px ⊥ Py . It follows that there exist infinitely many
pairwise orthogonal rank one idempotents, a contradiction.

We have shown that there exists a nonzero x ∈ Cn and u, v ∈ Cn satisfying utx =
vtx = 1 such that φ(xut) �= φ(xvt) . On the other hand, we know that φ(xut) ∼ φ(xvt) .
So, we have either

φ(xut) = zwt
1 and φ(xvt) = zwt

2

for some z ∈ Cn and linearly independent vectors w1, w2 ∈ Cn such that wt
1z = wt

2z =
1 , or

φ(xut) = z1w
t and φ(xvt) = z2w

t

for some w ∈ Cn and linearly independent vectors z1, z2 ∈ Cn such that wtz1 = wtz2 =
1 . We will consider only the second case. If y ∈ Cn is any vector such that ytx = 1
then φ(xyt) ∼ φ(xut) and φ(xyt) ∼ φ(xvt) , and consequently, φ(xyt) ∈ Rw . Thus,
φ(Lx) ⊂ Rw and we will prove that for every nonzero x1 ∈ Cn there exists a nonzero
w1 such that φ(Lx1) ⊂ Rw1 . There is nothing to prove in the case when all members of
Lx1 are mapped into the same idempotent of rank one. So, we may assume that φ(Lx1)
contains two distinct elements. Then, as above we see that either φ(Lx1) ⊂ Lu1 for
some nonzero u1 , or φ(Lx1) ⊂ Rw1 for some nonzero w1 .

All we have to do is to show that the first possibility cannot occur. Assume on the
contrary that φ(Lx) ⊂ Rw and φ(Lx1) ⊂ Lu1 where both φ(Lx) and φ(Lx1) contain
more than just one element. Then x and x1 are linearly independent, and therefore,
we can find z, z1 ∈ Cn such that ztx = 1 , ztx1 = 0 , zt

1x = 0 , and zt
1x1 = 1 . It
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follows that xzt ⊥ x1zt
1 . Thus, φ(xzt) ⊥ φ(x1zt

1) , and consequently, wtu1 = 0 . Now,
take any u ∈ Cn such that utx = utx1 = 1 . Then φ(xut) ∈ Rw , φ(x1ut) ∈ Lu1 , and
φ(xut) ∼ φ(x1ut) . It follows that φ(xut) belongs to the linear span of the rank one
matrix u1wt or φ(x1ut) belongs to the linear span of the rank one matrix u1wt . But
this is impossible as u1wt is a square-zero matrix.

We are now in a position to use a nonbijective version of the fundamental theorem
of projective geometry (see [3]). In fact, for our purpose it is more convinient to use one
of the recently proved consequences of this theorem [8, Theorem1.2]. We will show that
for every pair of rank one idempotents P, Q ∈ Mn we have PQ = 0 ⇒ φ(P)φ(Q) = 0 .
Indeed, let P = xyt and Q = uvt be rank one idempotents with PQ = 0 , that is,
ytu = 0 . As ytx = 1 , the vectors u and x are linearly independent. Hence, we
can find z ∈ Cn such that ztx = 0 and ztu = 1 . It follows that xyt ⊥ uzt = R .
Thus, φ(P) ⊥ φ(R) , and since φ(Q) and φ(R) both belong to Lw for some nonzero
w ∈ Cn , we have φ(P)φ(Q) = 0 . It follows [8, Theorem 1.2] that there exist a
nonsingular matrix A ∈ Mn and a nonzero endomorphism ϕ : C → C such that
φ(X) = AXϕA−1 for every idempotent X of rank one. Here, Xϕ denotes the matrix
obtained from X by applying ϕ entrywise, Xϕ = [xij]ϕ = [ϕ(xij)] . After replacing φ
with the map X �→ A−1φ(X)A , X ∈ Mn , we may, and will assume that φ(X) = Xϕ
for every idempotent X of rank one. In particular, φ(E11 + λE12) = E11 + ϕ(λ )E12 ,
λ ∈ C . The continuity of φ yields the continuity od ϕ . It is well-known that the
identity and the complex-conjugation are the only nonzero continuous endomorphisms
of the complex field. Hence, we have either φ(X) = X for every idempotent X of rank
one, or φ(X) = X for every idempotent X of rank one. Here, X denotes the matrix
obtained from X by applying the complex-conjugation entrywise, X = [xij] = [xij] . In
the first case we get using the same arguments as before first that φ(X) = X for every
diagonalizable matrix and then by continuity we conclude that φ(X) = X for every
X ∈ Mn . So, it remains to show that the second case cannot occur. Indeed, in this case
we have

