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COMMUTATORS, PINCHINGS, AND SPECTRAL VARIATION

RAJENDRA BHATIA AND FUAD KITTANEH

(communicated by A. Böttcher)

Abstract. The three topics of the title have been studied by several authors. The main aim of this
note is to point out interesting connections between them.

1. Introduction

Let B(H ) be the space of bounded linear operators on a Hilbert space H . For
convenience we assume H is finite-dimensional. Let ‖A‖ , ‖A‖p , and |||A||| denote,
respectively, the usual operator norm, the Schatten p -norm (1 � p � ∞ ), and an
arbitrary unitarily invariant norm of an operator A . Properties of these norms, and other
basic facts that we use in this paper, can be found in [1] . We will repeatedly use the
inequality |||XYZ||| � ‖X‖ |||Y||| ‖Z‖ valid for any three operators X , Y , and Z . We
call this property submultiplicativity.

An operator of the form AX − XA is called a commutator, and one of the form
AX − XB is called a generalized commutator. The triangle inequality, and the submul-
tiplicative property show that

|||AX − XB||| � (‖A‖ + ‖B‖) |||X||| . (1)

If we choose A = B =
[

1 0
0 −1

]
, X =

[
0 1
−1 0

]
, then

AX − XB =
[

0 2
2 0

]
,

and
|||AX − XB||| = 2 |||X||| = (||A|| + ||B||) |||X||| .

So the inequality (1) is sharp. Improvements are possible in special cases. If A and B
are positive (semidefinite), then we have

|||AX − XB||| � max(‖A‖ , ‖B‖) |||X||| . (2)
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Further, if A and X are positive, then

|||AX − XA||| � 1
2
‖A‖ |||X ⊕ X||| , (3)

where X ⊕ X represents the operator

[
X 0
0 X

]
on H ⊕ H . Note that for the op-

erator norm, and the special case A = B , the inequality (1) says that ‖AX − XA‖ �
2 ‖A‖ ‖X‖ ; the inequality (2) improves this to ‖AX − XA‖ � ‖A‖ ‖X‖ in the spe-
cial case when A is positive; and (3) gives the further improvement ‖AX − XA‖ �
1
2 ‖A‖ ‖X‖ when A and X are positive.

These results for the operator norm are corollaries of general theorems on norms
of derivations proved by J. G. Stampfli [10]; the results for all unitarily invariant norms
follow from inequalities for singular values recently obtained by one of the present
authors [8].

Let T be an operator on H ⊕ K partitioned as T =
[

A B
C D

]
. The diag-

onal operator C (T) =
[

A 0
0 D

]
is called a pinching of T . The operator O(T) =

T − C (T) =
[

0 B
C 0

]
is called the off-diagonal part of T . It is well-known that

|||C (T)||| � |||T||| and |||O(T)||| � |||T||| for all T . A general study of these op-
erators was made by R. Bhatia, M.-D. Choi, and C. Davis in [4]. In particular, they
observed that in the special case when T is positive

‖O(T)‖ � 1
2
‖T‖ , (4)

and

‖O(T)‖2 � 1√
2
‖T‖2 . (5)

Both (4) and (5) are subsumed in the inequality

|||O(T)||| � 1
2
|||T ⊕ T||| (6)

that we prove as Theorem 1 below.
The much-studied problem of spectral variation is concerned with finding upper

and lower bounds for various distances between the eigenvalues of two operators. Let
A be Hermitian and let λ1(A) � · · · � λn(A) be its eigenvalues arranged in decreasing
order. We denote by Eig ↓(A) the diagonal matrix with entries λ1(A), . . . , λn(A) down
its diagonal, and by Eig ↑(A) the diagonal matrix with entries λn(A), . . . , λ1(A) down
its diagonal. A well-known inequality in perturbation theory [1, p. 101], [2, p. 45] says
that whenever A and B are Hermitian, we have

|||A − B||| �
∣∣∣∣∣∣Eig↓(A) − Eig↑(B)

∣∣∣∣∣∣ . (7)
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In Section 2, we give new proofs of the inequalities (2) and (3), and we give a
generalization of the inequality (2) to Hermitian operators. Our analysis demonstrates
the connections between commutators, pinchings, and spectral variation. Though we
confine our discussion to operators on finite-dimensional Hilbert spaces, by slight
modifications the inequalitieswe obtain here can be extended to the infinite-dimensional
setting.

2. Proofs and connections

A very simple proof of the inequality (2) can be obtained using an idea going back
to Stampfli. For any two complex numbers z and w , and for all A and X ,

|||AX − XA||| = |||(A − z)(X − w) − (X − w)(A − z)|||
� 2 ‖A − z‖ |||X − w||| . (8)

Let
� (X, |||·|||) = inf

w∈C

|||X − w||| (9)

be the distance of X from scalar operators. Then the inequality (8) implies that

|||AX − XA||| � 2 �(A, ‖·‖) �(X, |||·|||). (10)

Let c(A) be the diameter of the smallest disk in the complex plane that contains
all the eigenvalues of A . If A is normal, then

c(A) = 2 �(A, ‖·‖) (11)

and the inequality (10) reduces to

|||AX − XA||| � c(A) �(X, |||·|||). (12)

We do not know any good estimate for �(X, |||·|||), but in any case it is not bigger
than |||X||| . So if A is normal, then

|||AX − XA||| � c(A) |||X||| . (13)

For any operator A, the spread of A , denoted spd (A) , is the diameter of the
spectrum of A , i.e., the maximum distance between any two eigenvalues of A . Clearly,
spd (A) � c(A) . If A is Hermitian, then

spd(A) = c(A) = λ1(A) − λn(A). (14)

If A is positive, then λn(A) � 0 and

c(A) � λ1(A) = ‖A‖ . (15)

So for positive A , the inequality (13) implies

|||AX − XA||| � ‖A‖ |||X||| . (16)
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If A and B are positive, and X arbitrary, we apply this inequality to the operators[
A 0
0 B

]
and

[
0 X
0 0

]
to obtain (2).

We remark that if A is positive definite, then

λ1(A) − λn(A) = ‖A‖ − ∥∥A−1
∥∥−1

. (17)

This leads to some improvement of (16), and consequently of (2).
For the operator norm alone, the inequality (10) and the relation (11) show that

when A and X both are normal, we have

‖AX − XA‖ � 1
2
c(A)c(X). (18)

In particular, if A and X are positive, then

‖AX − XA‖ � 1
2
‖A‖ ‖X‖ , (19)

and this is the inequality (3) for this special norm.
Now let us turn to pinchings, and for the convenience of the reader, give a proof of

the inequality (6), from which (4) and (5) follow as special cases.
Let s1(T) � · · · � sn(T) be the singular values of T . If T is Hermitian, we have

sj(T) = λj(T ⊕ −T) for 1 � j � n . If A and B are positive, then A − B � A and
B − A � B . Hence, by Weyl’s monotonicity principle [1, p. 63],

sj(A − B) = λj((A − B) ⊕ (B − A)) � λj(A ⊕ B) = sj(A ⊕ B). (20)

The inequality (20) was proved by X. Zhan [13]. A corollary of this is the inequality

|||A − B||| � |||A ⊕ B||| (21)

valid for all positive operators A and B. This inequality has been obtained earlier in
[5].

As an application of the inequality (21), we present a simple proof of the inequality
(6).

THEOREM 1. Let T =
[

A B
C D

]
be a positive partitioned operator. Then

|||O(T)||| � 1
2
|||T ⊕ T||| .

Proof. If U =
[

I 0
0 −I

]
, then U is a unitary operator and

O(T) =
1
2
(T − UTU∗). (22)

Since T is positive, it follows that UTU∗ is positive. So, in view of the unitary
invariance of |||·||| , the relation (22) and the inequality (21) yield the inequality (6).

�
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Now suppose X is any operator on H and P is an orthogonal projection. Then,

in an appropriate coordinate system, we have P =
[

I 0
0 0

]
and X =

[
X11 X12

X21 X22

]
.