φ(E12) = lim
λ→0

φ(λE11 + E12) = lim
λ→0

λφ
(
E11 + λ−1E12

)

= lim
λ→0

λ
(
E11 + λ−1E12

)
= lim

λ→0

(
λ
|λ |

)2

E12,

a contradiction because limλ→0

(
λ
|λ |

)2
does not exist. �

4. Final remarks

We have characterized Jordan automorphisms of Mn , n � 3 , as continuous
commutativity and spectrum preserving maps. It is clear that in such a characterization
we need two preserving properties. Namely, if X �→ pX , X ∈ Mn , is a continuous
map from the algebra of all n × n matrices into the space of all polynomials of
degree at most n , then the continuous map φ : Mn → Mn defined by φ(X) = pX(X)
preserves commutativity. Of course, such a map is in general far from being a Jordan
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automorphism and it does not preserve the spectrum. Similarly, if X �→ AX , X ∈ Mn ,
is a continuous map from Mn into the set of all invertible n × n matrices, then the
continuous map φ : Mn → Mn defined by φ(X) = AXXA−1

X preserves spectrum. But
in general, it is not a commutativity preserver.

It is thus clear that we need two preserving properties to characterize Jordan
automorphisms. To show that our characterization is optimal we must prove that the
assumption of continuity and the condition n � 3 are indispensable.

Let us first give an example showing that the condition n � 3 is essential in our
main result. Denote by sl2 the space of all 2 × 2 complex matrices with trace zero
and let ϕ : sl2 → sl2 be any continuous map satisfying detϕ(X) = det X for every
X ∈ sl2 , ϕ(0) = 0 , and ϕ(μX) = μϕ(X) for every X ∈ sl2 and every μ ∈ C . For
any λ ∈ C and X ∈ sl2 set φ(λ I + X) = λ I + ϕ(X) . Obviously, φ is a well-defined
continous map of M2 into itself. It preserves commutativity. Indeed, assume that
X, Y ∈ M2 commute. If one of these two matrices, say X , is a scalar multiple of the
identity then φ(X) = X is a scalar matrix as well, and consequently, φ(X) and φ(Y)
commute. If none of them is a scalar matrix, then using the Jordan canonical form it is
easy to see that X = λ I + μY for some scalars λ ,μ . From

Y =
trY
2

I +
(

Y − tr Y
2

I

)

and

Y − tr Y
2

I ∈ sl2

one can easily conclude that φ(X) and φ(Y) commute. If X is a trace zero matrix then
the eigenvalues of X are λ and −λ , where detX = −λ 2 . Thus, φ(X) and X have the
same spectra if X is a trace zeromatrix. It is then easy to conclude that σ(φ(X)) = σ(X)
for every X ∈ M2 . In general, φ is far from being a Jordan automorphism.