So, PX − XP =
[

0 X12

−X21 0

]
, which in turn is the product of the unitary operator[

I 0
0 −I

]
and O(X) . This shows that

|||PX − XP||| = |||O(X)||| � |||X||| (23)

for every X , and, by Theorem 1,

|||PX − XP||| � 1
2
|||X ⊕ X||| (24)

if X is positive. These two inequalities are special instances of (2) and (3), when
A = B = P .

To go to the general case, we use a convexity argument. Suppose A is a positive
contraction, i.e., 0 � A � I . The eigenvalue n -tuple of A is a point α = (α1, . . . , αn)
in the hypercube [0, 1]n . The vertices of this hypercube are points in the set {0, 1}n .
So α is a convex combination of these vertices, and consequently A is a convex
combination of orthogonal projections. Let A =

∑m
j=1 tjPj , where t1, . . . , tm are

positive real numbers with
∑m

j=1 tj = 1 , and P1, . . . , Pm are orthogonal projection
operators. Then from (23) we obtain

|||AX − XA||| �
m∑

j=1

tj |||PjX − XPj||| �
m∑

j=1

tj |||X|||

= |||X||| .
If A is any positive operator, then A

‖A‖ is positive and contractive. So using the
inequality obtained above, we get

|||AX − XA||| � ‖A‖ |||X||| ,
from which (2) follows as before. Using the same argument, we obtain the inequality
(3) from (24).

The spectral variation inequality (7) can be employed to give commutator inequal-
ities as follows. Let A be Hermitian and U unitary. Then, by unitary invariance and
(7), we have

‖AU − UA‖ = ‖A − UAU∗‖ �
∥∥Eig↓(A) − Eig↑(A)

∥∥
= |λ1(A) − λn(A)| = spd(A).

(25)

Now suppose X is any operator with ‖X‖ � 1 . Then there exist unitaries U and V
such that X = 1

2 (U +V) . (One proof of this statement goes as follows: By the singular
value decomposition X = U1SU2, where U1 and U2 are unitary and S is diagonal
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with diagonal entries sj all of which are in [0, 1] . Each of these can be expressed as
sj = 1

2 (e
iθj + e−iθj) for some θj ). So, from the inequality (25), we get

‖AX − XA‖ � spd(A) ‖X‖ (26)

for all X . Let δA(X) := AX − XA . Then δA is a linear operator on B(H ) , and the
inequality (26) says

sup
‖X‖�1

‖δA(X)‖ � spd(A).

In fact, equality holds here. This can be seen by choosing an orthonormal basis for H
in which A = diag (λ1(A), . . . , λn(A)) and X is a matrix with entry x1n = 1 and all
its other entries are equal to zero. In other words

‖δA‖ := sup
‖X‖�1

‖δA(X)‖ = spd(A). (27)

The norm ‖·‖1 is the dual of the norm ‖·‖ . So we also have by a standard duality
argument

‖δA‖1 := sup
‖X‖1�1

‖δA(X)‖1 = spd(A). (28)

A familiar characterisation of unitarily invariant norms (see Exercise 2.7.12 in [3])
enables us to obtain an alternative proof of the inequality (13) for the case when A is
Hermitian. To do this, we need to recall some basic facts of unitarily invariant norms.
The Ky Fan norms of an operator T are given by ‖T‖(k) =

∑k
j=1 sj(T) , 1 � k � n.

Thus, ‖T‖(n) = ‖T‖1 , the trace norm of T . It is well-known that the Ky Fan norms
have the representation

‖T‖(k) = min {‖S‖1 + k ‖R‖ : T = S + R} . (29)

If ‖T‖(k) � ‖S‖(k) for 1 � k � n , then |||T||| � |||S||| for all unitarily invariant norms.
This is called the Fan dominance theorem [3, p. 58].

THEOREM 2. Let A be a Hermitian operator and X be any operator. Then

|||AX − XA||| � spd(A) |||X||| . (30)

Proof. We prove that

||δA(X)||(k) � spd(A) ||X||(k) for 1 � k � n.

Use the relation (29) to write X = Y + Z for some operators Y, Z with ‖X‖(k) =
‖Y‖1 + k ‖Z‖ . Thus, by (27) and (28),

‖δA(Y)‖1 � spd(A) ‖Y‖1 ,

‖δA(Z)‖ � spd(A) ‖Z‖ .



COMMUTATORS, PINCHINGS, AND SPECTRAL VARIATION 149

Another application of (29) leads to the inequality

‖δA(X)‖(k) � ‖δA(Y)‖1 + k ‖δA(Z)‖
= spd(A)(‖Y‖1 + k ‖Z‖)
= spd(A) ‖X‖(k) .

Now the inequality (30) follows by the Fan dominance theorem. �
The inequality (7) and the reasoning in the proof of Theorem 2 can be employed

to obtain natural generalizations of the inequalities (30) and (21) to generalized com-
mutators.

THEOREM 3. Let A and B be Hermitian operators and X be any operator. Then

|||AX − XB||| �
∥∥Eig↓(A) − Eig↑(B)

∥∥ |||X||| . (31)

It is easy to see that if A and B are Hermitian, then
∥∥Eig↓(A) − Eig↑(B)

∥∥ = max(|λ1(A) − λn(B)| , |λ1(B) − λn(A)|). (32)

THEOREM 4. Let A and B be Hermitian operators and X be any operator. Then

|||AX − XB||| � ‖X‖ ∣∣∣∣∣∣Eig↓(A) − Eig↑(B)
∣∣∣∣∣∣ . (33)

For the operator norm, the inequalities (31) and (33) reduce to the same inequality,
which yields a recent related inequality in [12].

When A and B are positive, the inequality (33) implies that

|||AX − XB||| � ‖X‖ |||A ⊕ B||| , (34)

an inequality obtained, by different means, in [8].
For the operator norm, the inequalities (34) and (2) are the same, and this case

has been considered in [7].

3. Remarks

Let A and B be normal operators with eigenvalues λ1, . . . , λn and μ1, . . . , μn ,
respectively. It is known that [1, p. 164]

‖A − B‖ �
√

2 max
i,j

|λi − μj| . (35)

Using this relation, we can see (as in Section 2) that if A is normal and X arbitrary,
then

|||AX − XA||| �
√

2 spd(A) |||X||| . (36)

This inequality can also be obtained from (13) by showing that

c(A) �
√

2 spd(A). (37)
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(This is the content of Problem VI.8.4 in [1]). For the special norm ‖·‖2 , one can easily
improve upon (36). Choosing a basis in which A = diag (λ1, · · · , λn) , we see that

‖AX − XA‖2
2 =

∑
i,j

|λi − λj|2 |xij|2 � (spd(A))2 ‖X‖2
2 . (38)

Thus, for this norm the factor
√

2 in (36) can be replaced by 1 . This is not generally

possible for other norms. For example, when A =

⎡
⎣ 0 1 0

0 0 1
1 0 0

⎤
⎦ , X =

⎡
⎣ 0 0 1

0 0 0
0 0 0

⎤
⎦ ,

then
‖AX − XA‖1 = 2, ‖X‖1 = 1, spd(A) =

√
3.

However, an interpolation argument does give a better inequality than (36) for the
Schatten p -norms. The linear operator δA on B(H ) has norm at most

√
2 spd (A)

when B(H ) is equipped with the norm ‖·‖ , or with the norm ‖·‖1 . Its norm is at
most spd (A) when the norm on B(H ) is taken to be ‖·‖2 . A standard interpolation
argument as used in [4] shows that the norm of δA on the space (B(H ), ‖·‖p) is not

bigger than 2
1
2 | 1

p− 1
q | spd (A) , where 1

p + 1
q = 1 . In other words, when A is normal, we

have for all X
‖AX − XA‖p � 2

1
2 | 1

p− 1
q |spd(A) ‖X‖p , (39)

1 � p � ∞.
In this context, we should mention that A. Böttcher and D. Wenzel have shown

that if A and B are any two operators, then

‖AX − XA‖2 �
√

3 ‖A‖2 ‖X‖2 , (40)

and conjectured that the factor
√

3 here can be replaced by
√

2 . This conjecture has
been proved for n = 2 in [6], for n = 3 in [9], and finally for general n in [11].
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