To show that the continuity assumption is essential we will consider only 4 × 4
case (the same idea can be used to produce counterexamples in other dimensions). We
define W1, W2, W3, W4 ⊂ M4 by

W1 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣
λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤
⎥⎦ : λ1, . . . , λ4 ∈ C, λi �= λj whenever i �= j

⎫⎪⎬
⎪⎭ ,

W2 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣
λ1 λ2 λ3 λ4

0 λ1 λ2 λ3

0 0 λ1 λ2

0 0 0 λ1

⎤
⎥⎦ : λ1, . . . , λ4 ∈ C, λ2 �= 0

⎫⎪⎬
⎪⎭ ,

W3 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣
λ1 λ2 λ3 0
0 λ1 λ2 0
0 0 λ1 0
0 0 0 λ4

⎤
⎥⎦ : λ1, . . . , λ4 ∈ C, λ1 �= λ4 and λ2 �= 0

⎫⎪⎬
⎪⎭ ,
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and

W4 =

⎧⎪⎨
⎪⎩

⎡
⎢⎣
λ1 λ2 0 0
0 λ1 0 0
0 0 λ3 λ4

0 0 0 λ3

⎤
⎥⎦ : λ1, . . . , λ4 ∈ C, λ1 �= λ3 and λ2, λ4 �= 0

⎫⎪⎬
⎪⎭ .

Let φ : M4 → M4 be any map such that φ(X) = X for every X ∈ M4 \ (W1 ∪ W2 ∪
W3 ∪W4) , φ maps Wj bijectively onto Wj , j = 1, . . . , 4 , and the unordered 4-tuple of
diagonal entries of φ(X) is the same as the unordered 4-tuple of diagonal entries of X
for every X ∈ W1 ∪ . . .∪W4 . Then, clearly, σ(φ(X)) = σ(X) for every X ∈ M4 . For
every X ∈ M4 we denote by X′ the commutant of X , X′ = {Y ∈ M4 : XY = YX} . It
is straightforward to verify that φ(X)′ = X′ for every X ∈ M4 . So, if XY = YX and
X �∈ W1∪ . . .∪W4 , then φ(X) = X ∈ Y ′ = φ(Y)′ , and hence, φ(X)φ(Y) = φ(Y)φ(X) .
To show that φ preserves commutativity it remains to consider the case when both
X, Y ∈ W1 ∪ . . . ∪ W4 . But then XY = YX yields that both X, Y belong to the same
Wj , j ∈ {1, . . . , 4} . It is clear that φ(X) commutes with φ(Y) in this case as well.

In the above example we have φ(X)′ = X′ for every X ∈ M4 . A slightly
more complicated example of a non-continuous bijective spectrum and commutativity
preserving map is the following one. We define subsets W1, W2 ⊂ M4 by

W1 =

⎧⎪⎨
⎪⎩A(λ0, λ1, λ2, λ3) =

⎡
⎢⎣
λ0 λ1 λ2 λ3

0 λ0 λ1 λ2

0 0 λ0 λ1

0 0 0 λ0

⎤
⎥⎦ : λ0, . . . , λ3 ∈ C, λ1 �= 0

⎫⎪⎬
⎪⎭

and

W2 =

⎧⎪⎨
⎪⎩B(λ0, λ1, λ2, λ3) =

⎡
⎢⎣
λ0 λ1 λ2 λ3

0 λ0 2λ1 λ2

0 0 λ0 λ1

0 0 0 λ0

⎤
⎥⎦ : λ0, . . . , λ3 ∈ C, λ1 �= 0

⎫⎪⎬
⎪⎭ .

It is not too difficult to check that the bijectivemap φ : M4 → M4 defined by φ(X) = X ,
X ∈ M4 \ (W1 ∪ W2) , φ(A(λ0, λ1, λ2, λ3)) = B(λ0, λ1, λ2, λ3) , A(λ0, λ1, λ2, λ3) ∈
W1 , and φ(B(λ0, λ1, λ2, λ3)) = A(λ0, λ1, λ2, λ3) , B(λ0, λ1, λ2, λ3) ∈ W2 , preserves
spectrum and commutativity. We can produce further examples of bijective maps
preserving spectrum and commutativity by composing maps of this type. All these
examples show that the continuity assumption is indispensible.
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[8] P. ŠEMRL, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal.

210 (2004), 248-257.
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Department of Mathematics

University of Ljubljana
Jadranska 19

SI-1000 Ljubljana
Slovenia

e-mail: peter.semrl@fmf.uni-lj.si

Operators and Matrices
www.ele-math.com
oam@ele-math.com


